CSCl471/971
Modern Cryptography

Zero-Knowledge Proof I

Rupeng Yang
SCIT UOW

RoadMap
* Week 1-2: Preliminaries
* Week 3-4: Symmetric-Key Cryptography
* Week 5-9: Public-Key Cryptography

* Week 10-11: Zero-Knowledge Proofs

RSA

DL

Blockcipher

Hash

pairing

/ero-Knowledge Proofs (Revision)

/ero Knowledge Proofs (of knowledge)

A protocol involving a prover and a verifier.
The prover takes as input a statement x and a witness w.
The verifier takes as input the statement x.

The prover’s goal is to convince the verifier that some statement is true (or that she holds the witness
w) without revealing any other information.

Here, we only consider internal attackers, i.e., the prover will try to cheat the verifier and the verifier
will try to learn the witness w.

0/1

/ero Knowledge Proofs (of knowledge)

A protocol involving a prover and a verifier.

The prover takes as input a statement x and a witness w.

The verifier takes as input the statement x.

The prover’s goal is to convince the verifier that some statement is true (or that she holds the witness
w) without revealing any other information.

Here, we only consider internal attackers, i.e., the prover will try to cheat the verifier and the verifier
will try to learn the witness w.

Correctness:
* Completeness: Given honest prover and honest verifier, the protocol will output 1

Security:
* Soundness: If the statement is wrong (or the prover does not hold the witness), then she cannot pass the verification.

» Zero-Knowledge: The verifier cannot learn any information from the protocol.
* Here, we usually cannot use the indistinguishability-based definition (unless each statement is associated with multiple witnesses)
* We use a simulation-based definition

Preliminaries on Cyclic Group

* Let (G,g,p) be a cyclic group, where G is the set of group element, g is the generator,
and p is the group order:
+ G={g%g',...,8""}
¢ gh=1
* The following operations are easy in the group (G,g,p):
* Given any hy, h,in G, itis easy to compute h; - h,
 Forany hin G and forany x,y in [0,p-1], given h*and hY, it is easy to compute h**Y=hX-hY
* Forany hy, h, in G and for any x in[0,p-1], given h,*and h,X, we can compute (h, - h,)*= h*- hX
 Givenany hin Gand any x in [0,p-1], itis easy to compute h*

e The following operations are hard in the group (G,g,p):
e Given g% itis hard to compute x (The DL problem)

* Given g¥and g, itis hard to compute g© (The CDH problem)
* Given g¥and g, it is hard to distinguish g¥¥ from a random group element in G (The DDH problem)

Schnorr Protocol

Prover(G, q, g,Y, x): Server(G, q, g, Y):
Samplerin [0,9-1] R=g'
Sample cin [0,g-1]

z=r+cx mod q
Accept iff gz = RY¢

Zero-Knowledge Proofs for the AND
relation in Cyclic Groups

A proof of knowledge of the And Relation

* How to prove that you know the discrete logs x,x, s.t. g*t =Y; and g*2 =Y,?
* We can simply combine two protocols

Prover(G, q, 8 YlIYZ, XlIXZ): Server(Gr q, 8, erYZ):

Sampler;in[0,9-1] R1 — g“,Rz = 97‘2
Sampler, in [0,g-1]

S le c,,c,in [0,0-1
c1, Cy ample ¢;,¢, in [0,9-1]

z1 =11 + Xy modq

Zy =Ty + C3X, mod q
o2 Accept iff g“1 = R1Y1C1 and g*2 = RZYZC2

A proof of knowledge of the And Relation

* How to prove that you know the discrete log xs.t. g7 =Y, and gy =Y,?
* Can we combine two protocols directly?

A proof of knowledge of the And Relation

* How to prove that you know the discrete log xs.t. g7 =Y, and gy =Y,?
 We need to add restrictions to ensure that the two discrete logs are the same.

Prover(G, d, 81,82 Y1IY2, X): Server(Gr d, 81,82, erYZ):
Samplerin [0,g-1] R, = g{) R, = 95
Sample cin [0,9-1]

Z =1+ cxmodq
Accept iff g¥ = R{Y{ and g5 = R,YS

A proof of knowledge of the And Relation

Prover(G, q, 81,82, erYZ, X): Server(G, q, glrgZI Ylle):
Sample rin [0,g-1] R, =g91,R, = g5

Sample cin [0,9-1]

Z=71r+cxmodq
Accept iff g7 = R{Y{ and g5 = R,YS

* Completeness

A proof of knowledge of the And Relation

Soundness
* Assume that the prover can always pass roeaeaex. Server(G, 0, g8y Y.Y,):
the verifications. Then after sending sample rin 01 Ry = g1,R; = g}
, the verifier is able to compute c Sample ¢ n [0,0-1]

on

z=r+cxmodq
Accept iff g% = R, Y and g5 = R,Yy¥
* Now, based on

,and the

, It Is easy to extract x.

