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CSCI446/946 Big Data Analytics - Week 9 
Lab 8 – Image Processing with Python 

Introduction 

This instruction is for the use of the Python programming language. In Lab8, you will practice 
image processing which correlates to big data analytics lifecycle phase 2-5: Data Preparation, 
Model Planning, Model Building and Communicate Results. To complete this lab, you are 
required to 

1. download Lab8.py and the data from Moodle
2. Create a file Lab8.py to implement the code shown in blue
3. Create a Word document to write down your report by 1) explaining what you will do 

next, and 2) explain findings
4. format your report: title, heading, body of text, code, programming results, tables, 

figures, references, etc.

Task1: Image Data Analysis Using Python 
Original Post on page and page 

This tutorial takes a look at how to import images and observe it’s properties, split the layers, 
and also looks at greyscale. The contents include an introduction about Pixel, observe basic 
properties of image, greyscale, use logical operator to process Pixel values, masking, and 
image processing. 

# import packages 
import imageio 
import matplotlib.pyplot as plt 
import numpy as np  
import random 

%matplotlib inline 
import warnings 
warnings.filterwarnings("ignore") 

Introduction: A Little Bit About Pixel 

Computers store images as a mosaic of tiny squares called pixels. Now, if these squares are too 
big or too few then we cannot represent smooth edges and curves or represent details. The more 
and smaller tiles we use, the smoother (less pixelated) the image will be. This refers to the 
resolution of the images. 

The word pixel means a picture element. A single mosaic of pixels can represent images in 
black-and-white or in gray depending on whether pixel values are binary or integer numbers. 
Having multiple mosaics enables images to be of multiple colors, A common way to describe 
color pixel is by using three mosaics of pixels to represent the primary colors, namely Red, 

https://towardsdatascience.com/image-data-analysis-using-python-edddfdf128f4
https://datacarpentry.org/image-processing/aio/index.html
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Green, Blue. The pixel values are then the combination of the three values in the three mosaics. 
Images formed in this way are called RGB images. 

Every photograph, in digital form, is made up of pixels. They are the smallest unit of 
information that makes up a picture. Usually round or square, they are typically arranged in a 
2-dimensional grid.

Pixel values are often stored as byte values. Thus, if all three values are at full intensity, that 
means they’re 255. It then shows as white, and if all three colors are muted, or has the value of 
0, the pixel is black. The combination of these three will, in turn, give us a specific shade of 
the pixel color. Since each number is an 8-bit number, the values range from 0–255. 

The combination of these three colors tends to the highest value among them. Since each value 
can have 256 different intensity or brightness value, it makes 16.8 million total shades. 

Now let’s load an image and observe its various properties in general. 

pic = imageio.imread("data/logic_on_pic.jpg") 
plt.figure(figsize = (5,5)) 
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plt.imshow(pic) 

Observe Basic Properties of Image 

print('Type of the image : ' , type(pic))  
print('Shape of the image : {}'.format(pic.shape)) 
print('Image Hight {}'.format(pic.shape[0]))  
print('Image Width {}'.format(pic.shape[1]))  
print('Dimension of Image {}'.format(pic.ndim)) 

The shape of the ndarray shows that it is a three-layered matrix. The first two numbers here 
are length and width, and the third number (i.e. 3) is for three layers: Red, Green, Blue. So, if 
we calculate the size of an RGB image, the total size will be counted as height x width x 3 

print('Image size {}'.format(pic.size))  
print('Maximum RGB value in this image {}'.format(pic.max())) 
print('Minimum RGB value in this image {}'.format(pic.min())) 

# A specific pixel located at Row : 100 ; Column : 50   
# Each channel's value of it, gradually R , G , B   
print('Value of only R channel {}'.format(pic[ 100, 50, 0])) 
print('Value of only G channel {}'.format(pic[ 100, 50, 1])) 
print('Value of only B channel {}'.format(pic[ 100, 50, 2])) 

