
CSCI471/971
Modern Cryptography

Zero-Knowledge Proof II

Rupeng Yang

SCIT UOW

RoadMap

• Week 1-2: Preliminaries

• Week 3-4: Symmetric-Key Cryptography

• Week 5-9: Public-Key Cryptography

• Week 10-11: Zero-Knowledge Proofs

Classical Ciphers

One-Time Pad

Blockcipher SKE

Hash MAC

RSA TDF

PKE

Signature

Blind Signature

DL HE

KE

PKI

IBS

pairing IBE

ZKP for Group

Zero-Knowledge Proofs (Revision)

(x,w) x

0/1

• A protocol involving a prover and a verifier.

• The prover takes as input a statement x and a witness w.

• The verifier takes as input the statement x.

• The prover’s goal is to convince the verifier that some statement is true (or that she holds the witness
w) without revealing any other information.

• Here, we only consider internal attackers, i.e., the prover will try to cheat the verifier and the verifier
will try to learn the witness w.

Zero Knowledge Proofs (of knowledge)

Zero Knowledge Proofs (of knowledge)
• A protocol involving a prover and a verifier.

• The prover takes as input a statement x and a witness w.

• The verifier takes as input the statement x.

• The prover’s goal is to convince the verifier that some statement is true (or that she holds the witness
w) without revealing any other information.

• Here, we only consider internal attackers, i.e., the prover will try to cheat the verifier and the verifier
will try to learn the witness w.

• Correctness:
• Completeness: Given honest prover and honest verifier, the protocol will output 1

• Security:
• Soundness: If the statement is wrong (or the prover does not hold the witness), then she cannot pass the verification.

• Zero-Knowledge: The verifier cannot learn any information from the protocol.
• Here, we usually cannot use the indistinguishability-based definition (unless each statement is associated with multiple witnesses)

• We use a simulation-based definition

Preliminaries on Cyclic Group

• Let (G,g,p) be a cyclic group, where G is the set of group element, g is the generator,
and p is the group order:
• G={ g0, g1 , . . . , gp-1}

• gp=1

• The following operations are easy in the group (G,g,p):
• Given any h1, h2 in G, it is easy to compute h1 · h2

• For any h in G and for any x,y in [0,p-1], given hx and hy, it is easy to compute hx+y =hx ·hy

• For any h1, h2 in G and for any x in[0,p-1], given h1
x and h2

x , we can compute (h1 · h2)x= h1
x · h2

x

• Given any h in G and any x in [0,p-1], it is easy to compute hx

• The following operations are hard in the group (G,g,p):
• Given gx, it is hard to compute x (The DL problem)

• Given gx and gy, it is hard to compute gxy (The CDH problem)
• Given gx and gy, it is hard to distinguish gxy from a random group element in G (The DDH problem)

Schnorr Protocol

z=r+cx mod q

Accept iff gz = RYc

Prover(G, q, g,Y, x):

c

Server(G, q, g, Y):

Sample r in [0,q-1] R=gr

Sample c in [0,q-1]

Zero-Knowledge Proofs for the AND
relation in Cyclic Groups

A proof of knowledge of the And Relation

• How to prove that you know the discrete logs 𝑥1, 𝑥2 s.t. 𝑔𝑥1 = 𝑌1 and 𝑔𝑥2 = 𝑌2?

• We can simply combine two protocols

𝑧1 = r1 + c1x1 mod q
𝑧2 = r2 + c2x2 mod q

Accept iff 𝑔𝑧1 = 𝑅1𝑌1
𝑐1 and 𝑔𝑧2 = 𝑅2𝑌2

𝑐2

Prover(G, q, g, Y1,Y2, x1,x2):

𝑐1, 𝑐2

Server(G, q, g, Y1,Y2):

Sample r1 in [0,q-1]
Sample r2 in [0,q-1]

Sample c1,c2 in [0,q-1]

𝑅1 = 𝑔𝑟1 , 𝑅2 = 𝑔𝑟2

A proof of knowledge of the And Relation

• How to prove that you know the discrete log 𝑥 s.t. 𝑔1
𝑥 = 𝑌1 and 𝑔2

𝑥 = 𝑌2?

• Can we combine two protocols directly?

