# CSCI471/971 Modern Cryptography Zero-Knowledge Proof II

Rupeng Yang SCIT UOW

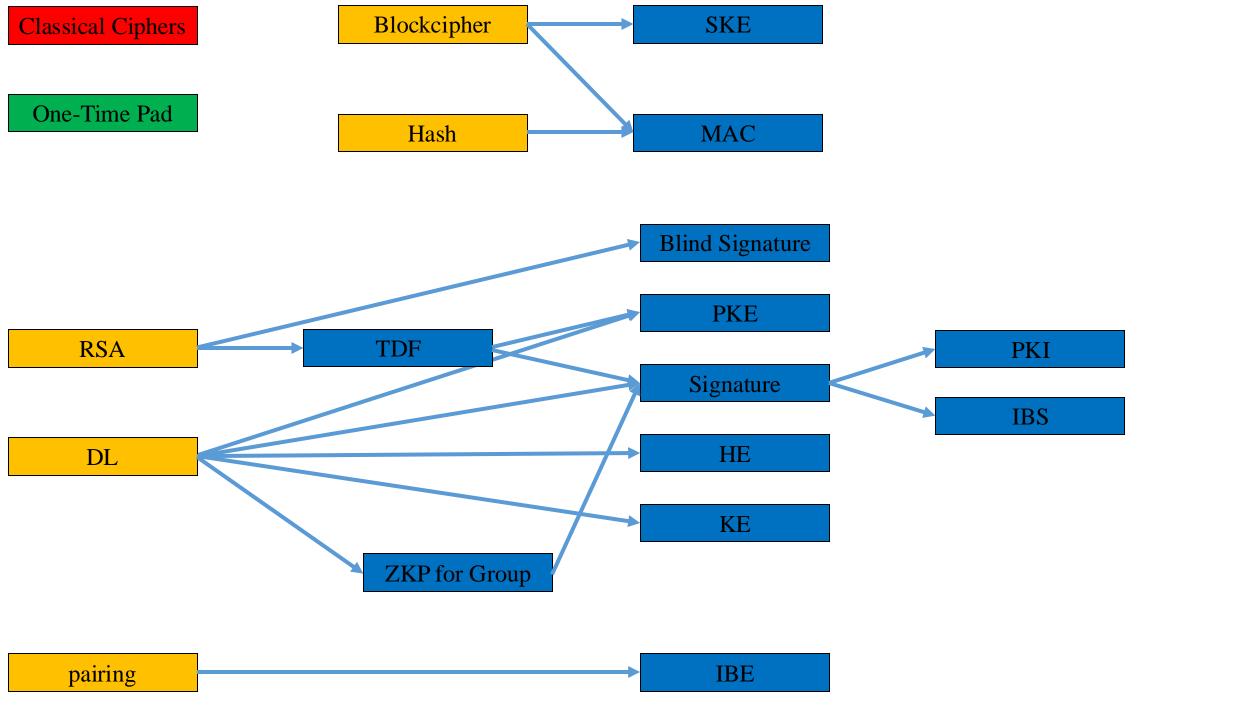
#### RoadMap

Week 1-2: Preliminaries

Week 3-4: Symmetric-Key Cryptography

Week 5-9: Public-Key Cryptography

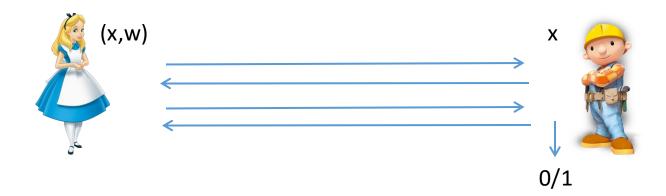
• Week 10-11: Zero-Knowledge Proofs



Zero-Knowledge Proofs (Revision)

# Zero Knowledge Proofs (of knowledge)

- A protocol involving a prover and a verifier.
- The prover takes as input a statement x and a witness w.
- The verifier takes as input the statement x.
- The prover's goal is to convince the verifier that some statement is true (or that she holds the witness w) without revealing any other information.
- Here, we only consider internal attackers, i.e., the prover will try to cheat the verifier and the verifier will try to learn the witness w.



