
Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 1 of 11

CSCI446/946 Big Data Analytics - Week 9
Lab 8 – Image Processing with Python

Introduction

This instruction is for the use of the Python programming language. In Lab8, you will practice
image processing which correlates to big data analytics lifecycle phase 2-5: Data Preparation,
Model Planning, Model Building and Communicate Results. To complete this lab, you are
required to

1. download Lab8.py and the data from Moodle
2. Create a file Lab8.py to implement the code shown in blue
3. Create a Word document to write down your report by 1) explaining what you will do

next, and 2) explain findings
4. format your report: title, heading, body of text, code, programming results, tables,

figures, references, etc.

Task1: Image Data Analysis Using Python
Original Post on page and page

This tutorial takes a look at how to import images and observe it’s properties, split the layers,
and also looks at greyscale. The contents include an introduction about Pixel, observe basic
properties of image, greyscale, use logical operator to process Pixel values, masking, and
image processing.

import packages
import imageio
import matplotlib.pyplot as plt
import numpy as np
import random

%matplotlib inline
import warnings
warnings.filterwarnings("ignore")

Introduction: A Little Bit About Pixel

Computers store images as a mosaic of tiny squares called pixels. Now, if these squares are too
big or too few then we cannot represent smooth edges and curves or represent details. The more
and smaller tiles we use, the smoother (less pixelated) the image will be. This refers to the
resolution of the images.

The word pixel means a picture element. A single mosaic of pixels can represent images in
black-and-white or in gray depending on whether pixel values are binary or integer numbers.
Having multiple mosaics enables images to be of multiple colors, A common way to describe
color pixel is by using three mosaics of pixels to represent the primary colors, namely Red,

https://towardsdatascience.com/image-data-analysis-using-python-edddfdf128f4
https://datacarpentry.org/image-processing/aio/index.html

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 2 of 11

Green, Blue. The pixel values are then the combination of the three values in the three mosaics.
Images formed in this way are called RGB images.

Every photograph, in digital form, is made up of pixels. They are the smallest unit of
information that makes up a picture. Usually round or square, they are typically arranged in a
2-dimensional grid.

Pixel values are often stored as byte values. Thus, if all three values are at full intensity, that
means they’re 255. It then shows as white, and if all three colors are muted, or has the value of
0, the pixel is black. The combination of these three will, in turn, give us a specific shade of
the pixel color. Since each number is an 8-bit number, the values range from 0–255.

The combination of these three colors tends to the highest value among them. Since each value
can have 256 different intensity or brightness value, it makes 16.8 million total shades.

Now let’s load an image and observe its various properties in general.

pic = imageio.imread("data/logic_on_pic.jpg")
plt.figure(figsize = (5,5))

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 3 of 11

plt.imshow(pic)

Observe Basic Properties of Image

print('Type of the image : ' , type(pic))
print('Shape of the image : {}'.format(pic.shape))
print('Image Hight {}'.format(pic.shape[0]))
print('Image Width {}'.format(pic.shape[1]))
print('Dimension of Image {}'.format(pic.ndim))

The shape of the ndarray shows that it is a three-layered matrix. The first two numbers here
are length and width, and the third number (i.e. 3) is for three layers: Red, Green, Blue. So, if
we calculate the size of an RGB image, the total size will be counted as height x width x 3

print('Image size {}'.format(pic.size))
print('Maximum RGB value in this image {}'.format(pic.max()))
print('Minimum RGB value in this image {}'.format(pic.min()))

A specific pixel located at Row : 100 ; Column : 50
Each channel's value of it, gradually R , G , B
print('Value of only R channel {}'.format(pic[100, 50, 0]))
print('Value of only G channel {}'.format(pic[100, 50, 1]))
print('Value of only B channel {}'.format(pic[100, 50, 2]))

Now let’s take a quick view of each channel in the whole image.

plt.title('R channel')
plt.ylabel('Height {}'.format(pic.shape[0]))
plt.xlabel('Width {}'.format(pic.shape[1]))
plt.imshow(pic[: , : , 0])
plt.show()

plt.title('G channel')
plt.ylabel('Height {}'.format(pic.shape[0]))
plt.xlabel('Width {}'.format(pic.shape[1]))
plt.imshow(pic[: , : , 1])
plt.show()

plt.title('B channel')
plt.ylabel('Height {}'.format(pic.shape[0]))
plt.xlabel('Width {}'.format(pic.shape[1]))
plt.imshow(pic[: , : , 2])
plt.show()

Now, we can also able to change the number of RGB values. As an example, let’s set the
Red, Green, Blue layer for following Rows values to full intensity.