Now let’s take a quick view of each channel in the whole image. 

plt.title('R channel')  
plt.ylabel('Height {}'.format(pic.shape[0])) 
plt.xlabel('Width {}'.format(pic.shape[1]))  
plt.imshow(pic[ : , : , 0]) 
plt.show() 

plt.title('G channel') 
plt.ylabel('Height {}'.format(pic.shape[0])) 
plt.xlabel('Width {}'.format(pic.shape[1]))  
plt.imshow(pic[ : , : , 1])  
plt.show() 

plt.title('B channel')  
plt.ylabel('Height {}'.format(pic.shape[0])) 
plt.xlabel('Width {}'.format(pic.shape[1]))  
plt.imshow(pic[ : , : , 2])  
plt.show() 

Now, we can also able to change the number of RGB values. As an example, let’s set the 
Red, Green, Blue layer for following Rows values to full intensity. 

• R channel: Row — 50 to 60
• G channel: Row — 100 to 110
• B channel: Row — 150 to 160

We’ll load the image once so that we can visualize each change simultaneously. 
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# R channel: Row — 50 to 60 
# full intensity to those pixel's R channel 
pic[50:60 , : , 0] = 255  
plt.figure( figsize = (5,5))  
plt.imshow(pic)  
plt.show() 

# G channel: Row — 100 to 110 
# full intensity to those pixel's G channel 
pic[100:110 , : , 1] = 255   
plt.figure( figsize = (5,5))  
plt.imshow(pic)  
plt.show() 

# B channel: Row — 150 to 160 
# full intensity to those pixel's B channel 
pic[150:160 , : , 2] = 255  
plt.figure( figsize = (5,5))  
plt.imshow(pic)  
plt.show()

To make it more clear let’s change the column section too and this time we’ll change the 
RGB channel simultaneously. 

# set value 200 of all channels to those pixels which turns 
them to white  
pic[ 50:160 , 200:250 , [0,1,2] ] = 200   
plt.figure( figsize = (5,5))  
plt.imshow(pic)  
plt.show() 

Now, we know that each pixel of the image is represented by three integers. Splitting the 
image into separate color components is just a matter of pulling out the correct slice of the 
image array. 

pic = imageio.imread('data/logic_on_pic.jpg')  
fig, ax = plt.subplots(nrows = 1, ncols=3, figsize=(15,5))  
for c, ax in zip(range(3), ax): 
    ax.imshow(pic[ :, :, c]) 

We can also create histograms for full colour images. A program to create colour histograms 
starts in a familiar way: 

# tuple to select colors of each channel line 
colors = ("red", "green", "blue") 
channel_ids = (0, 1, 2) 

# create the histogram plot, with three lines, one for 
# each color 
plt.figure() 
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plt.xlim([0, 256]) 
for channel_id, c in zip(channel_ids, colors): 
    histogram, bin_edges = np.histogram( 

pic[:, :, channel_id], bins=128, range=(0, 256) 
    ) 
    plt.plot(bin_edges[0:-1], histogram, color=c) 

plt.title("Color Histogram") 
plt.xlabel("Color value") 
plt.ylabel("Pixel count") 

Greyscale 

Black and white images are stored in 2-Dimensional arrays. There’re two types of black and 
white images: 

• Binary: Pixel is either black or white:0 or 255
• Greyscale: Ranges of shades of grey:0 ~ 255

Greyscaling is a process by which an image is converted from a full color to shades of grey. In 
image processing tools, for example: in OpenCV, many functions use greyscale images before 
processing, and this is done because it simplifies the image, acting almost as noise reduction 
and increasing processing time as there’s less information in the images. 

There are a couple of ways to do this in python to convert an image to grayscale, but a 
straightforward way of using matplotlib is to take the weighted mean of the RGB value of 
original image using this formula. 