# Zero Knowledge Proofs (<u>of knowledge</u>)

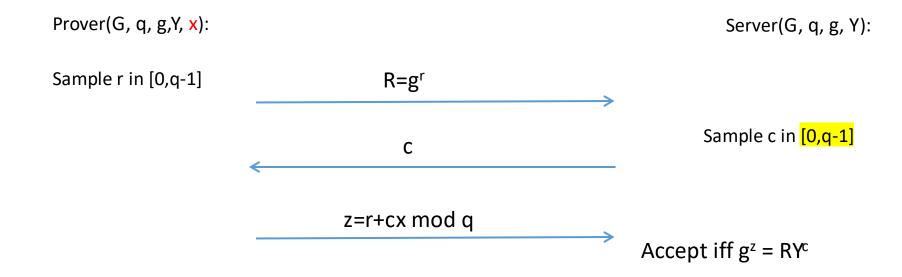
- A protocol involving a prover and a verifier.
- The prover takes as input a statement x and a witness w.
- The verifier takes as input the statement x.
- The prover's goal is to convince the verifier that some statement is true (or that she holds the witness w) without revealing any other information.
- Here, we only consider internal attackers, i.e., the prover will try to cheat the verifier and the verifier will try to learn the witness w.

- Correctness:
  - Completeness: Given honest prover and honest verifier, the protocol will output 1
- Security:
  - Soundness: If the statement is wrong (or the prover does not hold the witness), then she cannot pass the verification.
  - Zero-Knowledge: The verifier cannot learn any information from the protocol.
    - Here, we usually cannot use the indistinguishability-based definition (unless each statement is associated with multiple witnesses)
    - We use a simulation-based definition

## Preliminaries on Cyclic Group

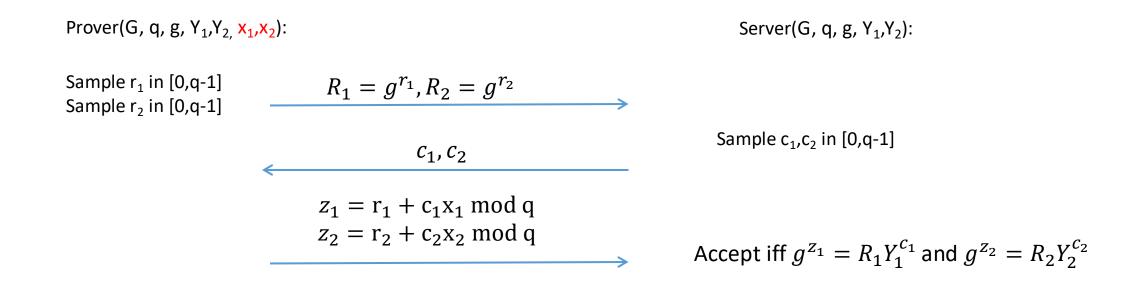
- Let (G,g,p) be a cyclic group, where G is the set of group element, g is the generator, and p is the group order:
  - $G = \{ g^0, g^1, \ldots, g^{p-1} \}$
  - gp=1
- The following operations are easy in the group (G,g,p):
  - Given any h<sub>1</sub>, h<sub>2</sub> in G, it is easy to compute h<sub>1</sub> · h<sub>2</sub>
    - For any h in G and for any x,y in [0,p-1], given  $h^x$  and  $h^y$ , it is easy to compute  $h^{x+y}=h^x \cdot h^y$
    - For any  $h_1$ ,  $h_2$  in G and for any x in[0,p-1], given  $h_1^x$  and  $h_2^x$ , we can compute  $(h_1 \cdot h_2)^x = h_1^x \cdot h_2^x$
  - Given any h in G and any x in [0,p-1], it is easy to compute h<sup>x</sup>
- The following operations are hard in the group (G,g,p):
  - Given g<sup>x</sup>, it is hard to compute x (The DL problem)
  - Given g<sup>x</sup> and g<sup>y</sup>, it is hard to compute g<sup>xy</sup> (The CDH problem)
  - Given g<sup>x</sup> and g<sup>y</sup>, it is hard to distinguish g<sup>xy</sup> from a random group element in G (The DDH problem)

