CSCl471/971
Modern Cryptography

Cryptographic Hash Functions
& Message Authentication Codes

Rupeng Yang
SCIT UOW

RoadMap
* Week 1-2: Preliminaries
* Week 3: How to protect the message confidentiality

* Week 4: How to protect the message integrity

Roadmap

What is integrity?

* Integrity is to assure that the content of the message has not been
altered during transmission.
* Actually, we cannot prevent the adversary from modifying the message.

* We can only ensure that the any modification on the message can be
detected.

What is integrity?

* Integrity is to assure that the content of the message cannot be
altered without being detected.

* We first consider a weaker notion of integrity, where the receiver is
given a short digest about the message.
 Why this security guarantee is meaningful?

* This can be guaranteed by using a cryptographic hash function.

Cryptographic Hash Functions

Hash Functions

* A hash function (algorithm) is denoted by h: {0, 1}* — {0, 1}", where nis a
security parameter.

* Given x, it is easy to compute h(x).

* X can be of arbitrary length while h(x) has a fixed length.
* There exist different inputs x_1 and x_2 such that y=h(x_1)=h(x_2).
e (x_1,x_2)iscalled a collision for the hash function h.

* We require the hash function to be collision resistant, i.e., it is computationally
difficult to find any collision for h.

* If his collision resistant, then we can use the output of h to check the integrity
of the input.

Hash Functions (Security Definitions)

* A hash function (algorithm) is denoted by h: {0, 1}* — {0, 1}"
Adversary’s Target: Given a hash function h, find x#x” such that h(x)=h(x’).

Collision Resistance:

Given a hash function h: X2 %/, there is no efficient adversary to find x, X' X'such that
x'#x and h(x’)=h(x) with a non-negligible probability.

Collision Resistance: The birthday attack

* The Problem: Given a hash function h: X2 % find x' #x and h(x’') = h(x).

* The (g,q)-Algorithm:
Choose Xy X: | Xpl=1
For each x, € X, (Go through the elements in order.)
yi<h(x)
If y.= vy, fori’ <i
return (x;,X;)
return “Failure”

e What chance do we have?

g—1

* This is also related to the birthday paradox.

 How many people do you need in a room before the probability of any two
sharing a birthday is at least }2? 23!

1
* In the above, we can roughtly have g = |y|z fore = 0.5

* h: {0, 1}" = {0, 1} We only need about q=2{64} for n=128

Hash Functions

* A hash function (algorithm) is denoted by h: {0, 1}* — {0, 1}", where n is
a security parameter.

h(x) cannot be too short.

* Recommended message digest lengths (in bits):
e 128 (MD5),

e 160 (SHA-1),

* 224/256/384/512 (SHA-2),

e 224/256/384/512 (SHA-3)

Secure Hash Algorithm (SHA)

* SHA was originally designed by the National Institute of Standards and
Technology (NIST) and published as a federal information processing standard
(FIPS 180) in 1993

e |t was revised in 1995 as SHA-1

* Produces 160-bit hash values
e Was broken in 2017

* In 2002 NIST produced a revised version SHA-2 that defined three new versions
of SHA with hash value lengths of 256, 384, and 512

* SHA-2 and SHA-1 share a similar design.

* In 2012, the third generation SHA-3 was standardized
* SHA-3 uses a different structure.
* |tis intended to complement SHA-2.

Design of SHA-1

* The design works in two steps:

* Design a compressing function that takes a fixed-length input and returns
a shorter, fixed-length output.

* Upgrade the compressing function to support an arbitrary-long message
using the so-called Merkle-Damgard Iterative Structure.

* We focus on the second step.

Merkle-Damgard Iterative Structure

____________________ Last o) P —
Message | Message Me;ﬁge i Padding _|- || 100...0
Block 1 Block 2 Pat |3 where L is the length of the message

IV—— f—— ¢ » f — Hash

* The function f takes a fixed-length input and returns a shorter, fixed-length output.
* The Merkle-Damgard structure constructs a hash function that takes an arbitrary-length

input and returns a fixed-length output from f.
1. The message length is appended to the message and the message is properly padded

2. The function f takes

* a message block and
* the previous hash result (the algorithm starts with a fixed initialization vector V)

3. The value after the last block is taken to be the hash value for the entire message
 |f the function fis collision-resistant, then the hash function will also be collision-

resistant

Merkle-Damgard Iterative Structure

Message | Message MEL:; E Padding=L || 100...0
Block1 | Block2 | Pangl 2 where L is the length of the message

» f — Hash

WV——f— 7

 |f the function fis collision-resistant, then the hash function will also be collision-

resistant. Now, given two messages:
* |f the final hash values are identical, then the last message parts, the message lengths, and the “last

but one” outputs of f will be identical.

