
CSCI471/971
Modern Cryptography

Public Key Cryptography II

Rupeng Yang

SCIT UOW

RoadMap

• Week 1-2: Preliminaries

• Week 3-4: Symmetric-Key Cryptography
• All parties share the same secret key
• Symmetric-key encryption
• Message authentication code

• Week 5: Attempts to Construct Public-Key Cryptography
• Week 6: Secure Public-Key Encryption and Digital Signature

Roadmap

Classical Ciphers

One-Time Pad

Blockcipher SKE

Hash MAC

RSA TDF

PKE

Signature

Definition of Public-Key
Encryption

Public Key

Secret key

Encryption

message
(plaintext)

ciphertext

Decryption

message
(plaintext)

ciphertext

Channel

Public-Key Encryption

Public-Key Encryption

Bob generates a key pair (pk,sk). pk is public key and published
to all others, while sk is secret and only known by Bob. Any
party can encrypt a sensitive message using the public key and
Bob can decrypt the ciphertext using the secret key.

The data that Alice sent to Bob is unknown to the adversary.
Bob doens’t even need to know who is Alice (no need to share a secret key!)

Alice
pk,m

Bob
(pk,sk)Enc(pk,m)

Public-Key Encryption

• KeyGen(λ): Taking as input a security parameter λ, the P.P.T.
algorithms returns (pk,sk)

• Enc(pk, M): Taking as input a message M and a public key pk,
the algorithm returns a ciphertertext denoted by CT.

CT←Enc(pk, M)

• Dec(CT,sk): Taking as input ciphertext CT and the secret key
sk, the algorithm returns M or ┴.

Public-Key Encryption

• Correctness: For all generated (pk,sk) and all CT←Enc(pk, M),
we have

Pr[Dec(CT, sk)=M]=1

Security Model of Public-Key Encryption
• What is the adversary’s capabilities?

• Ciphertext only: Attacker only knows some ciphertexts.

• Known plaintext: Attacker knows some plaintext-ciphertext pairs.

• Chosen plaintext: Attacker is allowed to choose some plaintexts, and receives the
corresponding ciphertexts.

• Chosen ciphertext: Attacker is allowed to choose some plaintexts, and receives the
corresponding ciphertexts; attacker is also allowed to choose some ciphertexts and
receives the corresponding plaintexts.

Security Model of Public-Key Encryption
• What is the adversary’s capabilities?

• Ciphertext only: Attacker only knows some ciphertexts.

• Known plaintext: Attacker knows some plaintext-ciphertext pairs.

• Chosen plaintext: Attacker is allowed to choose some plaintexts, and receives the
corresponding ciphertexts.

• Chosen ciphertext: Attacker is allowed to choose some plaintexts, and receives the
corresponding ciphertexts; attacker is also allowed to choose some ciphertexts and
receives the corresponding plaintexts.

• In PKE, the adversary can encrypt by itself, thus it does not make sense to consider
the ciphertext-only attack and the known-plaintext attack, and there is no need to
query ciphertext in CPA. (Note that the adversary should know pk)

Security Model of Public-Key Encryption
• What is the adversary’s capabilities?

• Ciphertext only: Attacker only knows some ciphertexts.

• Known plaintext: Attacker knows some plaintext-ciphertext pairs.

• Chosen plaintext: Attacker is allowed to choose some plaintexts, and receives the
corresponding ciphertexts.

• Chosen ciphertext: Attacker is allowed to choose some plaintexts, and receives the
corresponding ciphertexts; attacker is also allowed to choose some ciphertexts and
receives the corresponding plaintexts.

• In PKE, the adversary can encrypt by itself, thus it does not make sense to consider
the ciphertext-only attack and the known-plaintext attack, and there is no need to
query ciphertext in CPA. (Note that the adversary should know pk)

Security Model of Public-Key Encryption

What is the adversary’s security goal?

• Onewayness: Attacker cannot recover the plaintext.
• Semantic Security: Attacker cannot learn any information

about the plaintext.
• Indistinguishability : Given a ciphertext CT* and two

messages M_0 and M_1 where CT*=Enc(M_c, K), the
adversary is going to compute c from {0,1}.

1. Run KeyGen to get (pk,sk)

3.3 Send c* to the Attacker

Algorithms KeyGen, Enc, Des are public.

4. Attacker returns a guess bit b’Attacker wins if b = b’!

3.1 Attacker sends m0, m1 to challenger
3.2 Randomly choose a bit b,

run Enc(pk, mb) to get c*

Public-Key Encryption: IND-CPA Security

An Encryption Scheme is Secure if
NO efficient attacker can win with
a probability of ½+1/poly(λ).