#### Schnorr Protocol



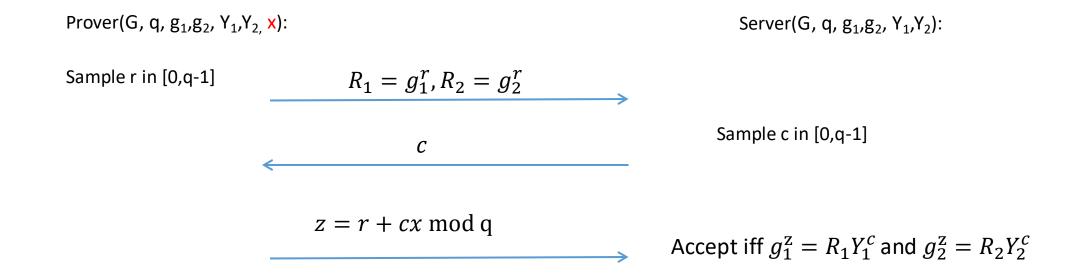
# Zero-Knowledge Proofs for the AND relation in Cyclic Groups

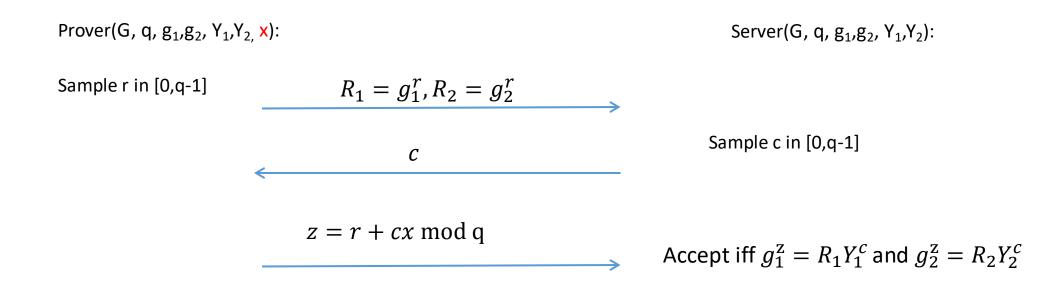
- How to prove that you know the discrete logs  $x_1, x_2$  s.t.  $g^{x_1} = Y_1$  and  $g^{x_2} = Y_2$ ?
  - We can simply combine two protocols



- How to prove that you know the discrete log x s.t.  $g_1^x = Y_1$  and  $g_2^x = Y_2$ ?
  - Can we combine two protocols directly?

- How to prove that you know the discrete log x s.t.  $g_1^x = Y_1$  and  $g_2^x = Y_2$ ?
  - We need to add restrictions to ensure that the two discrete logs are the same.





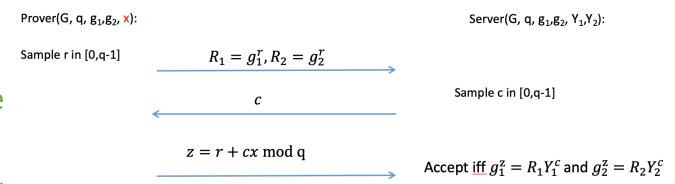
Completeness

#### **Soundness**

- Assume that the prover can always pass the verifications. Then after sending (R<sub>1</sub>,R<sub>2</sub>), the verifier is able to compute the correct response z on many challenges c.
- Now, based on two different challenges c<sub>1</sub> and c<sub>2</sub>, and the correct responses z<sub>1</sub> and z<sub>2</sub>, it is easy to extract x.
  - Given  $(R1,R2,c_1,z_1)$  and  $(R1,R2,c_2,z_2)$  where