« Why?
* We can repeat the above arguments to show that all message blocks are identical.

Hash Functions (Alternative Security Definitions)

1.Collision Resistance:

Given a hash function h: X2 %/, there is no efficient adversary to find x,
x'e X'such that x'#x and h(x")=h(x).

2.Second Pre-Image Resistance:

Given a hash function h: X2 %Y and a uniform xe X, there is no efficient
adversary to find x"e X'such that x'#x and h(x")=h(x).

3. Pre-Image Resistance/Onewayness:

Given a hash function h: X2 9 and ye &, where y=h(x) for a uniform x,
there is no efficient adversary to find x’ € X'such that y=h(x’).

What are hash functions used for?

For File Fingerprint

* Generate the hash value of a file and check if the file has been modified. This allows us to
* Check the integrity of the file
* Deduplication

For Password storage.
* Server stores hash values of passwords instead of the passwords.

 Client also sends the hash value of his/her password.
* This can protect the confidentiality of the password.

For building advanced cryptographic schemes
* Message authentication code
 Digital signature

For proof-of-work

» To find an input (of specific form) that can be hashed to a value with N leading Os.
* This is used in bitcoin.

What is integrity?

* Integrity is to assure that the content of the message cannot be
altered without being detected.

* We next consider the standard integrity, where the sender and the
receiver does not share any auxiliary information about the message.

* Yet, a secret key is shared between the sender and the receiver.

* Message authentication code is used to protect the standard
Integrity.

What is integrity?

* Integrity is to assure that the content of the message cannot be
altered without being detected.

* We next consider the standard integrity, where the sender and the
receiver does not share any auxiliary information about the message.

* Yet, a secret key is shared between the sender and the receiver.

* Message authentication code is used to protect the standard
Integrity.

Message Authentication Codes

Message Authentication Code

* A symmetric-key cryptosystems for message integrity and authenticity
* Produce a cryptographic checksum (Use the checksum to verify)

e Common constructions from
e Hash function
* Block cipher

Message Authentication Code

message tag

Accept/Reject

message+tag t

Can we use a hash function as the MAC algorithm directly?

Message Authentication Code

message tag

Accept/Reject

message+tag t

Can we use a hash function as the MAC algorithm directly?
A secret key is essential in this model.

Message Authentication Code

Application Scenario:

Sender and receiver generate and share a secret key K. To
transmit a message M, the sender first generate the tag T for M
using the key. Then it sends the message M and the tag T to the
receiver. The receiver verifies if the the tag T is a valid tag for
the message M using the same key.

Usually, the verification is done by generating a new tag T’ for
the message M, and checks if T=T".

Definition of Message Authentication Code

KeyGen(A): Taking as input a security parameter A, the key generation

algorithms returns a key K.
MAC(M, K): Taking as input a message and a key K, the deterministic

message authentication code generation algorithm returns a tag

denoted by T.
T=MAC(M, K)

The correctness is guaranteed by the fact that the MAC algorithm is
deterministic.

Security Model for MAC

* QOur objective is to prevent the adversary from modifying the
message without being detected.

 The adversary can modify both the message and the tag, since
it controls the communication channel.

* Thus, we require that the adversary cannot generate a valid
message tag pair if it modifies the message

e Security Goal

— Unforgeable: It is hard to generate a valid tag for a new message.

Security Model for MAC

e Adversary’s capability

— Known tag attack: The adversary knows some messages
and the associated tags for them.

— Chosen Message Attack: Attacker is allowed to choose
some messages, and receives the corresponding tags.

Security Model for MAC: Unforgeability
under Chosen Message Attacks

Algorithms KeyGen, MAC are public.

[1. Run KeyGen to get k]

< 2.1 Attacker sends m to challenger
[2.2 Run MAC(k, m) to get t]

2.3 Send t to the Attacker

Attacker wins if MAC(k,m*)=t* e
and m* is not queried in Step 2. 3. Attacker returns (m*,t*)

A message authentication code
Scheme is Secure if NO efficient
attacker can win with a probability
of 1/poly(A).

Security Model for MAC: Unforgeability
under Chosen Message Attacks

* Does the security definition sufficient?

 What if the adversasry reuses one of the message/tag pairs it has seen before.