We assume that
(|m0|=|m1|)

2. Send pk to the Attacker

Security Model (IND-CPA)

Setup: The challenger chooses a key pair (pk,sk) and pk is given to the adversary.

Challenge: The adversary chooses any two different messages M_0 and M_1. The
challenger chooses a random c and computes the challenge ciphertext

CT*=Enc(M_c, pk),
which is given to the adversary.

Guess: The adversary returns the guess c’ and wins if c’=c.

We say that the encryption is secure if every P.P.T adversary can only win the game with
negligible advantage defined as

 Pr[c’=c]-½

Security Model (IND-CCA)

Setup: The challenger chooses a key pair (pk,sk) and pk is given to the adversary.

Phase 1: The adversary can choose any CT for decryption queries.

Challenge: The adversary chooses any two different messages M_0 and M_1. The
challenger chooses a random c and computes the challenge ciphertext

CT*=Enc(M_c, pk),
which is given to the adversary.

Phase 2: The adversary can choose any CT different from CT* for decryption queries.

Guess: The adversary returns the guess c’ and wins if c’=c.

We say that the encryption is secure if every P.P.T adversary can only win the game with
negligible advantage defined as

 Pr[c’=c]-½

Security Model (IND-CCA1)

Setup: The challenger chooses a key pair (pk,sk) and pk is given to the adversary.

Phase 1: The adversary can choose any CT for decryption query.

Challenge: The adversary chooses any two different messages M_0 and M_1. The
challenger chooses a random c and computes the challenge ciphertext

CT*=Enc(M_c, pk),
which is given to the adversary.

Phase 2: The adversary can choose any CT different from CT* for decryption query.

Guess: The adversary returns the guess c’ and wins if c’=c.

We say that the encryption is secure if every P.P.T adversary can only win the game with
negligible advantage defined as

 Pr[c’=c]-½

PKE with IND-CPA Security from
One-Way Trapdoor Function

One-Way Trapdoor Function
(Definition) A function f:{0,1}*→{0,1}* is a one-way trapdoor function if

• Easy to Compute: There exists a P.P.T algorithm that can compute f(x) for any x.

• Hard to Invert: For every P.P.T. adversary, given f(x), where x is sampled uniformly at
random, we have

𝑃𝑟[𝑓(𝐴(𝑓(𝑥))) = 𝑓(𝑥)] ≤ 𝑛𝑒𝑔𝑙

• Easy to Invert with Trapdoor: There exists a trapdoor td and a P.P.T algorithm that given
td and f(x), it is easy to compute x.

• We can view the encryption algorithms of the textbook RSA encryption as the function
and view their decryption algorithms as the inverse of the function.

• The function is defined by the public key and the trapdoor is the secret key.

Pseudorandomness from One-Way (Trapdoor) Functions

we have

𝑃𝑟 𝐴 𝑓 𝑥 , 𝑟 = 𝑔𝑙 𝑥, 𝑟 ≤
1

2
+ 𝑛𝑒𝑔𝑙

where x and r are sampled uniformly at random, i.e., gl(x,r) is pseudorandom
given f(x) and r.

Public-Key Encryption from one-way trapdoor functions

• KeyGen(λ): Taking as input a security parameter λ, the key
generation algorithm generates (f, td) and sets pk=f, sk=td

• Enc(pk, M): Taking as input a message M of one bit and a public
key pk, the encryption algorithm samples a uniform x and a
uniform r, then it returns a ciphertertext denoted by CT:

𝐶𝑇 ← (𝑓 𝑥 , 𝑟, 𝑔𝑙(𝑥, 𝑟) ⊕ 𝑀)

• Dec(CT,sk): Taking as input a ciphertext CT=(C1,C2,C3) and the
secret key td, the decryption algorithm uses td to invert C1 and
gets x, then it computes the message as 𝑔𝑙 𝑥, 𝑟 ⊕ 𝐶3.

Public-Key Encryption from one-way trapdoor functions

• KeyGen(λ): Taking as input a security parameter λ, the key
generation algorithm generates (f, td) and sets pk=f, sk=td

• Enc(pk, M): Taking as input a message M of one bit and a public
key pk, the encryption algorithm samples a uniform x and a
uniform r, then it returns a ciphertertext denoted by CT:

𝐶𝑇 ← (𝑓 𝑥 , 𝑟, 𝑔𝑙(𝑥, 𝑟) ⊕ 𝑀)

• Dec(CT,sk): Taking as input a ciphertext CT=(C1,C2,C3) and the
secret key td, the decryption algorithm uses td to invert C1 and
gets x, then it computes the message as 𝑔𝑙 𝑥, 𝑟 ⊕ 𝐶3.