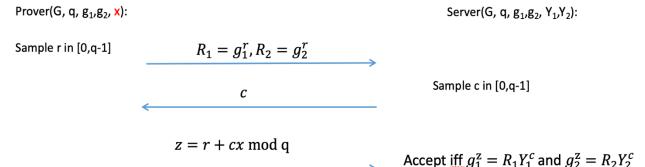
$$g_1^{z_1} = R1 * Y_1^{c_1}$$
  $g_1^{z_2} = R1 * Y_1^{c_2}$   
 $g_2^{z_1} = R2 * Y_2^{c_1}$   $g_2^{z_2} = R2 * Y_2^{c_2}$ 

- We have  $g_1^{z_1-z_2}=Y_1^{c_1-c_2}$  and  $\bar{g}_2^{z_1-z_2}=Y_2^{c_1-c_2}$
- Thus, one can compute  $\mathbf{x}=(z_1-z_2)(c_1-c_2)^{-1}$  which satisfies  $Y_1=g_1^{\mathbf{x}} \wedge Y_2=g_2^{\mathbf{x}}$
- If the prover only passes with a non-negligible probability, a more detailed probability analysis and the rewinding techniques are needed.



#### (Honest-Verifier) Zero-Knowledge

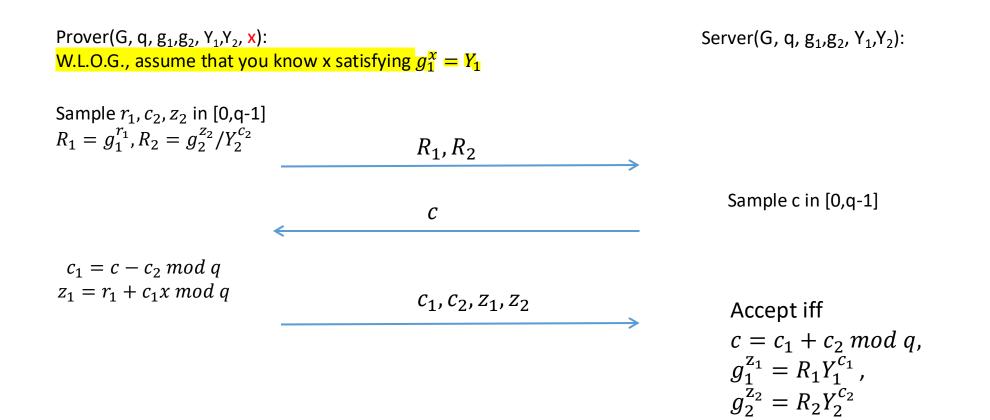
- The verifier only sees a random value
- Actually, one can simulate the interaction
   (R<sub>1</sub>,R<sub>2</sub>,c,Z) without knowing x as long as c
   is randomly chosen by the prover (i.e., the
   prover is honest).
  - Choose a random c from Z<sub>p</sub>
  - 2. Choose a random z
  - 3. Compute  $R_1 = g_1^z * h_1^{-c}$ ,  $R_2 = g_2^z * h_2^{-c}$  (We set r=z-c\*x mod q implicitly)



# Zero-Knowledge Proofs for the OR relation in Cyclic Groups

- How to prove that you know the discrete log x s.t. either  $g_1^x = Y_1$  or  $g_2^x = Y_2$ ?
  - Assume that you know  $g_1^x = Y_1$ , then you can at least prove this statement.
  - It implies that you know x s.t. either  $g_1^x = Y_1$  or  $g_2^x = Y_2$ , but it reveals for which part you know the witness.
  - To solve the problem, we need to also include a valid proof for the second part.
    - Fortunately, this is possible if we know the challenge in advance.
  - So, we need to design the protocol in a way that you can know one and only one challenge in advance.

• How to prove that you know the discrete log x s.t. either  $g_1^x = Y_1$  or  $g_2^x = Y_2$ ?