A proof of knowledge of the And Relation

• How to prove that you know the discrete log 𝑥 s.t. 𝑔1
𝑥 = 𝑌1 and 𝑔2

𝑥 = 𝑌2?
• We need to add restrictions to ensure that the two discrete logs are the same.

𝑧 = 𝑟 + 𝑐𝑥 mod q
Accept iff 𝑔1

z = 𝑅1𝑌1
𝑐 and 𝑔2

z = 𝑅2𝑌2
𝑐

Prover(G, q, g1,g2, Y1,Y2, x):

𝑐

Server(G, q, g1,g2, Y1,Y2):

Sample r in [0,q-1]

Sample c in [0,q-1]

𝑅1 = 𝑔1
𝑟, 𝑅2 = 𝑔2

𝑟

A proof of knowledge of the And Relation

• Completeness

𝑧 = 𝑟 + 𝑐𝑥 mod q
Accept iff 𝑔1

z = 𝑅1𝑌1
𝑐 and 𝑔2

z = 𝑅2𝑌2
𝑐

Prover(G, q, g1,g2, Y1,Y2, x):

𝑐

Server(G, q, g1,g2, Y1,Y2):

Sample r in [0,q-1]

Sample c in [0,q-1]

𝑅1 = 𝑔1
𝑟, 𝑅2 = 𝑔2

𝑟

A proof of knowledge of the And Relation

Soundness
• Assume that the prover can always pass

the verifications. Then after sending
(R1,R2), the verifier is able to compute the
correct response z on many challenges c.

• Now, based on two different challenges c1
and c2, and the correct responses z1 and
z2, it is easy to extract x.
• Given (R1,R2,c1,z1) and (R1,R2,c2,z2) where

𝑔1
𝑧1 = 𝑅1 ∗ 𝑌1

𝑐1 𝑔1
𝑧2= 𝑅1 ∗ 𝑌1

𝑐2

𝑔2
𝑧1 = 𝑅2 ∗ 𝑌2

𝑐1 𝑔2
𝑧2= 𝑅2 ∗ 𝑌2

𝑐2

• We have 𝑔1
𝑧1−𝑧2 = 𝑌1

𝑐1−𝑐2 and 𝑔2
𝑧1−𝑧2 = 𝑌2

𝑐1−𝑐2

• Thus, one can compute x= (𝑧1−𝑧2)(𝑐1 − 𝑐2)−1 which satisfies 𝑌1 = 𝑔1
x ∧ 𝑌2 = 𝑔2

x

• If the prover only passes with a non-negligible probability, a more detailed probabilty
analysis and the rewinding techniques are needed.

(Honest-Verifier) Zero-Knowledge

• The verifier only sees a random value
• Actually, one can simulate the interaction

(R1,R2,c,Z) without knowing x as long as c
is randomly chosen by the prover (i.e., the
prover is honest).
1. Choose a random c from Zp

2. Choose a random z
3. Compute 𝑅1 = 𝑔1

𝑧 ∗ ℎ1
−𝑐, 𝑅2 = 𝑔2

𝑧 ∗ ℎ2
−𝑐(We set

r=z-c*x mod q implicitly)

A proof of knowledge of the And Relation

Zero-Knowledge Proofs for the OR
relation in Cyclic Groups

A proof of knowledge of the OR Relation

• How to prove that you know the discrete log 𝑥 s.t. either 𝑔1
𝑥 = 𝑌1 or 𝑔2

𝑥 = 𝑌2?
• Assume that you know 𝑔1

𝑥 = 𝑌1, then you can at least prove this statement.

• It implies that you know 𝑥 s.t. either 𝑔1
𝑥 = 𝑌1 or 𝑔2

𝑥 = 𝑌2, but it reveals for which part you know the
witness.

• To solve the problem, we need to also include a valid proof for the second part.
• Fortunately, this is possible if we know the challenge in advance.

• So, we need to design the protocol in a way that you can know one and only one challenge in advance.

A proof of knowledge of the OR Relation

• How to prove that you know the discrete log 𝑥 s.t. either 𝑔1
𝑥 = 𝑌1 or 𝑔2

𝑥 = 𝑌2?

