
NewChic Dataset Analysis

Group 17

Karan Goel: SN 7836685

Alvin Jose: SN 8066358

Ashutosh Bhosale: SN 7795786

Banin Sensha Shreshta: SN 8447196

Gaurav Adarsh Santosh: SN 7032663

Lino Thankachan: SN 7926017

Rishab Manokaran: SN 7863974

CSCI946 Big Data Analytics Assignment 1

August 23, 2024

1

1 Introduction

In the rapidly evolving e-commerce landscape, leveraging data is essential for making informed decisions

regarding consumer behavior and business strategy. This report delves into an extensive analysis of the

NewChic.com dataset, focusing on identifying the top 10 products from selected categories and determining

the best-performing category.

Our approach began with data preparation and hypothesis testing to ensure accuracy and relevance.

We employed two clustering algorithms—K-Means and Agglomerative Clustering (Hierarchical)—to uncover

insights into customer behavior and preferences. By analyzing these clusters, we aimed to understand which

products resonate most with consumers.

Furthermore, we utilized classification algorithms, including K-Nearest Neighbors and Decision Trees, to

predict product popularity and assess the effectiveness of our model in forecasting trends.

This report provides a comprehensive overview of the data analysis process, highlighting the identification

of best categories and top products. By comparing the performance of different clustering techniques, we offer

actionable insights to enhance NewChic’s strategic decisions and optimize product offerings in the competitive

e-commerce market.

2 Task 1: Problem Analysis

The dataset used in this analysis was compiled by merging nine different CSV files, each containing product

data from distinct categories: accessories, bags, beauty, house, jewelry, kids, men, shoes, and women. This

consolidation resulted in a comprehensive DataFrame consisting of 74,999 entries with 22 columns. For the

purpose of this analysis, the focus was narrowed down to six key features:

• Category: The type or category of the product (e.g., accessories, bags, etc.).

• Name: The specific name or identifier of the product.

• Current Price: The current selling price of the product.

• Raw Price: The original price of the product before any discounts.

• Likes Count: The number of likes or upvotes the product has received.

• Discount: The discount applied to the product, calculated as a percentage or fixed amount off the raw

price.

Objective: The main objectives were to clean and prepare the data for analysis, explore the relation-

ships between the selected features, and test specific hypotheses related to pricing, discounts, and customer

preferences.

2.1 Data Characteristics and Challenges

The dataset presents several characteristics and challenges that must be addressed:

• Diversity of Categories: The data spans nine distinct product categories, each likely to have different

pricing structures, customer preferences, and discount strategies. This diversity requires careful handling

during analysis to ensure meaningful comparisons and insights.

2

• Size and Complexity: With nearly 75,000 entries, the dataset is both large and complex, presenting

potential computational challenges. Effective preprocessing and outlier detection are crucial to manage

these complexities and ensure accurate analysis.

• Missing Data: Certain columns, particularly those related to likes count and discount, may contain

missing values that need to be handled carefully to avoid biasing the analysis.

• Outliers: Given the range of products and categories, there may be significant outliers, particularly in

numerical features such as likes count and current price. These outliers could skew the results if

not properly managed.

• Interdependencies Among Features: Features such as current price, raw price, and discount

are inherently related. Understanding these interdependencies is crucial for accurate analysis and hy-

pothesis testing.

2.2 Hypotheses and Analytical Focus

Given the dataset’s characteristics, the analysis focuses on the following key areas, each accompanied by

formal hypotheses:

• Price Sensitivity and Customer Engagement: Examining the relationship between current price

and likes count to understand how price influences customer engagement.

– Null Hypothesis (H0): There is no significant correlation between the current price of a product

and the number of likes it receives.

– Alternative Hypothesis (HA): There is a significant correlation between the current price of a

product and the number of likes it receives.

• Impact of Discounts: Exploring how discounts affect likes count to uncover whether discounted

products receive more attention.

– Null Hypothesis (H0): There is no significant relationship between the discount applied to a

product and the number of likes it receives.

– Alternative Hypothesis (HA): There is a significant relationship between the discount applied

to a product and the number of likes it receives.

• Category-Specific Preferences: Testing whether customer engagement, as measured by likes count,

differs significantly across product categories.

– Null Hypothesis (H0): The average number of likes is the same across all product categories.