* This is called replay attack and the attack cannot be prevented if the sender and
receiver are stateless.

 We can solve the problem by some application-specific methods:
e Sharing a synchronized state between sender and receiver.
* Using timestamps.
* Using the challenge/response model.
 The current definition is chosen by tradeoffing among security, simpleness,
generality, etc.

e Also, it isimportant to know what is not guaranteed by a cryptosystem.

Construction from Blockcipher

MAC(K,M): Why the MAC is secure:

1. Output T=F(K, M) The underlying blockcipher is assumed to be a
pseudorandom function (PRF), i.e., outputs of the
blockcipher is indistinguishable from random values.

* Previous tags will just be some random values, i.e.,
no one could learn any information about the key

Message from the tags.

Block The task of generating a valid tag for a new message

is equivalent to generating a specific random value.
 Therefore, successfully attacking this MAC scheme is
as hard as guessing a random value of (e.g.) 128 bits.

Here, F is a blockcipher.

l Can we use this MAC scheme directly for long

'R messages?

* NO! Please explore the reason in Al.

Construction from Hash and Blockcipher:
Hash and MAC

Message Message

Block1 Block2
Hash
F

Message
Block N

MAC(K,M):
1. W=H(M)
2. Output T=F(K, W)

Here, H is a hash function and F is a blockcipher.

Why the MAC is secure:

Any new message will be mapped to a new digest W.
Why?

Construction from Hash and Blockcipher:
Hash and MAC

MAC(K,M):
v ry— v 1. W=H(M)
essage essage essage _
Blockl Block2 Block N 2. Output T=F(K, W)
l Here, H is a hash function and F is a blockcipher.
Hash
J Why the MAC is secure:
Any new message will be mapped to a new digest W.
FK ° Why'-’
 The adversary cannot generate a valid tag for a new
l digest W.

o v

Construction from Hash and Blockcipher:
Hash and MAC

Drawback of Hash-and-MAC

It requires implementing two cryptographic primitives

There is often a mismatch between the output length of hash functions
and the block length of block ciphers

Design of HMAC

HMAC has been chosen as the mandatory-to-implement MAC for IP
security

HMAC has also been issued as a NIST standard (FIPS 198)

b bits b bits

S; Yo Y, i %%

n bits

]V ———| Hash

+ its
K opad "n bit:
L J [1 H(S; 1 M)
@.
b bits Pad to b bits
Y
SU

n bits

|V —————| Hash

l n bits

[] HMAC(K, M)
Figure 12.5 HMAC Structure

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

K* is derived from K by padding with
zeros on the left.

ipad = [0X36 * blocksize]

opad = [OX5C * blocksize]

Security of HMAC
e Security of Hash
* H(K || M) can be modeled as a
blockcipher F (M)

The key used in the first step is not
necessary if a secure hash function
is used. But this key has saved the
HMAC when the MD5 hash function
was suddenly broken.

Encryption with IND-CCA
Security

Security Model of Symmetric-Key Encryption (IND-CCA)

Setup: The challenger chooses a random key K.

Phase 1: The adversary can choose any M for encryption queries and learns the
encrypted result; it can also choose any CT for decryption queries and learns the
decryption result.

Challenge: The adversary can choose any two different messages M _0and M_1. The

challenger chooses a random b and computes the challenge ciphertext CT*=Enc(M b,
K), which is given to the adversary.

Phase 2: The adversary can choose any M for encryption queries and choose any CT
different from CT* for decryption queries.

Guess: The adversary returns the guess ¢’ and wins if b’=b.

We say that the encryption is secure if no P.P.T adversary can win with a probability of
¥+1/poly(A).

Difficulty in Achieving IND-CCA Security

* We have seen a few chosen-ciphertext attacks that can break the
security of IND-CPA secure SKE schemes.

* The attackers can obtain inforamtion about the encrypted message in
a ciphertext by slightly modifying the ciphertext.

* How can we defend against the attacks?
 What if the adversary cannot generate a ciphertext?
* How can we prevent the adversary from generating a valid ciphertext?

* Note that, we only need to prevent the adversary from generating a new valid
ciphertext.