• The scheme is IND-CPA secure if f is a secure one-way trapdoor function.

Preliminaries on RSA
• It is easy to generate large random prime numbers

• It is easy to compute y s.t. 𝑥𝑦 = 1 𝑚𝑜𝑑 𝑁 given x and N that are relatively prime.

• Given any number N = pq, we define (N)= (p-1)(q-1), then for any a that is relatively prime with N, we

have

𝑎𝜙(𝑁) = 1 𝑚𝑜𝑑 𝑁

• It is easy to compute 𝑥𝑒 given x and e.

• It is hard to factorize N=pq if p and q are large enough primes.

RSA as a Trapdoor One-Way Function

• Generating the function and the trapdoor
1. Choose two large primes p and q. Compute n = pq and m=(n)= (p-1)(q-1).

2. Choose a random e, such that 1  e  m - 1 and gcd(e,m)=1.

3. Finds d such that ed=1 mod m.

4. The function is described by (e, n).

 The trapdoor is (d, n).

• Computing the function given an input X: Y = Xe mod n.

• Inverting the function on Y: X = Yd mod n.

G

m||0…0

H

r

m1 m2CT = RSAN,e

Optimal Asymmetric Encryption Padding (RSA-OAEP)

• G, H: cryptographic hash functions

• r: a random string

• m_1= m \xor G(r)

• m_2=H(m_1) \xor r

Decryption:

1. Invert Epk on the ciphertext.

2. Invert the Feistel Network on the result
of the first step.

3. Check the results of the first two steps
and returns the message or an error
symbol.

The RSA-OAEP (and Rabin-OAEP) can provide IND-
CPA/IND-CCA security.

Implementing PKE
import os
from cryptography.hazmat.primitives.asymmetric import
rsa,padding
from cryptography.hazmat.primitives import hashes

Key Generation
private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048)
public_key=private_key.public_key()

Encryption
message = b"encrypted data"

ciphertext = public_key.encrypt(message,padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None))
print(ciphertext)

Decryption
dmessage= private_key.decrypt(ciphertext,padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None))
print(dmessage)

The codes are implemented using the pyca/cryptography library (https://cryptography.io/).
• This is a python library depending on OpenSSL

https://cryptography.io/

Definition of Digital Signature

key Public information about the sender.
Usually, we denote it as the verification key.

Sign

message tag

Verify

Accept/Reject

message+tag

Channel

Digital Signatures

The data that Alice sent to Bob cannot be modified by the adversary (even by Bob).
Bob only needs to know that pk belongs to Alice (no need to share a secret key!)

Digital Signatures

• KeyGen(λ): Taking as input a security parameter λ, the key
generation algorithms returns (pk,sk)

• Sign(sk, M): Taking as input a message M and a secret key sk,
the signing algorithm returns a signature denoted by S.

S←Sign(sk, M)

• Verify(S,M,pk): Taking as input signed message (S,M) and the
public key pk, the verification algorithm returns 1 or 0.

Digital Signatures

• Correctness: For all generated (pk,sk) and all S←Sign(sk, M),
we have

Pr[Verify(S,M,pk)=1]=1

Verify(S,M,pk)=1: Here 1 means that the signature is valid

Security Model for Signature

• Our objective is to prevent the adversary from modifying the
message without being detected.

• The adversary can modify both the message and the tag, since
it controls the communication channel.

• Thus, we require that the adversary cannot generate a valid
message tag pair if it modifies the message

• Security Goal

– Unforgeable: It is hard to generate a valid tag for a new message.

Security Model for Signature

• Adversary’s capability

– Known tag attack: The adversary knows some messages
and the associated tags for them.

– Chosen Message Attack: Attacker is allowed to choose
some messages, and receives the corresponding tags.

1. Run KeyGen to get (pk,sk)

Algorithms KeyGen, Sign, Verify are
public.

4. Attacker returns (m*,t*)
Attacker wins if Verify(pk,m*,t*)=1

and m* is not queried in Step 3.

3.1 Attacker sends m to challenger

3.3 Send t to the Attacker

3.2 Run Sign(sk, m) to get t

Security Model for Signature: Unforgeability
under Chosen Message Attacks

A message authentication code
Scheme is Secure if NO efficient
attacker can win with a probability
of 1/poly(λ).

2. Send pk to the Attacker

Secure Signature from
One-Way Trapdoor Function

One-Way Trapdoor Function
(Definition) A function f:{0,1}*→{0,1}* is a one-way trapdoor function if

• Easy to Compute: There exists a P.P.T algorithm that can compute f(x) for any x.