Prover(G, q,  $g_1, g_2, Y_1, Y_2, x$ ):

W.L.O.G., assume that you know x satisfying  $g_1^x = Y_1$ Sample  $r_1, c_2, z_2$  in [0,q-1]  $R_1 = g_1^{r_1}, R_2 = g_2^{z_2}/Y_2^{c_2}$  CSample c in [0,q-1]  $c_1 = c - c_2 \mod q$   $c_1 = r_1 + c_1 x \mod q$ Accept iff  $c = c_1 + c_2 \mod q$ ,  $g_1^{z_1} = R_1 Y_1^{c_1}$ ,

 $g_2^{\mathbf{z}_2} = R_2 Y_2^{c_2}$ 

Completeness

#### **Soundness**

- Assume that the prover can always pass the verifications. Then after sending  $(R_1,R_2)$ , the verifier is able to compute the correct response on many challenges c.
- Now, based on two different challenges c and c', and the correct responses (c<sub>1</sub>,c<sub>2</sub>,z<sub>1</sub>,z<sub>2</sub>) and (c'<sub>1</sub>,c'<sub>2</sub>,z'<sub>1</sub>,z'<sub>2</sub>), it is easy to extract x.
  - Given (R1,R2,c,c<sub>1</sub>,c<sub>2</sub>,z<sub>1</sub>,z<sub>2</sub>) and (R1,R2,c',c'<sub>1</sub>,c'<sub>2</sub>,z'<sub>1</sub>,z'<sub>2</sub>) where

$$g_1^{z_1} = R1 * h_1^{c_1}$$
  $g_1^{z_1'} = R1 * h_1^{c_1'}$   
 $g_2^{z_2} = R2 * h_2^{c_2}$   $g_2^{z_2'} = R2 * h_2^{c_2'}$ 

- We have  $g_1^{z_1-z_1'}=h_1^{c_1-c_1'}$  and  $g_2^{z_2-z_2'}=h_2^{c_2-c_2'}$
- As  $c \neq c'$ , we have either  $c_1 \neq c'_1$  or  $c_2 \neq c'_2$
- Thus, one can compute either  $\mathbf{x}=(z_1-z_1')(c_1-c_1')^{-1}$  (which satisfies  $Y_1=g_1^{\mathbf{x}}$ ) or  $a=(z_2-z_2')(c_2-c_2')^{-1}$  (which satisfies  $Y_2=g_2^{\mathbf{x}}$ ).
- If the prover only passes with a non-negligible probability, a more detailed probability analysis and the rewinding techniques are needed.

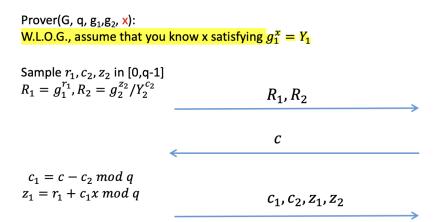
Server(G, q, g<sub>1</sub>,g<sub>2</sub>, Y<sub>1</sub>,Y<sub>2</sub>):

Sample c in [0,q-1]

Accept iff  $c = c_1 + c_2 \mod q$ ,  $g_1^{z_1} = R_1 Y_1^{c_1}$ ,  $g_2^{z_2} = R_2 Y_2^{c_2}$ 

#### (Honest-Verifier) Zero-Knowledge

- The verifier only sees random values
- Actually, one can simulate the interaction
   (R<sub>1</sub>,R<sub>2</sub>,c, c<sub>1</sub>,c<sub>2</sub>,z<sub>1</sub>,z<sub>2</sub>) without knowing any x
   as long as c is randomly chosen by the
   prover (i.e., the prover is honest).
  - 1. Choose random  $c_1, c_2$ , from  $Z_p$
  - 2. Compute  $c = c_1 + c_2$
  - 3. Choose random  $z_1, z_2$
  - 4. Compute  $R_1 = g_1^{z_1} * h_1^{-c_1}$ ,  $R_2 = g_2^{z_2} * h_2^{-c_2}$



Server(G, q, g<sub>1</sub>,g<sub>2</sub>, Y<sub>1</sub>,Y<sub>2</sub>):

Sample c in [0,q-1]

Accept iff  $c = c_1 + c_2 \mod q$ ,  $g_1^{z_1} = R_1 Y_1^{c_1}$ ,  $g_2^{z_2} = R_2 Y_2^{c_2}$ 

• Given  $(g_1, Y_1)$ ,  $(g_2, Y_2)$ , ...,  $(g_l, Y_l)$ , how to prove that you know one of the discrete log, i.e., a number x s.t.  $g_i^x = Y_i$ ?