– Alternative Hypothesis (HA): The average number of likes differs across at least one product

category.

These hypotheses guide the data preprocessing steps, ensuring that the dataset is prepared in a way that

allows for robust and insightful analysis.

3 Task 1: Data Preprocess

The data preprocessing involved several critical steps to ensure the dataset was suitable for detailed analysis.

Below is a breakdown of each step:

3

3.1 Data Loading and Concatenation

The first step was to load the nine CSV files into individual DataFrames and then concatenate them into a

single unified DataFrame. This consolidation was essential for handling and analyzing the data as a cohesive

unit.

data f rames = {
f i l e . s p l i t (’ . ’) [0] : pd . r ead c sv (os . path . j o i n (s e l f . base path , f i l e))

for f i l e in s e l f . f i l e s

}
s e l f . d f = pd . concat (data f rames . va lue s () , i g n o r e i n d e x=True)

3.2 Feature Selection and Handling Missing Values

The next step involved selecting the six key features (category, name, current price, raw price, likes count,

discount) and handling any missing values. Missing values in likes count and discount were filled with

zeros, while missing values in current price were filled with the median value of that feature.

chosen columns = {
’ category ’ , ’name ’ , ’ c u r r e n t p r i c e ’ , ’ r aw pr i c e ’ , ’ l i k e s c o u n t ’ , ’ d i s count ’

}
df = s e l f . d f . l o c [: , s e l f . d f . columns . i n t e r s e c t i o n (chosen columns)]

f i l l v a l u e s = {
’ l i k e s c o u n t ’ : 0 ,

’ d i s count ’ : 0 ,

’ c u r r e n t p r i c e ’ : d f [’ c u r r e n t p r i c e ’] . median ()

}
for column , va lue in f i l l v a l u e s . i tems () :

df [column] = df [column] . f i l l n a (va lue)

3.3 Scaling Numerical Features

To ensure that numerical features like current price, raw price, discount, and likes count were on a

comparable scale, the StandardScaler was applied. This step standardizes the data, ensuring that each

feature contributes equally to the analysis.

numerica l = df [[’ c u r r e n t p r i c e ’ , ’ r aw pr i c e ’ , ’ d i s count ’ , ’ l i k e s c o u n t ’]]

s c a l e d f e a t u r e s = s e l f . s c a l e r . f i t t r a n s f o r m (numerica l)

df [[’ c u r r e n t p r i c e ’ , ’ r aw pr i c e ’ , ’ d i s count ’ , ’ l i k e s c o u n t ’]] = s c a l e d f e a t u r e s

3.4 Encoding Categorical Features

Categorical features such as category and name were encoded using LabelEncoder. This step converted these

features into numerical values, which are more suitable for machine learning models and statistical analysis.

d f [’ category ’] = s e l f . l e c a t e g o r y . f i t t r a n s f o r m (df [’ category ’])

df [’name ’] = s e l f . le name . f i t t r a n s f o r m (df [’name ’])

4

3.5 Outlier Removal

Outliers can skew analysis results, especially in a dataset with numerical features. Outliers were identified

using the Z-score method, and any values exceeding the threshold of 3 were removed to ensure the dataset’s

integrity.

z s c o r e s = np . abs (s t a t s . z s c o r e (df . s e l e c t d t y p e s (i n c lude =[np . number])))

i n l i e r s = (z s c o r e s < 3) . a l l (a x i s =1)

df = df [i n l i e r s]

3.6 Task 1: Results

To test Hypotheses 1 and 2, we first constructed a correlation matrix and computed the corresponding p-

values, using a significance level (α) of 0.05 Figure 1. Additionally, to address Hypothesis 3, we performed an

ANOVA test to determine if the average likes count varies across product categories. Figure 2

Figure 1: Correlation Matrix Figure 2: Box Chart for Categories

Results: In both cases, we rejected the null hypotheses.

Based on these findings, we identified the top 7 categories and top 10 products by evaluating likes count,

current price, and discount.

Detailed results are provided in Section 9.

4 Task 2: Clustering

Our objective is to cluster customer preferences to determine the types of products that are most favored by

different customer segments. We proceed as follows:

• Feature Selection: The analysis focused on the current price and discount columns. The raw price

and likes count columns were excluded as they were not necessary for the clustering process.

• Target Data: The name and category columns were retained as target data. Although these columns

were not used directly for clustering, they were later employed for interpreting the resulting clusters.