* Given (R1,R2,c,,z,) and (R1,R2,c,,z,) where
glzl = R1 x Yfl glz2= R1 = Yfz
g,t =R2 * ¥, g,2=R2 xY,?

« Wehave g;* 2 =Y,2"% and g,* 2 =Y, 1

 Thus, one can compute x= (z;—2,)(c; — ¢;) " which satisfies V; = g A Y, = g5

* If the prover only passes with a non-negligible probability, a more detailed probabilty

analysis and the rewinding techniques are needed.

A proof of knowledge of the And Relation

(Honest-Verifier) Zero-Knowledge prover(6. 4. g)

 The verifier only sees a random value smserinoay
* Actually, one can simulate the interaction
(R4,R,,¢,Z) without knowing x as long as ¢
is randomly chosen by the prover (i.e., the

prover is honest).
1. Choose a random c from Z,
2. Choose arandom z
3. Compute R, = g7 *h{°, R, = g5 * h;“(We set
r=z-c*x mod q implicitly)

Server(G, g, 81,82 Y1Y2):

Ri=g1,R, = g;

c Sample cin [0,g-1]

z=r+cxmodq
_ Acceptiff g7 = R,Y{ and g5 = R, Yy

Zero-Knowledge Proofs for the OR
relation in Cyclic Groups

A proof of knowledge of the OR Relation

* How to prove that you know the discrete log x s.t. either g7 =Y, orgy =Y,?
« Assume that you know g7 = Y;, then you can at least prove this statement.

« It implies that you know X s.t. either g7 = Y; or g5 = Y,, but it reveals for which part you know the
witness.

* To solve the problem, we need to also include a valid proof for the second part.
* Fortunately, this is possible if we know the challenge in advance.

* So, we need to design the protocol in a way that you can know one and only one challenge in advance.

A proof of knowledge of the OR Relation

* How to prove that you know the discrete log x s.t. either g7 =Y, orgy =Y,?

Prover(G, d, 81,82, YllYZI X): Server(Gr q, glngI YlIYZ):
W.L.0.G., assume that you know x satisfying g7 = Y;

Sample 14, ¢y, z, in [0,9-1]
Ry = g1 Rz = g5° /Yy R{, R,

Sample cin [0,9-1]

c1 =c—cymodq

A =r+axmodg €1, €2,21,22 Accept iff

c =c¢q1+c,modq,
gil - Rlylil ’
95" = RyY,*

A proof of knowledge of the OR Relation

Prover(G, d, 81,82, Y1;Y2r X): Server(G, d, 81,82, YlIYZ):
W.L.0.G., assume that you know x satisfying g7 = Y;

Sample 1y, ¢5, Z5 in [0,9-1]
Rl = gIIJRZ = ggz/YZCZ Rl, Rz

Sample cin [0,g-1]

¢t =c—c,modq
z1 =1 +cixmodq C1,C2, 21,2y Accept iff
c =c +c,modq,
gl = R1Y1 ’
Z Cc
9, = RyY,”*
* Completeness

A proof of knowledge of the OR Relation

Soundness
* Assume that the prover can always pass the verifications. roweic o e 0 Server(G, g, g YoYs)
. . . W.L.O.G., assume that you know x satisfying g¥ = ¥;
Then after sending , the verifier is able to compute . . .
0 n R, = HIIrRz = gzzzfyzcz R, R,
c Sample cin [0,9-1]
* Now, based on , and the -
)))) o, ® cgo=c—c,modq
C1,Cy,24,Z, C1,C5,2,Z5),ILIS€asy ==r+armdq pccept i
to extract x. R
 Given (R1,R2,c,c,,C,,24,2,) and (R1,R2,¢,¢',,C,,2'1,2’,) Where 92" = Ra¥y”
!/ !/
glzl = R1 = hil glzlz R1 = hil
!/ I/
ggz = R2 * h} g§2= R2 = hgz

!/ !/ !/

* We have glzl_zi =h;'" and g,? 2 = hy?
 Asc # ¢/, we have eitherc; # ¢’y orc, #¢'5
 Thus, one can compute either x = (z;—21)(c; — ¢1)~ ! (which satisfies V; = g¥)ora =
(z,—25)(c; — ¢3) ™1 (which satisfies ¥, = g3).
* If the prover only passes with a non-negligible probability, a more detailed probabilty
analysis and the rewinding techniques are needed.