Prover(G, q,  $(g_1, Y_1)$ ,  $(g_2, Y_2)$ , ...,  $(g_l, Y_l)$ , x): W.L.O.G., assume that you know x satisfying  $g_1^x = Y_1$ 

 $z_1 = r_1 + c_1 x \bmod q$ 

Server(G, q,  $(g_1, Y_1)$ ,  $(g_2, Y_2)$ , ...,  $(g_l, Y_l)$ ):

Sample 
$$r_1$$
 in [0,q-1],  $R_1 = g_1^{r_1}$ ;
For i in [2,l]:
Sample  $c_i, z_i$  in [0,q-1],
$$R_i = g_i^{z_i}/Y_i^{c_i}$$

$$c$$

$$c$$

$$c_1 = c - \sum_{i=0}^l c_i \mod q \qquad (c_1, z_1), \dots, (c_l, z_l)$$

Sample c in [0,q-1]

Accept iff  $c = \sum_{i=1}^{l} c_i \mod q$ ,  $g_i^{z_i} = R_i Y_i^{c_i}$  for all i.

# Ring Signature

#### Ring signatures

- In some cases, it is necessary to sign on a message while hiding the identity of the signer.
- Usually, we will require that the public only know that the signature is made by someone in a group, but they do not know the exact identity of the signer.
- For example, in some applications like anonymous reporting, we need to ensure that:
  - The whistleblower can sign the signature on behalf of a set of users (e.g., all staff in a company).
  - Anyone outside this set is not able to sign.
  - No one knows who is the signer/ whistleblower, i.e., the signatures produced by anyone in the set cannot be distinguished.
- The above scenario is a bit artificial, but we finally found some more natural application scenarios. (Assignment 2 Task 1)

# Ring Signatures

- KeyGen(λ): Taking as input a security parameter λ, the key generation algorithms returns (pk,sk)
- Sign(sk, M, (pk<sub>1</sub>, ..., pk<sub>l</sub>)): Taking as input a message M, a set of public keys, and a secret key sk for one of the public key, the signing algorithm returns a signature denoted by S.  $S \leftarrow Sign(sk, M, (pk_1, ..., pk_l))$
- Verify(S,M, ( $pk_1$ , ...,  $pk_l$ )): Taking as input signed message (S,M) and the set of public keys, the verification algorithm returns  $\frac{1}{2}$  or  $\frac{0}{2}$ .

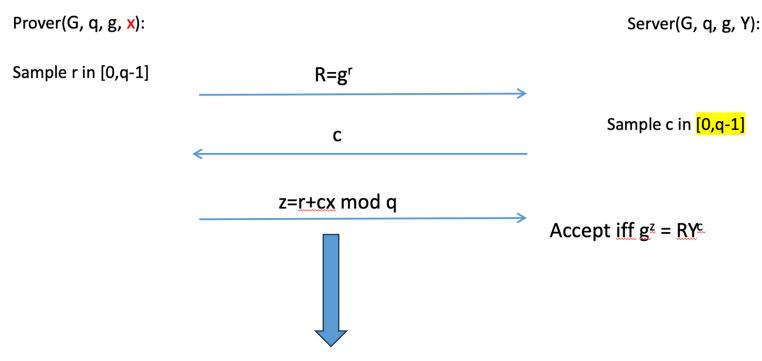
# Ring Signatures

• <u>Correctness</u>: For all generated  $(pk_1, sk_1), ..., (pk_l, sk_l)$ , all index i, and all signature  $S \leftarrow Sign(sk_i, M, (pk_1, ..., pk_l))$ , we have  $Pr[Verify(S, M, (pk_1, ..., pk_l))=1]=1$ 