5

5 Methodology

5.1 Elbow Method

The Elbow Method was employed to determine the optimal number of clusters for the KMeans algorithm.

This method involves plotting the Within-Cluster Sum of Squares (WSS) against the number of clusters to

identify the ”elbow point,” which indicates the number of clusters beyond which adding more clusters does

not significantly reduce the WSS. Figure 3

Figure 3: WSS

Based on this method, we determined the optimal value for k to be 7.

5.2 Clustering Algorithms

Two clustering algorithms were employed:

• KMeans: A centroid-based clustering algorithm that partitions the dataset into k clusters, with each

cluster represented by the mean of the points within it.

• Agglomerative Clustering: A hierarchical clustering technique that builds nested clusters by merging

or splitting them successively.

Both algorithms were executed with k = 7 clusters, and the results were evaluated using the following

metrics:

• Silhouette Score: Measures how similar an object is to its own cluster compared to other clusters.

• Calinski-Harabasz Index: The ratio of the sum of between-clusters dispersion and within-cluster

dispersion.

• Davies-Bouldin Index: The average similarity ratio of each cluster with its most similar cluster.

6

The clustering process is implemented as follows:

def p e r f o r m c l u s t e r i n g (s e l f) :

a lgor i thms = {
”KMeans” : KMeans(n c l u s t e r s =7, max iter =1000) ,

” Agglomerative ” : Agg lomerat iveCluster ing (n c l u s t e r s =7, l i n k a g e=’ ward ’)

}

for name , a lgor i thm in a lgor i thms . i tems () :

l a b e l s = algor i thm . f i t p r e d i c t (s e l f .X)

Store the c a l c u l a t e d metr ic s

s e l f . met r i c s [” S i l h o u e t t e Score ”] [name] = s i l h o u e t t e s c o r e (

s e l f .X, l a b e l s)

s e l f . met r i c s [” Ca l in sk i −Harabasz Index ”] [name] = c a l i n s k i h a r a b a s z s c o r e (

s e l f .X, l a b e l s)

s e l f . met r i c s [”Davies−Bouldin Index ”] [name] = d a v i e s b o u l d i n s c o r e (

s e l f .X, l a b e l s)

5.3 Visualization

Clusters were visualized by plotting the ‘current price‘ against the ‘discount‘ and coloring the points based on

their cluster assignments. Additionally, top products were highlighted in red to emphasize their positioning

within the clusters. Figure 4 and 5

This helped us understand customer preferences regarding pricing and discounts.

5.4 Justification and Selection of Algorithms

• KMeans Clustering:

– Reason for Selection: KMeans is efficient for large datasets and partitions data into ‘K‘ clusters

based on proximity to the cluster mean.

– Strengths: Computationally faster, works well with spherical clusters, easy to implement and

interpret.

– Weaknesses: Requires pre-specification of ‘K‘, struggles with non-spherical clusters.

• Agglomerative Clustering:

– Reason for Selection: Hierarchical technique capturing complex relationships, useful for under-

standing data structure.

– Strengths: Does not require pre-specification of clusters, can visualize clustering with a dendro-

gram.

– Weaknesses: Computationally expensive, less effective for large datasets.

6 Task 2: Results

This clustering analysis successfully grouped similar products based on their current price and discount. The

KMeans algorithm, with k = 7 clusters, demonstrated the best performance according to the Silhouette

7

Figure 4: Kmeans Cluster

Figure 5: Hierarchy Clusters

Score, although both algorithms provided valuable insights. The visualizations highlighted the distribution of

clusters and the positioning of top products, offering a clear view of the clustering results.

Algorithm Silhouette Score Calinski-Harabasz Index Davies-Bouldin Index

KMeans 0.4281 48062.9940 0.7600

Agglomerative 0.3829 20383.9248 0.8066

Table 1: Comparison of Clustering Algorithms

7 Task 3: Classification

Our objective for the classification task is to predict the popularity of a product based on its current price,

discount, and category. We employed two different machine learning algorithms: K-Nearest Neighbors (KNN)

and Decision Trees.

8

7.1 Data Preprocessing

To prepare the data for classification, the following steps were undertaken:

1. Popularity Definition: A new binary target variable, popularity, was created based on the likes count

feature. Products with a likes count higher than the dataset’s mean were classified as popular (popularity

= 1), and the rest as not popular (popularity = 0).