Y' = 0.299 R + 0.587 G + 0.114 B 

pic = imageio.imread('data/logic_on_pic.jpg')  
gray = lambda rgb : np.dot(rgb[... , :3] , [0.299 , 0.587, 
0.114])    
gray = gray(pic)  
plt.figure( figsize = (5,5))   
plt.imshow(gray, cmap = plt.get_cmap(name = 'gray'))  
plt.show() 

Skimage does not provide a special function to compute histograms, but we can use the 
function np.histogram instead: 

# create the histogram 
histogram, bin_edges = np.histogram(gray, bins=5, range=(0, 
1)) 
# configure and draw the histogram figure 
plt.figure() 
plt.title("Grayscale Histogram") 
plt.xlabel("grayscale value") 
plt.ylabel("pixel count") 
plt.plot(bin_edges[0:-1], histogram)  # <- or here
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Use Logical Operator To Process Pixel Values 

We can create a ndarray in the same size by using a logical operator. However, this won’t create 
any new arrays, but it simply returns True to its host variable. For example, let’s consider we 
want to filter out some low-value pixels or high-value or (any condition) in an RGB image, and 
yes, it would be great to convert RGB to grayscale, but for now, we won’t go for that rather 
than deal with a color image. 

Let’s first load an image and show it on screen. 

pic = imageio.imread('data/logic_on_pic.jpg') 
plt.figure(figsize=(5,5))  
plt.imshow(pic)  
plt.show() 

let’s consider this dump image. Now, for any case, we want to filter out all the pixel values, 
which is below than, let’s assume, 20. For this, we’ll use a logical operator to do this task, 
which we’ll return as a value of True for all the index. 

low_pixel = pic < 20   
# to ensure of it let's check if all values in low_pixel are 
True or not  
if low_pixel.any() == True: 
    print(low_pixel.shape) 

Now as we said, a host variable is not traditionally used, but I refer it because it behaves. It 
just holds the True value and nothing else. So, if we see the shape of both low_pixel and pic , 
we’ll find that both have the same shape. 

print(pic.shape) 
print(low_pixel.shape) 

We generated that low-value filter using a global comparison operator for all the values less 
than 200. However, we can use this low_pixel array as an index to set those low values to 
some specific values, which may be higher than or lower than the previous pixel value. 

pic = imageio.imread('data/logic_on_pic.jpg') 

# set value randomly range from 25 to 225 - these value also 
randomly choosen 
pic[low_pixel] = random.randint(25,225) 
# display the image 
plt.figure( figsize = (5,5)) 
plt.imshow(pic) 
plt.show() 

Masking 
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Image masking is an image processing technique that is used to remove the background from 
which photographs those have fuzzy edges, transparent or hair portions. 

Now, we’ll create a mask that is in shape of a circular disc. First, we’ll measure the distance 
from the center of the image to every border pixel values. And we take a convenient radius 
value, and then using logical operator, we’ll create a circular disc. It’s quite simple, let’s see 
the code. 

# Load the image  
pic = imageio.imread('data/logic_on_pic.jpg')  
# seperate the row and column values   
total_row , total_col , layers = pic.shape 
'''     Create vector.     Ogrid is a compact method of 
creating a multidimensional     
ndarray operations in single lines.     
for ex:     
>>> np.ogrid[0:5,0:5]     
output: [array([[0], 

[1], 
[2], 
[3], 
[4]]), 

array([[0, 1, 2, 3, 4]])]  
''' 
x , y = np.ogrid[:total_row , :total_col]  
# get the center values of the image  
cen_x , cen_y = total_row/2 , total_col/2 
'''    
 Measure distance value from center to each border pixel.     
 To make it easy, we can think it's like, we draw a line from 
center-      
 to each edge pixel value --> s**2 = (Y-y)**2 + (X-x)**2   
'''  
distance_from_the_center = np.sqrt((x-cen_x)**2 + (y-
cen_y)**2)   
# Select convenient radius value  
radius = (total_row/2)   
# Using logical operator '>'   
'''  
logical operator to do this task which will return as a value 
of True  
for all the index according to the given condition  
'''  
circular_pic = distance_from_the_center > radius   
'''  
let assign value zero for all pixel value that outside the 
cirular  
disc. All the pixel value outside the circular disc, will be 
black  
now.  
'''  
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pic[circular_pic] = 0  
plt.figure(figsize = (5,5))  
plt.imshow(pic)   
plt.show() 