A proof of knowledge of the OR Relation

(Honest-Verifier) Zero-Knowledge

* The verifier only sees random values

* Actually, one can simulate the interaction
(R4,R,,C, €4,C5,24,Z,) without knowing any x
as long as c is randomly chosen by the
prover (i.e., the prover is honest).

1.

2.
3.
4

Choose random cy,c,, from Z,
Compute c=c,+c,
Choose random z,,z,
Z —C Z —C
Compute Ry = g;* *h; *,Ry, = g;° *h,

PrOVer(G, q.r g11g21 X):
W.L.O.G., assume that you know x satisfying g7 = ¥;

Sample 1y, ¢5, Z5 in [0,g-1]
Ry =gy Ry = g5°/Y," R, R,

Cc

¢ =c—cy;modq

z; =1+ cxmodq €1,C2, 21, Z7

Server(G, g, 81,82 Y1,Y2):

Sample cin [0,9-1]

Accept iff
c=c+c;modq,
gi' =RYy',

952 = RZYZC2

A proof of knowledge of the OR Relation

* Given (g, Y1), (95, Y>), ..., (g1, Y7),how to prove that you know one of the discrete log, i.e.,
anumberxs.t.gi =Y;?

Prover(Gr q, (glr Yl)l (921 YZ); ey (gl; Yl)I X):

Server(G, 9, (91, Y1), (92, Y2), ..., (g1, Y1)):
W.L.0.G., assume that you know x satisfying g7 = Y;

Samplery in [0,9-1], Ry = gIl ;

Foriin|[2]]: R. R P
Sample ¢j, z; in [0,9-1], 1, N, ... I\
. — A2iyCi
ol C Sample cin [0,9-1]
l
C1=C-ZCim0dq C1,21), -, (C, Z .
2 (v, ol 2) Accept iff
Zy =1+ cgxmod q o %:1 i mod q.

gt = RY; " foralli.

Ring Signature

Ring signatures

In some cases, it is necessary to sign on a message while hiding the
identity of the signer.

Usually, we will require that the public only know that the signature is
made by someone in a group, but they do not know the exact identity of
the signer.

For example, in some applications like anonymous reporting, we need to
ensure that:

* The whistleblower can sign the signature on behalf of a set of users (e.g., all staff in
a company).

* Anyone outside this set is not able to sign.

* No one knows who is the signer/ whistleblower, i.e., the signatures produced by
anyone in the set cannot be distinguished.

The above scenario is a bit artificial, but we finally found some more
natural application scenarios. (Assignment 2 Task 1)

Ring Signatures

* KeyGen(A): Taking as input a security parameter A, the key
generation algorithms returns (pk,sk)

* Sign(sk, M, (pk,, ..., pk))): Taking as input a message M, a set
of public keys, and a secret key sk for one of the public key,
the signing algorithm returns a signature denoted by S.

S«3ign(sk, M, (pk,, ..., pk)))

* Verify(S,M, (pk,, ..., pk)): Taking as input sighed message
(S,M) and the set of public keys, the verification algorithm
returns 1 or O.

Ring Signhatures

e Correctness: For all generated (pk,,sk,), ..., (pk,sk,), all index
i, and all sighature S<-Sign(sk,, M, (pk,, ..., pk))), we have
Pr[Verify(S,M, (pky, ..., pk)))=1]=1

Ring Signatures

Next, let us try to define the security. We need to define unforgeability (since it is a
signature) and anonumity of Signer (since it is a ring signature).
Unforgeability: Anyone outside the set cannot produce a valid signature.
 The adversary should be able to
* Aksfor asignature on a message M singed by a secret key sk; on behalf of a set of users.
 Ask for the secret keys for public keys outside the target set.
e The goal is to generate a valid signature on a message M* singed by a set R*, where

 The adversary has not asked for the secret key for any public key in R*.
 The adversary has not asked the signature for (M*,R*)

Anonymity: The adversary cannot know the real signer in a group.
 The adversary is able to know all public keys and secret keys.
* Insome definitions, we require the adversary cannot learn the secret keys of the two targets.
 The adversary asks for a signature on a message M* and a ring R*, where the signature is singed by
either sk, or sky; the adversary’s goal is to distinguish which secret key is used.