𝑐1, 𝑐2, 𝑧1, 𝑧2 Accept iff
𝑐 = 𝑐1 + 𝑐2 𝑚𝑜𝑑 𝑞,
𝑔1

z1 = 𝑅1𝑌1
𝑐1 ,

𝑔2
z2 = 𝑅2𝑌2

𝑐2

Prover(G, q, g1,g2, Y1,Y2, x):
W.L.O.G., assume that you know x satisfying 𝑔1

𝑥 = 𝑌1

𝑐

Server(G, q, g1,g2, Y1,Y2):

Sample 𝑟1, 𝑐2, 𝑧2 in [0,q-1]

𝑅1 = 𝑔1
𝑟1 , 𝑅2 = 𝑔2

𝑧2/𝑌2
𝑐2

Sample c in [0,q-1]

𝑅1, 𝑅2

𝑐1 = 𝑐 − 𝑐2 𝑚𝑜𝑑 𝑞
𝑧1 = 𝑟1 + 𝑐1𝑥 𝑚𝑜𝑑 𝑞

A proof of knowledge of the OR Relation

• Completeness

𝑐1, 𝑐2, 𝑧1, 𝑧2 Accept iff
𝑐 = 𝑐1 + 𝑐2 𝑚𝑜𝑑 𝑞,
𝑔1

z1 = 𝑅1𝑌1
𝑐1 ,

𝑔2
z2 = 𝑅2𝑌2

𝑐2

Prover(G, q, g1,g2, Y1,Y2, x):
W.L.O.G., assume that you know x satisfying 𝑔1

𝑥 = 𝑌1

𝑐

Server(G, q, g1,g2, Y1,Y2):

Sample 𝑟1, 𝑐2, 𝑧2 in [0,q-1]

𝑅1 = 𝑔1
𝑟1 , 𝑅2 = 𝑔2

𝑧2/𝑌2
𝑐2

Sample c in [0,q-1]

𝑅1, 𝑅2

𝑐1 = 𝑐 − 𝑐2 𝑚𝑜𝑑 𝑞
𝑧1 = 𝑟1 + 𝑐1𝑥 𝑚𝑜𝑑 𝑞

A proof of knowledge of the OR Relation

Soundness
• Assume that the prover can always pass the verifications.

Then after sending (R1,R2), the verifier is able to compute
the correct response on many challenges c.

• Now, based on two different challenges c and c’, and the
correct responses (c1,c2,z1,z2) and (c’1,c’2,z’1,z’2) , it is easy
to extract x.
• Given (R1,R2,c,c1,c2,z1,z2) and (R1,R2,c’,c’1,c’2,z’1,z’2) where

𝑔1
𝑧1 = 𝑅1 ∗ ℎ1

𝑐1 𝑔1
𝑧1

′

= 𝑅1 ∗ ℎ1
𝑐1

′

𝑔2
𝑧2 = 𝑅2 ∗ ℎ2

𝑐2 𝑔2
𝑧2

′

= 𝑅2 ∗ ℎ2
𝑐2

′

• We have 𝑔1
𝑧1−𝑧1

′

= ℎ1
𝑐1−𝑐1

′

 and 𝑔2
𝑧2−𝑧2

′

= ℎ2
𝑐2−𝑐2

′

• As 𝑐 ≠ 𝑐′, we have either 𝑐1 ≠ 𝑐′
1 or 𝑐2 ≠ 𝑐′

2

• Thus, one can compute either x = (𝑧1−𝑧1
′)(𝑐1 − 𝑐1

′)−1 (which satisfies 𝑌1 = 𝑔1
x) or 𝑎 =

(𝑧2−𝑧2
′)(𝑐2 − 𝑐2

′)−1 (which satisfies 𝑌2 = 𝑔2
x).

• If the prover only passes with a non-negligible probability, a more detailed probabilty
analysis and the rewinding techniques are needed.