2. Feature Selection: The features selected for the classification task included category, current price,

and discount. The target variable was popularity.

3. Train-Test Split: The dataset was split into training and testing sets, with 80% of the data used for

training and 20% reserved for testing.

7.2 K-Nearest Neighbors (KNN)

7.2.1 Algorithm Overview

K-Nearest Neighbors (KNN) is a simple, instance-based learning algorithm that classifies a data point based

on the majority class of its k nearest neighbors in the feature space. The choice of k is critical; a smaller k

can lead to high variance, while a larger k may increase bias.

The KNN model was trained using a range of odd values for k between 13 and 19, with the Manhattan

distance metric. The best parameters were selected through GridSearchCV, optimizing for accuracy.

def t ra in knn (s e l f) :

knn = KNe ighbo r sC la s s i f i e r ()

param grid = {
’ n ne ighbors ’ : [i for i in range (13 , 20 , 2)] ,

’ we ights ’ : [’ uniform ’] ,

’ metr ic ’ : [’ manhattan ’]

}
g r i d s e a r c h = GridSearchCV (

knn , param grid , cv=s e l f . sk f , s c o r i n g=’ accuracy ’)

g r i d s e a r c h . f i t (s e l f . X train , s e l f . y t r a i n)

Best KNN model

s e l f . knn model = g r i d s e a r c h . b e s t e s t i m a t o r

print (f ” Best KNN Parameters : { g r i d s e a r c h . best params }”)

Cross−v a l i d a t i o n score s

c v s c o r e s = c r o s s v a l s c o r e (

s e l f . knn model , s e l f . X train , s e l f . y t ra in , cv=s e l f . sk f , s c o r i n g=’ accuracy ’)

print (f ’KNN Average Accuracy : { c v s c o r e s . mean ()

7.3 Decision Tree

7.3.1 Algorithm Overview

A Decision Tree is a supervised learning algorithm that splits the dataset into subsets based on feature values,

creating a tree-like structure of decisions. Each internal node of the tree represents a decision based on a

9

feature, each branch represents the outcome of that decision, and each leaf node represents a class label or

regression value. Decision Trees can be used for both classification and regression tasks.

Key parameters for Decision Trees include:

• Criterion: The function used to measure the quality of a split (e.g., Gini impurity, entropy).

• Max Depth: The maximum depth of the tree, controlling the complexity and preventing overfitting.

• Min Samples Split: The minimum number of samples required to split an internal node.

• Min Samples Leaf : The minimum number of samples required to be at a leaf node.

The following Python code demonstrates the implementation of the KNN and Decision Tree algorithms

for classifying product popularity.

def t r a i n d e c i s i o n t r e e (s e l f) :

print (” Dec i s i on Tree”)

dt = D e c i s i o n T r e e C l a s s i f i e r (random state =42)

param grid = {
’ c r i t e r i o n ’ : [’ g i n i ’ , ’ entropy ’] ,

’ max depth ’ : [None , 10 , 20 , 30 , 40 , 5 0] ,

’ m i n s a m p l e s s p l i t ’ : [2 , 5 , 10 , 1 5] ,

’ m in samp l e s l e a f ’ : [1 , 2 , 4 , 6]

}
g r i d s e a r c h = GridSearchCV (

dt , param grid , cv=s e l f . sk f , n j obs =−1, verbose =2)

g r i d s e a r c h . f i t (s e l f . X train , s e l f . y t r a i n)

Best Decis ion Tree model

s e l f . dt model = g r i d s e a r c h . b e s t e s t i m a t o r

print (f ” Best Dec i s i on Tree Parameters : { g r i d s e a r c h . best params }”)

Cross−v a l i d a t i o n score s

c v s c o r e s = c r o s s v a l s c o r e (

s e l f . dt model , s e l f . X train , s e l f . y t ra in , cv=s e l f . sk f , s c o r i n g=’ accuracy ’)

print (f ’ Dec i s i on Tree Average Accuracy : { c v s c o r e s . mean () ∗ 1 0 0 : . 2 f}% ’)

print (f ’ Dec i s i on Tree Standard Deviat ion : { c v s c o r e s . s td () ∗ 1 0 0 : . 2 f}% ’)

7.4 Justification and Selection of Algorithms

• K-Nearest Neighbors (KNN):

– Reason for Selection: KNN is a straightforward and intuitive algorithm that works well for

classification tasks where decision boundaries are not linear.