Image Processing 

There’s something interesting about this image. Like many other visualizations, the colors in 
each RGB layer mean something. For example, the intensity of the red will be an indication of 
altitude of the geographical data point in the pixel. The intensity of blue will indicate a measure 
of aspect, and the green will indicate slope. These colors will help communicate this 
information in a quicker and more effective way rather than showing numbers. 

Red pixel indicates: Altitude 
Blue pixel indicates: Aspect 
Green pixel indicates: Slope 

There is, by just looking at this colorful image, a trained eye that can tell already what the 
altitude is, what the slope is, and what the aspect is. So, that’s the idea of loading some more 
meaning to these colors to indicate something more scientific. 

# Only Red Pixel value , higher than 180 
pic = imageio.imread('data/logic_on_pic.jpg') 
red_mask = pic[:, :, 0] < 180 
pic[red_mask] = 0 
plt.figure(figsize=(5,5)) 
plt.imshow(pic) 

# Only Green Pixel value , higher than 180 
pic = imageio.imread('data/logic_on_pic.jpg') 
green_mask = pic[:, :, 1] < 180 
pic[green_mask] = 0 
plt.figure(figsize=(5,5)) 
plt.imshow(pic) 
# Only Blue Pixel value , higher than 180 
pic = imageio.imread('data/logic_on_pic.jpg') 
blue_mask = pic[:, :, 2] < 180 
pic[blue_mask] = 0 
plt.figure(figsize=(5,5)) 
plt.imshow(pic) 
# Composite mask using logical_and 
pic = imageio.imread('data/logic_on_pic.jpg') 
final_mask = np.logical_and(red_mask, green_mask, blue_mask) 
pic[final_mask] = 40 
plt.figure(figsize=(5,5)) 
plt.imshow(pic) 

Task2: CNN for Image Representation 
Original Post on page 

https://www.analyticsvidhya.com/blog/2020/02/learn-image-classification-cnn-convolutional-neural-networks-3-datasets/


Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW               Page 9 of 11 

# import packages 
from keras.datasets import mnist 
from keras.models import Sequential 
from keras.layers import Dense, Dropout, Conv2D, MaxPool2D, 
Flatten 
try:
    from keras.utils.np_utils import to_categorical 
except: 
    from keras.utils import to_categorical 

from sklearn.metrics import accuracy_score 

import warnings 
warnings.filterwarnings("ignore") 

Convolutional neural networks (CNN) – the concept behind recent breakthroughs and 
developments in deep learning. 

CNNs have broken the mold and ascended the throne to become the state-of-the-art computer 
vision technique. Among the different types of neural networks (others include recurrent neural 
networks (RNN), long short term memory (LSTM), artificial neural networks (ANN), etc.), 
CNNs are easily the most popular. 

These convolutional neural network models are ubiquitous in the image data space. They work 
phenomenally well on computer vision tasks like image classification, object detection, image 
recognition, etc. 

There are various datasets that you can leverage for applying convolutional neural networks. 
Here we use the most popular dataset: MNIST (Hand-written Digits). 