Constructing IND-CCA Secure SKE

Let Iz = (Enc, Dec) be a private-key encryption scheme and let IIns = Why the solution is secure:

(Mac, Vrfy) be a message authentication code, where in each case key ¢ The adversary can only obtain
generation iS dOHe by Simply ChOOSng a uniform n-bit key Deﬁne a 1 from the decryption querieS.
private-key encryption scheme (Gen’, Enc’, Dec’) as follows: - Why

e Gen’: on input 1", choose independent, uniform kg, kys € {0,1}™ * Then the security is guaranteed
and output the key (kg, knm). by the IND-CPA security of I.

e Enc’: oninput a key (kg, ka) and a plaintext message m, compute
¢ < Enci,(m) and t < Macy,, (c). Output the ciphertext (c,t).

e Dec’: on input a key (kg,kr) and a ciphertext {c,t), first check
if Vrfy, (c,t) 21T yes, output Decy . (c); if no, output L.

Introduction to Modern Cryptography. - Jonathan Katz and Yehuda Lindell

How to implement a hash function and a
MAC algorithm in practice

from cryptography.hazmat.primitives import hashes, hmac y=digest.finalize()
import os print(binascii.b2a_hex(y))
import binascii

Generate the secret key

Read the message key = os.urandom(32)
f = open("plaintext.png", mode="rb")
data =f.read() # Generate the MAC
h = hmac.HMAC(key, hashes.SHA256())
Generate the digest h.update(data)
digest = hashes.Hash(hashes.SHA256()) tag= h.finalize()
digest.update(data) print(binascii.b2a_hex(tag))

iMac:codes orbbyrp$ python3.11 mac.py
b'922a35ef3fedd2c620a5c856820e373e36afa70b41b177e2d5d33329f7f26b57"
b'd2cf9f72aa5a52e8bb5f1897427ab0e278d529b46660ef@4d1764dcd827428ab"

iMac:codes orbbyrp$ shasum -a 256 plaintext.png
922a35ef3fedd2c620a5c856820e373e36afa7@b41b177e2d5d33329f7f26b57 plaintext.png

The codes are implemented using the pyca/cryptography library (https://cryptography.io/).
e Thisis a python library depending on OpenSSL

https://cryptography.io/

Roadmap

Blockcipher

Hash

summary

o Cryptographic Hash e Adversary’s capabilities
* The security definition

o . * Replay attack
Collision Resistance e Constructions

* Birthday Attack) .
Y 0 * Construction from blockcipher
Merkle-Da mga rd Structure * Security for one message block*

Alternative hash security properties + Insecurity for multiple messages
Applications of Hash * Hash and MAC

* Security*

* Syntax

* Message authentication code * HMAC
* Application scenarios * IND-CCA SKE
* Definition Construction from SKE + MAC
* Syntax and correctness * Security*

* Security goals

In both SKE and MAC, we will assume that all honest parties hold a secret key. Is this necessary?

	Slide 1: CSCI471/971 Modern Cryptography
	Slide 2
	Slide 3: Roadmap
	Slide 4: What is integrity?
	Slide 5: What is integrity?
	Slide 6: Cryptographic Hash Functions
	Slide 7: Hash Functions
	Slide 8: Hash Functions (Security Definitions)
	Slide 9: Collision Resistance: The birthday attack
	Slide 10
	Slide 11: Hash Functions
	Slide 12: Secure Hash Algorithm (SHA)
	Slide 13: Design of SHA-1
	Slide 14: Merkle-Damgård Iterative Structure
	Slide 15: Merkle-Damgård Iterative Structure
	Slide 16: Merkle-Damgård Iterative Structure
	Slide 17: Hash Functions (Alternative Security Definitions)
	Slide 18: What are hash functions used for?
	Slide 19: What is integrity?
	Slide 20: What is integrity?
	Slide 21: Message Authentication Codes
	Slide 22: Message Authentication Code
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Security Model for MAC
	Slide 29: Security Model for MAC
	Slide 30
	Slide 31
	Slide 32: Construction from Blockcipher
	Slide 33: Construction from Hash and Blockcipher: Hash and MAC
	Slide 34: Construction from Hash and Blockcipher: Hash and MAC
	Slide 35: Construction from Hash and Blockcipher: Hash and MAC
	Slide 36: Construction from Hash and Blockcipher: Hash and MAC
	Slide 37: Construction from Hash and Blockcipher: Hash and MAC
	Slide 38
	Slide 39: Encryption with IND-CCA Security
	Slide 40
	Slide 41: Difficulty in Achieving IND-CCA Security
	Slide 42: Constructing IND-CCA Secure SKE
	Slide 43: Constructing IND-CCA Secure SKE
	Slide 44: How to implement a hash function and a MAC algorithm in practice
	Slide 45: Roadmap
	Slide 46: Summary