# Ring Signatures

- Next, let us try to define the security. We need to define unforgeability (since it is a signature) and anonumity of Signer (since it is a ring signature).
- Unforgeability: Anyone outside the set cannot produce a valid signature.
  - The adversary should be able to
    - Aks for a signature on a message M singed by a secret key sk<sub>i</sub> on behalf of a set of users.
    - Ask for the secret keys for public keys outside the target set.
  - The goal is to generate a valid signature on a message M\* singed by a set R\*, where
    - The adversary has not asked for the secret key for any public key in R\*.
    - The adversary has not asked the signature for (M\*,R\*)
- Anonymity: The adversary cannot know the real signer in a group.
  - The adversary is able to know all public keys and secret keys.
    - In some definitions, we require the adversary cannot learn the secret keys of the two targets.
  - The adversary asks for a signature on a message  $M^*$  and a ring  $R^*$ , where the signature is singed by either  $sk_0$  or  $sk_1$ ; the adversary's goal is to distinguish which secret key is used.

#### Constructing a Ring signature: Warm-Up



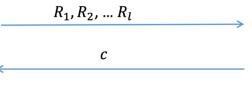
In this transform, we transform a proof showing that "I know a secret key of the DL-based cryptosystem" into a signature.

- Sign(sk, M): Taking as input a message M and a secret key sk=(G, q, g, x, H), the P.P.T. algorithm
  - 1. Choose a random number r and computes R=g<sup>r</sup>
  - 2. Compute c=H(R, M)
  - 3. Compute z=r+ c\*x mod q
  - 4. The signature is (R,z)
- Verify(S,M,pk): Taking as input a signed message M, the public key pk=(G, q, g, h, H), and a signature (R,z), the P.P.T. algorithm
  - 1. Compute c'=H(R,M) and Accept the signature if  $g^z=R \cdot h^{c'}$

#### Constructing a Ring signature: Warm-Up

Prover(G, q,  $(g_1, Y_1)$ ,  $(g_2, Y_2)$ , ...,  $(g_l, Y_l)$ , x): W.L.O.G., assume that you know x satisfying  $g_1^x = Y_1$  Server(G, q,  $(g_1, Y_1)$ ,  $(g_2, Y_2)$ , ...,  $(g_l, Y_l)$ ):

 $\begin{aligned} & \text{Sample } r_1 \text{ in [0,q-1], } R_1 = g_1^{r_1} \text{ ;} \\ & \text{For } \underline{i} \text{ in [2,l]:} \\ & \text{Sample } c_i, z_i \text{ in [0,q-1],} \\ & R_i = g_i^{z_i}/Y_i^{c_i} \end{aligned}$ 



$$c_1 = c - \sum_{i=2}^{l} c_i \mod q$$

$$z_2 = r_1 + c_2 x \mod q$$

$$(c_1, z_1), \dots, (c_l, z_l)$$

 $g_{
m i}^{
m z_i}=$ 

Sample c in [0,q-1]

 $\begin{aligned} & \text{Accept } \underline{\text{iff}} \\ & c = \sum_{i=1}^{l} c_i \ mod \ q, \\ & g_i^{z_i} = R_i Y_i^{c_i} \ \text{for all i.} \end{aligned}$ 

The ZKP proves that "I know one secret key (out of I secret keys) of the DL-based cryptosystem". Can we transform it into a ring signature?