– Strengths:

∗ Simplicity: Easy to implement and understand.

∗ Flexibility: Can be used for both classification and regression.

∗ No Assumptions: Makes no assumptions about the underlying data distribution.

10

∗ Adaptability: Effective with small to medium-sized datasets.

• Decision Trees:

– Reason for Selection: Decision Trees are chosen for their interpretability and ability to handle

non-linear relationships in the data.

– Strengths:

∗ Interpretability: Easy to interpret and visualize, allowing us to understand the decision-

making process and the importance of different features.

∗ Non-Linear Relationships: Can capture complex, non-linear relationships between features

and the target variable.

∗ Feature Importance: Provides insights into which features contribute most to the predic-

tions.

∗ No Need for Feature Scaling: Does not require feature scaling, simplifying preprocessing.

∗ Handling of Missing Values: Can handle missing values in the dataset, making them robust

to incomplete data.

∗ Versatility: Suitable for both classification and regression tasks.

8 Task 3: Results

Both algorithms achieved an accuracy of 77% on the dataset, with good precision, recall, and F1 scores. The

Decision Tree performed slightly better than K-Nearest Neighbors.

Figure 6: Confusion Matrix for K-Nearest Neigh-
bors

Figure 7: Confusion Matrix for Decision Tree

9 Task 4: Result Discussion

9.1 4.1 Are the clusters well-separated from each other?

The clusters are indeed well-separated. We determined the optimal number of clusters k to be 7 by using the

Within-Cluster Sum of Squares (WSS) criterion. Plotting the clusters against features such as discount and

current price clearly shows distinct separations between clusters. This indicates that the clustering process

has effectively identified separate groups within the data.

11

Figure 8: Performance Metrics for K-Nearest
Neighbors

Figure 9: Performance Metrics for Decision Tree

9.2 4.2 Did the classifiers separate products into different classes effectively?

The classifiers demonstrated competent performance in distinguishing products into different classes. The K-

Nearest Neighbors (KNN) classifier achieved an accuracy of 77%, while the Decision Trees classifier achieved

a slightly higher accuracy of 78%. Further analysis revealed that Decision Trees outperformed KNN in terms

of Precision, Recall, and F1 Score, suggesting that Decision Trees provide a more balanced classification

performance in this context.

9.3 4.3 Do any of the clusters/classes have only a few points?

No, all clusters contain a sufficient number of data points. The distribution across clusters is balanced,

with none of the clusters having a disproportionately small number of points. This implies that the data is

well-represented across all clusters, contributing to the robustness of the analysis.

9.4 4.4 Are there meaningful and non-meaningful clusters/classes with respect to the

analytics problems outlined in Task 1?

Meaningful Clusters: The analysis reveals that clusters containing products with low current prices, even

in the absence of significant discounts, tend to include well-liked products. This suggests that price is a key

factor in customer preference, providing actionable insights into pricing strategies.

Non-Meaningful Clusters: Some clusters encompass information from various categories without a clear

pattern or insight. These clusters do not provide specific actionable information and may reflect a more

random distribution of product attributes.

9.5 4.5 What are the advantages and shortcomings of clustering and classification algo-

rithms in this analytics case? Which algorithm provides more valuable results?

Clustering (K-Means):

• Advantages: Effective at identifying natural groupings within the data and requires relatively few

computational resources. Useful for segmenting products based on attributes like price and discount.

• Shortcomings: Sensitive to the initial placement of cluster centroids and the scaling of data. It may

not perform well with outliers and requires the number of clusters to be specified in advance.

12

Classification (KNN and Decision Trees):

• Advantages: KNN is effective at capturing local patterns, while Decision Trees offer interpretability

and can handle complex relationships in the data. Both models provide insights into how features like

price and discount influence product classification.

• Shortcomings: KNN can be computationally expensive with large datasets, and Decision Trees may

overfit if not properly tuned. The performance of KNN may degrade with increased dataset size.

Which Algorithm Provides Greater Value: In this case, K-Means clustering was particularly valuable

as it provided insights into customer behavior and product segmentation. Although Decision Trees performed

better in classification tasks, the computational expense of KNN and the interpretability of Decision Trees

suggest that clustering offered more actionable insights for understanding product groupings and pricing

strategies.