Constructing a Ring signature: Warm-Up

Prover(G, g, g, X): Server(G, q, g, Y):

Sample rin [0,g-1] R=g'

v

Sample cin [0,9-1]

N

A 4

Accept iff g* = RY® In this transform, we transform a proof
showing that “I know a secret key of
the DL-based cryptosystem” into a
signature.

Sign(sk, M): Taking as input a message M and a secret key sk=(G, q, g, x, H), the P.PT. algorithm
1. Choose a random number r and computes R=g"

2. Compute c=H(R, M)

3. Compute z=r+c*x mod g

4. Thesignatureis (R.z)

Verify(S,M,pk): Taking as input a signed message M, the public key pk=(G, q, g, h, H), and a
signature (R,z), the P.P.T. algorithm

1. Compute c’=H(R,M) and Accept the signature if g?=R- h¢

Constructing a Ring signature: Warm-Up

PI'OVEI"(G, q, (gll Yl): (92; YZ)D ey (gl; Yl): X):
W.L.0.G., assume that you know x satisfying g = Y;

Sample ry in [0,0-1], R; = .9:1 ;

Foriin [2,1]: R R v
Sample c;, z; in [0,g-1], 1, 2, o K
Ri = giZE/chi
C
1
Cq :C—Zci modq (Cl’zl)J"'i(Cljzl)
=

2
1

zy =1 +cixmodq

Server(G, q, (g1, Y1), (g2, Y2), ..., (g, 1)):

Sample cin [0,9-1]

Accept iff
¢ = Y1 cymod g,
g = R;Y; forall i,

The ZKP proves that “I know one secret
key (out of | secret keys) of the DL-
based cryptosystem”. Can we
transform it into a ring signature?

Ring Signature

The signature scheme assume that all parties agree on a
cyclic group G of order g, a generator g of G, and a hash
function H: {0,1}* 57,

KeyGen(A): Taking as input a security parameter A, the
P.P.T. algorithm

1. Chooses a uniform x € Z, and compute h = g*.

2. The public key is h and the private key is x.

Sign(sk, M, (h4, ... h))): Taking as input a message M, a set
of public keys (h, ... h)), and a secret key sk=x,, the P.P.T.
algorithm
1. Choose a random numberr,
2. ComputeR; = g"t
3. Forjin[l,l]andj # i:

1. Choose random c;, z

2. ComputeR; = ng/hjcj

4. Compute c=H(R,, ..., R, M)

5. Computec¢; = ¢ — X G
6. Compute z; =1; + ¢; * x; mod q
7. The signatureis ((Ry,cqy,24), ..., (R),C12))

Verify(S,M, (h4, ... h))): Taking as input a sighed message
M, a set of public keys (hy, ... h}), and a signature
((Ry,€1,24), -y (R,C1,2))), the P.PT. algorithm
1. Compute c’=H(Ry, ..., R, M)
2. and Accept the signature if

1. c= Z§-=1 ¢;mod g,

. Ci)
2 gi= thj’ for all j
Correctness.

Unforgeability

Anonymity.

RSA

DL

Blockcipher

Hash

pairing

summary

e Zero-Knowledge

e Zero-Knowledge for And Relation
* Construction
* Security*

e Zero-Knowledge for OR Relation
* General Idea
* Construction
* Security*
* Extending to k statements
* Ring Signature
* Definition
* Application Scenarios
* Syntax and Correctness
* Security*
* Construction from ZKP for OR relations

	Slide 1: CSCI471/971 Modern Cryptography
	Slide 2
	Slide 3
	Slide 4: Zero-Knowledge Proofs (Revision)
	Slide 5: Zero Knowledge Proofs (of knowledge)
	Slide 6: Zero Knowledge Proofs (of knowledge)
	Slide 7: Preliminaries on Cyclic Group
	Slide 8: Schnorr Protocol
	Slide 9
	Slide 10: A proof of knowledge of the And Relation
	Slide 11: A proof of knowledge of the And Relation
	Slide 12: A proof of knowledge of the And Relation
	Slide 13: A proof of knowledge of the And Relation
	Slide 14
	Slide 15
	Slide 16
	Slide 17: A proof of knowledge of the OR Relation
	Slide 18: A proof of knowledge of the OR Relation
	Slide 19: A proof of knowledge of the OR Relation
	Slide 20
	Slide 21
	Slide 22: A proof of knowledge of the OR Relation
	Slide 23: Ring Signature
	Slide 24: Ring signatures
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Constructing a Ring signature: Warm-Up
	Slide 29: Constructing a Ring signature: Warm-Up
	Slide 30
	Slide 31
	Slide 32: Summary

