
CSCI471/971
Modern Cryptography

Cryptographic Hash Functions
& Message Authentication Codes

Rupeng Yang
SCIT UOW

RoadMap

• Week 1-2: Preliminaries

• Week 3: How to protect the message confidentiality

• Week 4: How to protect the message integrity

Roadmap

Classical Ciphers

One-Time Pad

Blockcipher SKE

What is integrity?

• Integrity is to assure that the content of the message has not been
altered during transmission.
• Actually, we cannot prevent the adversary from modifying the message.

• We can only ensure that the any modification on the message can be
detected.

M M’

What is integrity?

• Integrity is to assure that the content of the message cannot be
altered without being detected.

• We first consider a weaker notion of integrity, where the receiver is
given a short digest about the message.
• Why this security guarantee is meaningful?

• This can be guaranteed by using a cryptographic hash function.

D

M M’

Cryptographic Hash Functions

Hash Functions
• A hash function (algorithm) is denoted by h: {0, 1}* → {0, 1}n, where n is a

security parameter.

• Given x, it is easy to compute h(x).

• x can be of arbitrary length while h(x) has a fixed length.

• There exist different inputs x_1 and x_2 such that y=h(x_1)=h(x_2).

• (x_1,x_2) is called a collision for the hash function h.

• We require the hash function to be collision resistant, i.e., it is computationally
difficult to find any collision for h.

• If h is collision resistant, then we can use the output of h to check the integrity
of the input.

Hash Functions (Security Definitions)

• A hash function (algorithm) is denoted by h: {0, 1}* → {0, 1}n

Adversary’s Target: Given a hash function h, find x≠x’ such that h(x)=h(x’).

Collision Resistance:
Given a hash function h:X→Y , there is no efficient adversary to find x, x′X such that
x′x and h(x′)=h(x) with a non-negligible probability.

Collision Resistance: The birthday attack

• The Problem: Given a hash function h:X →Y find x′  x and h(x′) = h(x).

• The (,q)-Algorithm:

 Choose X0 R X : |X0|= q

 For each xi  X0 (Go through the elements in order.)

 yih(xi)

 If yi = yi′ for i′ < i

 return (xi,xi′)

 return “Failure”

• What chance do we have?

• This is also related to the birthday paradox.

• How many people do you need in a room before the probability of any two
sharing a birthday is at least ½? 23!

• In the above, we can roughtly have 𝑞 = |𝛾|
1

2 for 𝜀 = 0.5

• h: {0, 1}* → {0, 1}n . We only need about q=2^{64} for n=128

Hash Functions

• A hash function (algorithm) is denoted by h: {0, 1}* → {0, 1}n, where n is
a security parameter.

h(x) cannot be too short.

• Recommended message digest lengths (in bits):

• 128 (MD5),

• 160 (SHA-1),

• 224/256/384/512 (SHA-2),

• 224/256/384/512 (SHA-3)

Secure Hash Algorithm (SHA)

• SHA was originally designed by the National Institute of Standards and
Technology (NIST) and published as a federal information processing standard
(FIPS 180) in 1993

• It was revised in 1995 as SHA-1
• Produces 160-bit hash values

• Was broken in 2017

• In 2002 NIST produced a revised version SHA-2 that defined three new versions
of SHA with hash value lengths of 256, 384, and 512
• SHA-2 and SHA-1 share a similar design.

• In 2012, the third generation SHA-3 was standardized
• SHA-3 uses a different structure.

• It is intended to complement SHA-2.

Design of SHA-1

• The design works in two steps:
• Design a compressing function that takes a fixed-length input and returns

a shorter, fixed-length output.

• Upgrade the compressing function to support an arbitrary-long message
using the so-called Merkle-Damgård Iterative Structure.

• We focus on the second step.

Merkle-Damgård Iterative Structure

• The function  takes a fixed-length input and returns a shorter, fixed-length output.

• The Merkle-Damgård structure constructs a hash function that takes an arbitrary-length
input and returns a fixed-length output from f.