• R channel: Row — 50 to 60
• G channel: Row — 100 to 110
• B channel: Row — 150 to 160

We’ll load the image once so that we can visualize each change simultaneously.

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 4 of 11

R channel: Row — 50 to 60
full intensity to those pixel's R channel
pic[50:60 , : , 0] = 255
plt.figure(figsize = (5,5))
plt.imshow(pic)
plt.show()

G channel: Row — 100 to 110
full intensity to those pixel's G channel
pic[100:110 , : , 1] = 255
plt.figure(figsize = (5,5))
plt.imshow(pic)
plt.show()

B channel: Row — 150 to 160
full intensity to those pixel's B channel
pic[150:160 , : , 2] = 255
plt.figure(figsize = (5,5))
plt.imshow(pic)
plt.show()

To make it more clear let’s change the column section too and this time we’ll change the
RGB channel simultaneously.

set value 200 of all channels to those pixels which turns
them to white
pic[50:160 , 200:250 , [0,1,2]] = 200
plt.figure(figsize = (5,5))
plt.imshow(pic)
plt.show()

Now, we know that each pixel of the image is represented by three integers. Splitting the
image into separate color components is just a matter of pulling out the correct slice of the
image array.

pic = imageio.imread('data/logic_on_pic.jpg')
fig, ax = plt.subplots(nrows = 1, ncols=3, figsize=(15,5))
for c, ax in zip(range(3), ax):
 ax.imshow(pic[:, :, c])

We can also create histograms for full colour images. A program to create colour histograms
starts in a familiar way:

tuple to select colors of each channel line
colors = ("red", "green", "blue")
channel_ids = (0, 1, 2)

create the histogram plot, with three lines, one for
each color
plt.figure()

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 5 of 11

plt.xlim([0, 256])
for channel_id, c in zip(channel_ids, colors):
 histogram, bin_edges = np.histogram(

pic[:, :, channel_id], bins=128, range=(0, 256)
)
 plt.plot(bin_edges[0:-1], histogram, color=c)

plt.title("Color Histogram")
plt.xlabel("Color value")
plt.ylabel("Pixel count")

Greyscale

Black and white images are stored in 2-Dimensional arrays. There’re two types of black and
white images:

• Binary: Pixel is either black or white:0 or 255
• Greyscale: Ranges of shades of grey:0 ~ 255

Greyscaling is a process by which an image is converted from a full color to shades of grey. In
image processing tools, for example: in OpenCV, many functions use greyscale images before
processing, and this is done because it simplifies the image, acting almost as noise reduction
and increasing processing time as there’s less information in the images.

There are a couple of ways to do this in python to convert an image to grayscale, but a
straightforward way of using matplotlib is to take the weighted mean of the RGB value of
original image using this formula.

Y' = 0.299 R + 0.587 G + 0.114 B

pic = imageio.imread('data/logic_on_pic.jpg')
gray = lambda rgb : np.dot(rgb[... , :3] , [0.299 , 0.587,
0.114])
gray = gray(pic)
plt.figure(figsize = (5,5))
plt.imshow(gray, cmap = plt.get_cmap(name = 'gray'))
plt.show()

Skimage does not provide a special function to compute histograms, but we can use the
function np.histogram instead:

create the histogram
histogram, bin_edges = np.histogram(gray, bins=5, range=(0,
1))
configure and draw the histogram figure
plt.figure()
plt.title("Grayscale Histogram")
plt.xlabel("grayscale value")
plt.ylabel("pixel count")
plt.plot(bin_edges[0:-1], histogram) # <- or here

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 6 of 11

Use Logical Operator To Process Pixel Values

We can create a ndarray in the same size by using a logical operator. However, this won’t create
any new arrays, but it simply returns True to its host variable. For example, let’s consider we
want to filter out some low-value pixels or high-value or (any condition) in an RGB image, and
yes, it would be great to convert RGB to grayscale, but for now, we won’t go for that rather
than deal with a color image.