# Ring Signature

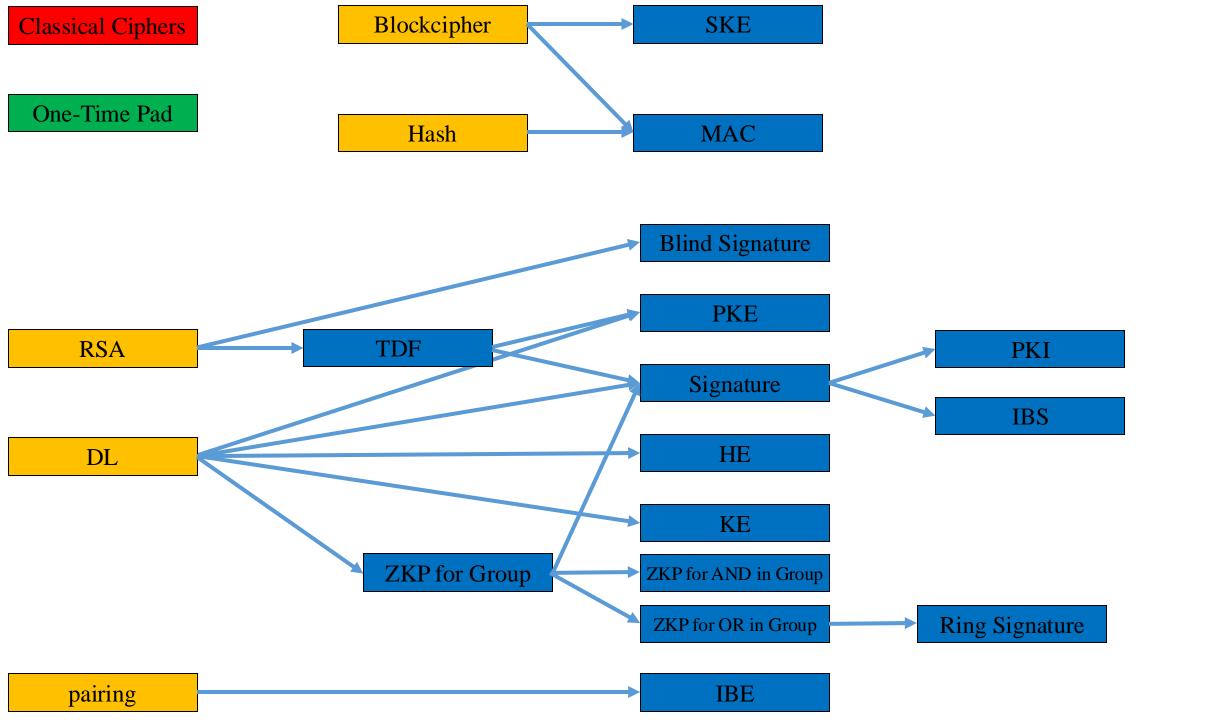
- The signature scheme assume that all parties agree on a cyclic group G of order q, a generator g of G, and a hash function H:  $\{0,1\}^* \rightarrow Z_q$
- KeyGen( $\lambda$ ): Taking as input a security parameter  $\lambda$ , the P.P.T. algorithm
  - 1. Chooses a uniform  $x \in Z_q$  and compute  $h = g^x$ .
  - 2. The public key is h and the private key is x.
- Sign(sk, M,  $(h_1, ... h_l)$ ): Taking as input a message M, a set of public keys  $(h_1, ... h_l)$ , and a secret key sk= $x_i$ , the P.P.T. algorithm
  - 1. Choose a random number r<sub>i</sub>
  - 2. Compute  $R_i = g^{r_i}$
  - 3. For j in [1,l] and  $j \neq i$ :
    - 1. Choose random  $c_i$ ,  $z_i$
    - 2. Compute  $R_j = g^{z_j}/h_i^{c_j}$
  - 4. Compute  $c=H(R_1, ..., R_l, M)$

- 5. Compute  $c_i = c \sum_{j \neq i} c_j$
- 6. Compute  $z_i = r_i + c_i * x_i \mod q$
- 7. The signature is  $((R_1,c_1,z_1), ..., (R_l,c_l,z_l))$
- Verify(S,M,  $(h_1, ... h_l)$ ): Taking as input a signed message M, a set of public keys  $(h_1, ... h_l)$ , and a signature  $((R_1,c_1,z_1), ..., (R_l,c_l,z_l))$ , the P.P.T. algorithm
  - 1. Compute  $c'=H(R_1, ..., R_l, M)$
  - 2. and Accept the signature if

1. 
$$c = \sum_{i=1}^{l} c_i \mod q$$
,

2. 
$$g^{z_j} = R_j h_j^{c_j}$$
 for all j

- Correctness.
- Unforgeability
- Anonymity.



#### Summary

- Zero-Knowledge
  - Zero-Knowledge for And Relation
    - Construction
    - Security\*
  - Zero-Knowledge for OR Relation
    - General Idea
    - Construction
    - Security\*
    - Extending to k statements
  - Ring Signature
    - Definition
      - Application Scenarios
      - Syntax and Correctness
      - Security\*
    - Construction from ZKP for OR relations