(Honest-Verifier) Zero-Knowledge

• The verifier only sees random values
• Actually, one can simulate the interaction

(R1,R2,c, c1,c2,z1,z2) without knowing any x
as long as c is randomly chosen by the
prover (i.e., the prover is honest).
1. Choose random c1,c2, from Zp

2. Compute c= c1+c2

3. Choose random z1,z2

4. Compute 𝑅1 = 𝑔1
𝑧1 ∗ ℎ1

−𝑐1 , 𝑅2 = 𝑔2
𝑧2 ∗ ℎ2

−𝑐2

A proof of knowledge of the OR Relation

A proof of knowledge of the OR Relation

• Given (𝑔1, 𝑌1), 𝑔2, 𝑌2 , … , (𝑔𝑙 , 𝑌𝑙),how to prove that you know one of the discrete log, i.e.,
a number 𝑥 s.t. 𝑔𝑖

𝑥 = 𝑌𝑖 ?

(𝑐1, 𝑧1), … , (𝑐𝑙, 𝑧𝑙)
Accept iff

𝑐 = σ𝑖=1
𝑙 𝑐𝑖 𝑚𝑜𝑑 𝑞,

𝑔i
zi = 𝑅𝑖𝑌𝑖

𝑐𝑖 for all i.

Prover(G, q, (𝑔1, 𝑌1), 𝑔2, 𝑌2 , … , (𝑔𝑙 , 𝑌𝑙), x):
W.L.O.G., assume that you know x satisfying 𝑔1

𝑥 = 𝑌1

𝑐

Server(G, q, (𝑔1, 𝑌1), 𝑔2, 𝑌2 , … , (𝑔𝑙 , 𝑌𝑙)):

Sample 𝑟1 in [0,q-1], 𝑅1 = 𝑔1
𝑟1 ;

For i in [2,l]:
 Sample 𝑐𝑖 , 𝑧𝑖 in [0,q-1],

 𝑅𝑖 = 𝑔𝑖
𝑧𝑖/𝑌𝑖

𝑐𝑖

Sample c in [0,q-1]

𝑅1, 𝑅2, … 𝑅𝑙

𝑐1 = 𝑐 − ෍

𝑖=2

𝑙

𝑐𝑖 𝑚𝑜𝑑 𝑞

𝑧1 = 𝑟1 + 𝑐1𝑥 𝑚𝑜𝑑 𝑞

Ring Signature

Ring signatures

• In some cases, it is necessary to sign on a message while hiding the
identity of the signer.

• Usually, we will require that the public only know that the signature is
made by someone in a group, but they do not know the exact identity of
the signer.

• For example, in some applications like anonymous reporting, we need to
ensure that:
• The whistleblower can sign the signature on behalf of a set of users (e.g., all staff in

a company).

• Anyone outside this set is not able to sign.

• No one knows who is the signer/ whistleblower, i.e., the signatures produced by
anyone in the set cannot be distinguished.

• The above scenario is a bit artificial, but we finally found some more
natural application scenarios. (Assignment 2 Task 1)

Ring Signatures

• KeyGen(λ): Taking as input a security parameter λ, the key
generation algorithms returns (pk,sk)

• Sign(sk, M, (pk1, …, pkl)): Taking as input a message M, a set
of public keys, and a secret key sk for one of the public key,
the signing algorithm returns a signature denoted by S.

S←Sign(sk, M, (pk1, …, pkl))

• Verify(S,M, (pk1, …, pkl)): Taking as input signed message
(S,M) and the set of public keys, the verification algorithm
returns 1 or 0.

Ring Signatures

• Correctness: For all generated (pk1,sk1), …, (pkl,skl), all index
i, and all signature S←Sign(ski, M, (pk1, …, pkl)), we have

Pr[Verify(S,M, (pk1, …, pkl))=1]=1

Ring Signatures
• Next, let us try to define the security. We need to define unforgeability (since it is a

signature) and anonumity of Signer (since it is a ring signature).
• Unforgeability: Anyone outside the set cannot produce a valid signature.

• The adversary should be able to
• Aks for a signature on a message M singed by a secret key ski on behalf of a set of users.
• Ask for the secret keys for public keys outside the target set.

• The goal is to generate a valid signature on a message M* singed by a set R*, where
• The adversary has not asked for the secret key for any public key in R*.
• The adversary has not asked the signature for (M*,R*)

• Anonymity: The adversary cannot know the real signer in a group.
• The adversary is able to know all public keys and secret keys.