9.6 4.6 Are the examined algorithms suitable for Big Data analytics? If so, why?

K-Means Clustering: K-Means is suitable for large datasets due to its relatively low computational com-

plexity. However, with very large datasets, it may become computationally intensive and sensitive to high-

dimensional data.

KNN: KNN is generally not well-suited for Big Data analytics because it requires storing the entire training

dataset and has high computational costs, especially for large datasets.

Decision Trees: Decision Trees are more scalable and can handle larger datasets better than KNN. They

are effective in managing complexity and high-dimensional data, though they may require careful tuning to

avoid overfitting with very large datasets.

9.7 4.7 Will data preprocessing affect clustering and classification results? If so, how?

Yes, data preprocessing significantly impacts both clustering and classification results.

• Scaling: Standardizing or normalizing data ensures that all features contribute equally to distance

calculations, which is crucial for algorithms like K-Means and KNN.

• Outliers: Removing outliers enhances the robustness of clustering and classification algorithms, pre-

venting them from being unduly influenced by extreme values.

Proper preprocessing improves the quality of the clusters and the accuracy of the classifiers by ensuring that

the data is clean, well-scaled, and appropriately prepared for analysis.

Table 2: Top 7 Categories (based on average likes count)
Category

Shoes
Women
Jewelry
House
Bags
Men
Beauty

13

Table 3: Top 10 Products in the Top 7 Categories
Product

Sandales élastiques à strass perle

Chaussures Vintage Rétro Respirantes Maille Ballerines À Fleur Avec Noeud Chinois
Sac de rangement étanche
Combinaison ample sans manches
Tongs plats en suède à entredoigt à fleur décorative
Bottes Vintage à Imprimé Fleurs
Manteau à Capuche Imprimé avec Poches
12 couleurs maquillage ombre à paupières stylo
Pompes papillon peintes à la main
Robe Casual Couleur Unie

References

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. Retrieved from https://

www.springer.com/gp/book/9780387310732

Developers, N. (2024). Numpy: The fundamental package for scientific computing with python. Retrieved

from https://numpy.org

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and tensorflow. O’Reilly Media.

Retrieved from https://www.oreilly.com/library/view/hands-on-machine/9781492032632/

learn Developers, S. (2024). Scikit-learn user guide. Scikit-learn Documentation. Retrieved from https://

scikit-learn.org/stable/user guide.html

Team, P. D. (2024). Pandas: Python data analysis library. Retrieved from https://pandas.pydata.org

VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. O’Reilly Media.

Retrieved from https://jakevdp.github.io/PythonDataScienceHandbook/

14

https://www.springer.com/gp/book/9780387310732
https://www.springer.com/gp/book/9780387310732
https://numpy.org
https://www.oreilly.com/library/view/hands-on-machine/9781492032632/
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
https://pandas.pydata.org
https://jakevdp.github.io/PythonDataScienceHandbook/

	Introduction
	Task 1: Problem Analysis
	Data Characteristics and Challenges
	Hypotheses and Analytical Focus

	Task 1: Data Preprocess
	Data Loading and Concatenation
	Feature Selection and Handling Missing Values
	Scaling Numerical Features
	Encoding Categorical Features
	Outlier Removal
	Task 1: Results

	Task 2: Clustering
	Methodology
	Elbow Method
	Clustering Algorithms
	Visualization
	Justification and Selection of Algorithms

	Task 2: Results
	Task 3: Classification
	Data Preprocessing
	K-Nearest Neighbors (KNN)
	Algorithm Overview

	Decision Tree
	Algorithm Overview

	Justification and Selection of Algorithms

	Task 3: Results
	Task 4: Result Discussion
	4.1 Are the clusters well-separated from each other?
	4.2 Did the classifiers separate products into different classes effectively?
	4.3 Do any of the clusters/classes have only a few points?
	4.4 Are there meaningful and non-meaningful clusters/classes with respect to the analytics problems outlined in Task 1?
	4.5 What are the advantages and shortcomings of clustering and classification algorithms in this analytics case? Which algorithm provides more valuable results?
	4.6 Are the examined algorithms suitable for Big Data analytics? If so, why?
	4.7 Will data preprocessing affect clustering and classification results? If so, how?