1. The message length is appended to the message and the message is properly padded
2. The function f takes

• a message block and
• the previous hash result (the algorithm starts with a fixed initialization vector IV)

3. The value after the last block is taken to be the hash value for the entire message

• If the function f is collision-resistant, then the hash function will also be collision-
resistant

Padding=L || 100…0
where L is the length of the message

Merkle-Damgård Iterative Structure

• If the function f is collision-resistant, then the hash function will also be collision-
resistant. Now, given two messages:
• If the final hash values are identical, then the last message parts, the message lengths, and the “last

but one” outputs of f will be identical.
• Why?

• We can repeat the above arguments to show that all message blocks are identical.

Padding=L || 100…0
where L is the length of the message

Hash Functions (Alternative Security Definitions)

1.Collision Resistance:

Given a hash function h:X→Y , there is no efficient adversary to find x,
x′X such that x′x and h(x′)=h(x).

2.Second Pre-Image Resistance:

Given a hash function h:X→Y and a uniform xX , there is no efficient
adversary to find x′X such that x′x and h(x′)=h(x).

3. Pre-Image Resistance/Onewayness:

Given a hash function h:X→Y and yY , where y=h(x) for a uniform x,
there is no efficient adversary to find x’X such that y=h(x’).

What are hash functions used for?

• For File Fingerprint
• Generate the hash value of a file and check if the file has been modified. This allows us to

• Check the integrity of the file

• Deduplication

• For Password storage.
• Server stores hash values of passwords instead of the passwords.

• Client also sends the hash value of his/her password.

• This can protect the confidentiality of the password.

• For building advanced cryptographic schemes
• Message authentication code

• Digital signature

• For proof-of-work
• To find an input (of specific form) that can be hashed to a value with N leading 0s.

• This is used in bitcoin.

What is integrity?

• Integrity is to assure that the content of the message cannot be
altered without being detected.

• We next consider the standard integrity, where the sender and the
receiver does not share any auxiliary information about the message.
• Yet, a secret key is shared between the sender and the receiver.

• Message authentication code is used to protect the standard
integrity.

D

M M’

What is integrity?

• Integrity is to assure that the content of the message cannot be
altered without being detected.

• We next consider the standard integrity, where the sender and the
receiver does not share any auxiliary information about the message.
• Yet, a secret key is shared between the sender and the receiver.

• Message authentication code is used to protect the standard
integrity.

M M’

Message Authentication Codes

Message Authentication Code

• A symmetric-key cryptosystems for message integrity and authenticity

• Produce a cryptographic checksum (Use the checksum to verify)

• Common constructions from
• Hash function

• Block cipher

key
key

MAC

message tag

Verify

Accept/Reject

message+tag

Channel

Message Authentication Code

Can we use a hash function as the MAC algorithm directly?

key
key

MAC

message tag

Verify

Accept/Reject

message+tag

Channel

Message Authentication Code

Can we use a hash function as the MAC algorithm directly?
A secret key is essential in this model.

Message Authentication Code

Application Scenario:

Sender and receiver generate and share a secret key K. To
transmit a message M, the sender first generate the tag T for M
using the key. Then it sends the message M and the tag T to the
receiver. The receiver verifies if the the tag T is a valid tag for
the message M using the same key.

Usually, the verification is done by generating a new tag T’ for
the message M, and checks if T=T’.

Definition of Message Authentication Code

• KeyGen(λ): Taking as input a security parameter λ, the key generation
algorithms returns a key K.

• MAC(M, K): Taking as input a message and a key K, the deterministic
message authentication code generation algorithm returns a tag
denoted by T.

T=MAC(M, K)

• The correctness is guaranteed by the fact that the MAC algorithm is
deterministic.

Security Model for MAC

• Our objective is to prevent the adversary from modifying the
message without being detected.

• The adversary can modify both the message and the tag, since
it controls the communication channel.

• Thus, we require that the adversary cannot generate a valid
message tag pair if it modifies the message

• Security Goal

– Unforgeable: It is hard to generate a valid tag for a new message.

Security Model for MAC

• Adversary’s capability

– Known tag attack: The adversary knows some messages
and the associated tags for them.

– Chosen Message Attack: Attacker is allowed to choose
some messages, and receives the corresponding tags.