MNIST comes with Keras by default and you can simply load the train and test files using a 
few lines of code: 

# loading dataset 
(X_train, y_train), (X_test, y_test) = mnist.load_data() 
# let's print the shape of the dataset 
print("X_train shape", X_train.shape) 

http://yann.lecun.com/exdb/mnist/
https://www.analyticsvidhya.com/blog/2016/10/tutorial-optimizing-neural-networks-using-keras-with-image-recognition-case-study/?utm_source=blog&utm_source=learn-image-classification-cnn-convolutional-neural-networks-5-datasets
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print("y_train shape", y_train.shape) 
print("X_test shape", X_test.shape) 
print("y_test shape", X_test.shape) 

Before we train a CNN model, let’s build a basic Fully Connected Neural Network for the 
dataset. The basic steps to build an image classification model using a neural network are: 

1. Flatten the input image dimensions to 1D (width pixels x height pixels)
2. Normalize the image pixel values (divide by 255)
3. One-Hot Encode the categorical column
4. Build a model architecture (Sequential) with Dense layers
5. Train the model and make predictions

Here’s how you can build a neural network model for MNIST. I have commented on the 
relevant parts of the code for better understanding: 

# Flattening the images from the 28x28 pixels to 1D 787 pixels 
X_train = X_train.reshape(60000, 784) 
X_test = X_test.reshape(10000, 784) 
X_train = X_train.astype('float32') 
X_test = X_test.astype('float32') 

# normalizing the data to help with the training 
X_train /= 255 
X_test /= 255 

# one-hot encoding using keras' numpy-related utilities 
n_classes = 10 
print("Shape before one-hot encoding: ", y_train.shape) 
Y_train = to_categorical(y_train, n_classes) 
Y_test = to_categorical(y_test, n_classes) 
print("Shape after one-hot encoding: ", Y_train.shape) 

# building a linear stack of layers with the sequential model 
model = Sequential() 
# hidden layer 
model.add(Dense(100, input_shape=(784,), activation='relu')) 
# output layer 
model.add(Dense(10, activation='softmax')) 

# looking at the model summary 
model.summary() 
# compiling the sequential model 
model.compile(loss='categorical_crossentropy', 
metrics=['accuracy'], optimizer='adam') 
# training the model for 10 epochs 
model.fit(X_train, Y_train, batch_size=128, epochs=10, 
validation_data=(X_test, Y_test)) 

After running the above code, you’d realized that we are getting a good validation accuracy of 
around 98%. 
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Let’s modify the above code to build a CNN model. 

One major advantage of using CNNs over NNs is that you do not need to flatten the input 
images to 1D as they are capable of working with image data in 2D. This helps in retaining the 
“spatial” properties of images. 

The complete code for the CNN model is as follows: 

# loading the dataset 
(X_train, y_train), (X_test, y_test) = mnist.load_data() 

# building the input vector from the 28x28 pixels 
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1) 
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1) 
X_train = X_train.astype('float32') 
X_test = X_test.astype('float32') 

# normalizing the data to help with the training 
X_train /= 255 
X_test /= 255 

# one-hot encoding using keras' numpy-related utilities 
n_classes = 10 
print("Shape before one-hot encoding: ", y_train.shape) 
Y_train = to_categorical(y_train, n_classes) 
Y_test = to_categorical(y_test, n_classes) 
print("Shape after one-hot encoding: ", Y_train.shape) 

# building a linear stack of layers with the sequential model 
model = Sequential() 
# convolutional layer 
model.add(Conv2D(25, kernel_size=(3,3), strides=(1,1), 
padding='valid', activation='relu', input_shape=(28,28,1))) 
model.add(MaxPool2D(pool_size=(1,1))) 
# flatten output of conv 
model.add(Flatten()) 
# hidden layer 
model.add(Dense(100, activation='relu')) 
# output layer 
model.add(Dense(10, activation='softmax')) 

# compiling the sequential model 
model.compile(loss='categorical_crossentropy', 
metrics=['accuracy'], optimizer='adam') 

# training the model for 10 epochs 
model.fit(X_train, Y_train, batch_size=128, epochs=10, 
validation_data=(X_test, Y_test)) 
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