• In some definitions, we require the adversary cannot learn the secret keys of the two targets.
• The adversary asks for a signature on a message M* and a ring R*, where the signature is singed by

either sk0 or sk1; the adversary’s goal is to distinguish which secret key is used.

Constructing a Ring signature: Warm-Up

In this transform, we transform a proof
showing that “I know a secret key of
the DL-based cryptosystem” into a
signature.

Constructing a Ring signature: Warm-Up

The ZKP proves that “I know one secret
key (out of l secret keys) of the DL-
based cryptosystem”. Can we
transform it into a ring signature?

Ring Signature
• The signature scheme assume that all parties agree on a

cyclic group G of order q, a generator g of G, and a hash
function H: {0,1}* →𝑍𝑞

• KeyGen(λ): Taking as input a security parameter λ, the
P.P.T. algorithm
1. Chooses a uniform x ∈ Zq and compute h = gx .
2. The public key is h and the private key is x.

• Sign(sk, M, (h1, … hl)): Taking as input a message M, a set
of public keys (h1, … hl), and a secret key sk=xi, the P.P.T.
algorithm
1. Choose a random number ri
2. Compute 𝑅𝑖 = 𝑔𝑟𝑖

3. For j in [1,l] and 𝑗 ≠ 𝑖:
1. Choose random cj, zj

2. Compute 𝑅𝑗 = 𝑔𝑧𝑗/ℎ𝑗

𝑐𝑗

4. Compute c=H(R1, …, Rl, M)

5. Compute 𝑐𝑖 = 𝑐 − σ𝑗≠𝑖 𝑐𝑗

6. Compute 𝑧𝑖 = 𝑟𝑖 + 𝑐𝑖 ∗ 𝑥𝑖 𝑚𝑜𝑑 𝑞
7. The signature is ((R1,c1,z1), …, (Rl,cl,zl))

• Verify(S,M, (h1, … hl)): Taking as input a signed message
M, a set of public keys (h1, … hl), and a signature
((R1,c1,z1), …, (Rl,cl,zl)), the P.P.T. algorithm
1. Compute c’=H(R1, …, Rl, M)
2. and Accept the signature if

1. 𝑐 = σ𝑗=1
𝑙 𝑐𝑗 𝑚𝑜𝑑 𝑞,

2. 𝑔𝑧𝑗 = 𝑅𝑗ℎ𝑗

𝑐𝑗 for all j

• Correctness.

• Unforgeability

• Anonymity.

Classical Ciphers

One-Time Pad

Blockcipher SKE

Hash MAC

RSA TDF

PKE

Signature

Blind Signature

DL HE

KE

PKI

IBS

pairing IBE

ZKP for Group ZKP for AND in Group

ZKP for OR in Group Ring Signature

Summary

• Zero-Knowledge
• Zero-Knowledge for And Relation

• Construction

• Security*

• Zero-Knowledge for OR Relation
• General Idea

• Construction

• Security*

• Extending to k statements

• Ring Signature
• Definition

• Application Scenarios

• Syntax and Correctness

• Security*

• Construction from ZKP for OR relations

	Slide 1: CSCI471/971 Modern Cryptography
	Slide 2
	Slide 3
	Slide 4: Zero-Knowledge Proofs (Revision)
	Slide 5: Zero Knowledge Proofs (of knowledge)
	Slide 6: Zero Knowledge Proofs (of knowledge)
	Slide 7: Preliminaries on Cyclic Group
	Slide 8: Schnorr Protocol
	Slide 9
	Slide 10: A proof of knowledge of the And Relation
	Slide 11: A proof of knowledge of the And Relation
	Slide 12: A proof of knowledge of the And Relation
	Slide 13: A proof of knowledge of the And Relation
	Slide 14
	Slide 15
	Slide 16
	Slide 17: A proof of knowledge of the OR Relation
	Slide 18: A proof of knowledge of the OR Relation
	Slide 19: A proof of knowledge of the OR Relation
	Slide 20
	Slide 21
	Slide 22: A proof of knowledge of the OR Relation
	Slide 23: Ring Signature
	Slide 24: Ring signatures
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Constructing a Ring signature: Warm-Up
	Slide 29: Constructing a Ring signature: Warm-Up
	Slide 30
	Slide 31
	Slide 32: Summary