1. Run KeyGen to get k

Algorithms KeyGen, MAC are public.

3. Attacker returns (m*,t*)
Attacker wins if MAC(k,m*)=t*

and m* is not queried in Step 2.

2.1 Attacker sends m to challenger

2.3 Send t to the Attacker

2.2 Run MAC(k, m) to get t

Security Model for MAC: Unforgeability
under Chosen Message Attacks

A message authentication code
Scheme is Secure if NO efficient
attacker can win with a probability
of 1/poly(λ).

• Does the security definition sufficient?

• What if the adversasry reuses one of the message/tag pairs it has seen before.
• This is called replay attack and the attack cannot be prevented if the sender and

receiver are stateless.

• We can solve the problem by some application-specific methods:
• Sharing a synchronized state between sender and receiver.

• Using timestamps.

• Using the challenge/response model.

• …

• The current definition is chosen by tradeoffing among security, simpleness,
generality, etc.

• Also, it is important to know what is not guaranteed by a cryptosystem.

Security Model for MAC: Unforgeability
under Chosen Message Attacks

Construction from Blockcipher

Message

Block

FK

tag

Why the MAC is secure:
• The underlying blockcipher is assumed to be a

pseudorandom function (PRF), i.e., outputs of the
blockcipher is indistinguishable from random values.

• Previous tags will just be some random values, i.e.,
no one could learn any information about the key
from the tags.

• The task of generating a valid tag for a new message
is equivalent to generating a specific random value.

• Therefore, successfully attacking this MAC scheme is
as hard as guessing a random value of (e.g.) 128 bits.

MAC(K,M):
1. Output T=F(K, M)

Here, F is a blockcipher.

Can we use this MAC scheme directly for long
messages?
• NO! Please explore the reason in A1.

Construction from Hash and Blockcipher:
Hash and MAC

Message

Block 1

Message

Block 2

Message

Block N

Hash

FK

tag

MAC(K,M):
1. W=H(M)
2. Output T=F(K, W)

Here, H is a hash function and F is a blockcipher.

Why the MAC is secure:
• Any new message will be mapped to a new digest W.

• Why?

Construction from Hash and Blockcipher:
Hash and MAC

Message

Block 1

Message

Block 2

Message

Block N

Hash

FK

tag

MAC(K,M):
1. W=H(M)
2. Output T=F(K, W)

Here, H is a hash function and F is a blockcipher.

Why the MAC is secure:
• Any new message will be mapped to a new digest W.

• Why?
• The adversary cannot generate a valid tag for a new

digest W.
• Why?

Construction from Hash and Blockcipher:
Hash and MAC
• Drawback of Hash-and-MAC

• It requires implementing two cryptographic primitives

• There is often a mismatch between the output length of hash functions
and the block length of block ciphers

• Design of HMAC

• HMAC has been chosen as the mandatory-to-implement MAC for IP
security

• HMAC has also been issued as a NIST standard (FIPS 198)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• K+ is derived from K by padding with
zeros on the left.

• ipad = [0X36 * blocksize]
• opad = [0X5C * blocksize]

• Security of HMAC
• Security of Hash
• H(K || M) can be modeled as a

blockcipher FK(M)

• The key used in the first step is not
necessary if a secure hash function
is used. But this key has saved the
HMAC when the MD5 hash function
was suddenly broken.

Encryption with IND-CCA
Security

Setup: The challenger chooses a random key K.

Phase 1: The adversary can choose any M for encryption queries and learns the
encrypted result; it can also choose any CT for decryption queries and learns the
decryption result.

Challenge: The adversary can choose any two different messages M_0 and M_1. The
challenger chooses a random b and computes the challenge ciphertext CT*=Enc(M_b,
K), which is given to the adversary.

Phase 2: The adversary can choose any M for encryption queries and choose any CT
different from CT* for decryption queries.

Guess: The adversary returns the guess c’ and wins if b’=b.

We say that the encryption is secure if no P.P.T adversary can win with a probability of
½+1/poly(λ).