Let’s first load an image and show it on screen.

pic = imageio.imread('data/logic_on_pic.jpg')
plt.figure(figsize=(5,5))
plt.imshow(pic)
plt.show()

let’s consider this dump image. Now, for any case, we want to filter out all the pixel values,
which is below than, let’s assume, 20. For this, we’ll use a logical operator to do this task,
which we’ll return as a value of True for all the index.

low_pixel = pic < 20
to ensure of it let's check if all values in low_pixel are
True or not
if low_pixel.any() == True:
 print(low_pixel.shape)

Now as we said, a host variable is not traditionally used, but I refer it because it behaves. It
just holds the True value and nothing else. So, if we see the shape of both low_pixel and pic ,
we’ll find that both have the same shape.

print(pic.shape)
print(low_pixel.shape)

We generated that low-value filter using a global comparison operator for all the values less
than 200. However, we can use this low_pixel array as an index to set those low values to
some specific values, which may be higher than or lower than the previous pixel value.

pic = imageio.imread('data/logic_on_pic.jpg')

set value randomly range from 25 to 225 - these value also
randomly choosen
pic[low_pixel] = random.randint(25,225)
display the image
plt.figure(figsize = (5,5))
plt.imshow(pic)
plt.show()

Masking

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 7 of 11

Image masking is an image processing technique that is used to remove the background from
which photographs those have fuzzy edges, transparent or hair portions.

Now, we’ll create a mask that is in shape of a circular disc. First, we’ll measure the distance
from the center of the image to every border pixel values. And we take a convenient radius
value, and then using logical operator, we’ll create a circular disc. It’s quite simple, let’s see
the code.

Load the image
pic = imageio.imread('data/logic_on_pic.jpg')
seperate the row and column values
total_row , total_col , layers = pic.shape
''' Create vector. Ogrid is a compact method of
creating a multidimensional
ndarray operations in single lines.
for ex:
>>> np.ogrid[0:5,0:5]
output: [array([[0],

[1],
[2],
[3],
[4]]),

array([[0, 1, 2, 3, 4]])]
'''
x , y = np.ogrid[:total_row , :total_col]
get the center values of the image
cen_x , cen_y = total_row/2 , total_col/2
'''
 Measure distance value from center to each border pixel.
 To make it easy, we can think it's like, we draw a line from
center-
 to each edge pixel value --> s**2 = (Y-y)**2 + (X-x)**2
'''
distance_from_the_center = np.sqrt((x-cen_x)**2 + (y-
cen_y)**2)
Select convenient radius value
radius = (total_row/2)
Using logical operator '>'
'''
logical operator to do this task which will return as a value
of True
for all the index according to the given condition
'''
circular_pic = distance_from_the_center > radius
'''
let assign value zero for all pixel value that outside the
cirular
disc. All the pixel value outside the circular disc, will be
black
now.
'''

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 8 of 11

pic[circular_pic] = 0
plt.figure(figsize = (5,5))
plt.imshow(pic)
plt.show()

Image Processing

There’s something interesting about this image. Like many other visualizations, the colors in
each RGB layer mean something. For example, the intensity of the red will be an indication of
altitude of the geographical data point in the pixel. The intensity of blue will indicate a measure
of aspect, and the green will indicate slope. These colors will help communicate this
information in a quicker and more effective way rather than showing numbers.

Red pixel indicates: Altitude
Blue pixel indicates: Aspect
Green pixel indicates: Slope

There is, by just looking at this colorful image, a trained eye that can tell already what the
altitude is, what the slope is, and what the aspect is. So, that’s the idea of loading some more
meaning to these colors to indicate something more scientific.

Only Red Pixel value , higher than 180
pic = imageio.imread('data/logic_on_pic.jpg')
red_mask = pic[:, :, 0] < 180
pic[red_mask] = 0
plt.figure(figsize=(5,5))
plt.imshow(pic)

Only Green Pixel value , higher than 180
pic = imageio.imread('data/logic_on_pic.jpg')
green_mask = pic[:, :, 1] < 180
pic[green_mask] = 0
plt.figure(figsize=(5,5))
plt.imshow(pic)
Only Blue Pixel value , higher than 180
pic = imageio.imread('data/logic_on_pic.jpg')
blue_mask = pic[:, :, 2] < 180
pic[blue_mask] = 0
plt.figure(figsize=(5,5))
plt.imshow(pic)
Composite mask using logical_and
pic = imageio.imread('data/logic_on_pic.jpg')
final_mask = np.logical_and(red_mask, green_mask, blue_mask)
pic[final_mask] = 40
plt.figure(figsize=(5,5))
plt.imshow(pic)

Task2: CNN for Image Representation
Original Post on page

https://www.analyticsvidhya.com/blog/2020/02/learn-image-classification-cnn-convolutional-neural-networks-3-datasets/

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 9 of 11

import packages
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Conv2D, MaxPool2D,
Flatten
try:
 from keras.utils.np_utils import to_categorical
except:
 from keras.utils import to_categorical

from sklearn.metrics import accuracy_score

import warnings
warnings.filterwarnings("ignore")

Convolutional neural networks (CNN) – the concept behind recent breakthroughs and
developments in deep learning.