Security Model of Symmetric-Key Encryption (IND-CCA)

Difficulty in Achieving IND-CCA Security

• We have seen a few chosen-ciphertext attacks that can break the
security of IND-CPA secure SKE schemes.

• The attackers can obtain inforamtion about the encrypted message in
a ciphertext by slightly modifying the ciphertext.

• How can we defend against the attacks?
• What if the adversary cannot generate a ciphertext?

• How can we prevent the adversary from generating a valid ciphertext?

• Note that, we only need to prevent the adversary from generating a new valid
ciphertext.

Constructing IND-CCA Secure SKE

Introduction to Modern Cryptography. - Jonathan Katz and Yehuda Lindell

Why the solution is secure:
• The adversary can only obtain

⟂ from the decryption queries.
• Why

• Then the security is guaranteed
by the IND-CPA security of Π𝐸.

How to implement a hash function and a
MAC algorithm in practice

from cryptography.hazmat.primitives import hashes, hmac
import os
import binascii

Read the message
f = open("plaintext.png", mode="rb")
data = f.read()

Generate the digest
digest = hashes.Hash(hashes.SHA256())
digest.update(data)

y=digest.finalize()
print(binascii.b2a_hex(y))

Generate the secret key
key = os.urandom(32)

Generate the MAC
h = hmac.HMAC(key, hashes.SHA256())
h.update(data)
tag= h.finalize()
print(binascii.b2a_hex(tag))

The codes are implemented using the pyca/cryptography library (https://cryptography.io/).
• This is a python library depending on OpenSSL

https://cryptography.io/

Roadmap

Classical Ciphers

One-Time Pad

Blockcipher SKE

Hash MAC

Summary

• Cryptographic Hash
• Syntax

• Collision Resistance
• Birthday Attack

• Merkle-Damgård Structure

• Alternative hash security properties

• Applications of Hash

• Message authentication code
• Application scenarios

• Definition
• Syntax and correctness

• Security goals

• Adversary’s capabilities

• The security definition

• Replay attack

• Constructions
• Construction from blockcipher

• Security for one message block*

• Insecurity for multiple messages

• Hash and MAC
• Security*

• HMAC

• IND-CCA SKE
• Construction from SKE + MAC

• Security*

In both SKE and MAC, we will assume that all honest parties hold a secret key. Is this necessary?

	Slide 1: CSCI471/971 Modern Cryptography
	Slide 2
	Slide 3: Roadmap
	Slide 4: What is integrity?
	Slide 5: What is integrity?
	Slide 6: Cryptographic Hash Functions
	Slide 7: Hash Functions
	Slide 8: Hash Functions (Security Definitions)
	Slide 9: Collision Resistance: The birthday attack
	Slide 10
	Slide 11: Hash Functions
	Slide 12: Secure Hash Algorithm (SHA)
	Slide 13: Design of SHA-1
	Slide 14: Merkle-Damgård Iterative Structure
	Slide 15: Merkle-Damgård Iterative Structure
	Slide 16: Merkle-Damgård Iterative Structure
	Slide 17: Hash Functions (Alternative Security Definitions)
	Slide 18: What are hash functions used for?
	Slide 19: What is integrity?
	Slide 20: What is integrity?
	Slide 21: Message Authentication Codes
	Slide 22: Message Authentication Code
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Security Model for MAC
	Slide 29: Security Model for MAC
	Slide 30
	Slide 31
	Slide 32: Construction from Blockcipher
	Slide 33: Construction from Hash and Blockcipher: Hash and MAC
	Slide 34: Construction from Hash and Blockcipher: Hash and MAC
	Slide 35: Construction from Hash and Blockcipher: Hash and MAC
	Slide 36: Construction from Hash and Blockcipher: Hash and MAC
	Slide 37: Construction from Hash and Blockcipher: Hash and MAC
	Slide 38
	Slide 39: Encryption with IND-CCA Security
	Slide 40
	Slide 41: Difficulty in Achieving IND-CCA Security
	Slide 42: Constructing IND-CCA Secure SKE
	Slide 43: Constructing IND-CCA Secure SKE
	Slide 44: How to implement a hash function and a MAC algorithm in practice
	Slide 45: Roadmap
	Slide 46: Summary