CNNs have broken the mold and ascended the throne to become the state-of-the-art computer
vision technique. Among the different types of neural networks (others include recurrent neural
networks (RNN), long short term memory (LSTM), artificial neural networks (ANN), etc.),
CNNs are easily the most popular.

These convolutional neural network models are ubiquitous in the image data space. They work
phenomenally well on computer vision tasks like image classification, object detection, image
recognition, etc.

There are various datasets that you can leverage for applying convolutional neural networks.
Here we use the most popular dataset: MNIST (Hand-written Digits).

MNIST comes with Keras by default and you can simply load the train and test files using a
few lines of code:

loading dataset
(X_train, y_train), (X_test, y_test) = mnist.load_data()
let's print the shape of the dataset
print("X_train shape", X_train.shape)

http://yann.lecun.com/exdb/mnist/
https://www.analyticsvidhya.com/blog/2016/10/tutorial-optimizing-neural-networks-using-keras-with-image-recognition-case-study/?utm_source=blog&utm_source=learn-image-classification-cnn-convolutional-neural-networks-5-datasets

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 10 of 11

print("y_train shape", y_train.shape)
print("X_test shape", X_test.shape)
print("y_test shape", X_test.shape)

Before we train a CNN model, let’s build a basic Fully Connected Neural Network for the
dataset. The basic steps to build an image classification model using a neural network are:

1. Flatten the input image dimensions to 1D (width pixels x height pixels)
2. Normalize the image pixel values (divide by 255)
3. One-Hot Encode the categorical column
4. Build a model architecture (Sequential) with Dense layers
5. Train the model and make predictions

Here’s how you can build a neural network model for MNIST. I have commented on the
relevant parts of the code for better understanding:

Flattening the images from the 28x28 pixels to 1D 787 pixels
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')

normalizing the data to help with the training
X_train /= 255
X_test /= 255

one-hot encoding using keras' numpy-related utilities
n_classes = 10
print("Shape before one-hot encoding: ", y_train.shape)
Y_train = to_categorical(y_train, n_classes)
Y_test = to_categorical(y_test, n_classes)
print("Shape after one-hot encoding: ", Y_train.shape)

building a linear stack of layers with the sequential model
model = Sequential()
hidden layer
model.add(Dense(100, input_shape=(784,), activation='relu'))
output layer
model.add(Dense(10, activation='softmax'))

looking at the model summary
model.summary()
compiling the sequential model
model.compile(loss='categorical_crossentropy',
metrics=['accuracy'], optimizer='adam')
training the model for 10 epochs
model.fit(X_train, Y_train, batch_size=128, epochs=10,
validation_data=(X_test, Y_test))

After running the above code, you’d realized that we are getting a good validation accuracy of
around 98%.

Lab 8 CSCI446 CSCI946 Spring 2024 SCIT UOW Page 11 of 11

Let’s modify the above code to build a CNN model.

One major advantage of using CNNs over NNs is that you do not need to flatten the input
images to 1D as they are capable of working with image data in 2D. This helps in retaining the
“spatial” properties of images.

The complete code for the CNN model is as follows:

loading the dataset
(X_train, y_train), (X_test, y_test) = mnist.load_data()

building the input vector from the 28x28 pixels
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')

normalizing the data to help with the training
X_train /= 255
X_test /= 255

one-hot encoding using keras' numpy-related utilities
n_classes = 10
print("Shape before one-hot encoding: ", y_train.shape)
Y_train = to_categorical(y_train, n_classes)
Y_test = to_categorical(y_test, n_classes)
print("Shape after one-hot encoding: ", Y_train.shape)

building a linear stack of layers with the sequential model
model = Sequential()
convolutional layer
model.add(Conv2D(25, kernel_size=(3,3), strides=(1,1),
padding='valid', activation='relu', input_shape=(28,28,1)))
model.add(MaxPool2D(pool_size=(1,1)))
flatten output of conv
model.add(Flatten())
hidden layer
model.add(Dense(100, activation='relu'))
output layer
model.add(Dense(10, activation='softmax'))

compiling the sequential model
model.compile(loss='categorical_crossentropy',
metrics=['accuracy'], optimizer='adam')

training the model for 10 epochs
model.fit(X_train, Y_train, batch_size=128, epochs=10,
validation_data=(X_test, Y_test))

	Introduction
	Task1: Image Data Analysis Using Python
	Introduction: A Little Bit About Pixel
	Observe Basic Properties of Image
	Greyscale
	Use Logical Operator To Process Pixel Values
	Masking
	Image Processing

	Task2: CNN for Image Representation