• Hard to Invert: For every P.P.T. adversary, given f(x), where x is sampled uniformly at
random, we have

𝑃𝑟[𝑓(𝐴(𝑓(𝑥))) = 𝑓(𝑥)] ≤ 𝑛𝑒𝑔𝑙

• Easy to Invert with Trapdoor: There exists a trapdoor td and a P.P.T algorithm that given
td and f(x), it is easy to compute x.

• We can view the encryption algorithms of the textbook RSA encryption as the function
and view their decryption algorithms as the inverse of the function.

• The function is defined by the public key and the trapdoor is the secret key.

Digital Signatures from One-Way Trapdoor Functions

• KeyGen(λ): Taking as input a security parameter λ, the P.P.T. algorithms
generates (f, td) and specifies a secure hash function h: {0,1}* →𝑍𝑁

∗ . Then it
sets pk=(f,h), sk=td.

• Sign(sk, M): Taking as input a message M and a secret key sk, the P.P.T.
algorithm returns a signature denoted by S.

S←f-1(h(M)): This is to invert h(M)

• Verify(S,M,pk): Taking as input signed message (S,M) and the public key pk,
the P.P.T. algorithm computes and accepts the signature if f(S)=h(M).

• Correctness.

Security of The Signature

• To generate a valid signature s for a message m, you need to ensure both
H(m) and f(s) are the same value x.
• H is a secure hash function, so, it is hard to compute H-1(x)

• f is also one way, it is also hard to compute f-1 (x).

• So, you need to reach the same x from both m and s, which is also hard.

• If the adversary can further make some signing oracle queries, we also
need the hash function to be collision resistant.

• To support formal proof, H should be modelled as an idealized random
oracle.

Preliminaries on RSA
• It is easy to generate large random prime numbers

• It is easy to compute y s.t. 𝑥𝑦 = 1 𝑚𝑜𝑑 𝑁 given x and N that are relatively prime.

• Given any number N = pq, we define (N)= (p-1)(q-1), then for any a that is relatively prime with N, we

have

𝑎𝜙(𝑁) = 1 𝑚𝑜𝑑 𝑁

• It is easy to compute 𝑥𝑒 given x and e.

• It is hard to factorize N=pq if p and q are large enough primes.

RSA Full-Domain Hash (RSA-FDH) Signature

• Key Generation:
• Generate primes P and Q, compute N = PQ

• Generate d and e such that de = 1 mod (P-1)(Q-1)

• Public Key (N, e)

• Private Key d

• Specify a secure hash function H: {0,1}^* →𝑍𝑁
∗

• Sign:
• Given message m, compute s = H(m)d mod N

• Verify:
• Given message m, signature s, check if H(m) = se mod N

• Correctness 41

Blind Signature and RSA Blind Signature

Blind signatures

• In some cases it is necessary to get the signature of a party without
allowing them to see the message.

• For example, in some applications like electronic voting or electronic
cash, we need to ensure that each user only has one electronic ballot or a
fixed number of electronic coins:
• To request a ballot, a voter randomly generates a serial number.

• The voter needs the organization’s signature on the ballot (i.e., the serial number)
before being able to use it.

• To ensure privacy of the vote, that is to ensure that the organization cannot link a
vote with a particular voter, we need the organization to sign on the serial number
without knowing it.

• In addition, the signature scheme needs to guarantee that the voter cannot show
two valid signatures if it only asks for one signature, and this guarantees that the
voter can vote for at most once.

Blind Signature

In general:
• The requester wants to obtain the signer’s signature of message m.
• The requester doesn’t want to reveal m to anyone, including the signer.
• The signer signs m blindly, not knowing what they are signing.
• The requester can retrieve the signature σ, where anyone can verify the correctness of (m, σ).
• The requester cannot get/forge signatures on other values.

Blind Signatures
• KeyGen(λ): Taking as input a security parameter λ, the key generation

algorithms returns (pk,sk)

• Sign<Signersk,RequesterM>: This is a protocol run between a signer with the
secret key sk and a requester with a message M. After the protocol, the
requester learns a signature on M.
• Usually, it takes 3 steps:
• First, the requester sends a masked message to the signer
• Then, the signer signs on the masked message and returns the “masked signature”
• Finally, the requester recovers the real signature from the "masked signature”

• Verify(S,M,pk): Taking as input signed message (S,M) and the public key pk,
the verification algorithm returns 1 or 0.

Blind Signatures

• Correctness: For all generated (pk,sk) and all
S←Sign<Signersk,RequesterM>, we have

Pr[Verify(S,M,pk)=1]=1

Verify(S,M,pk)=1: Here 1 means that the signature is valid

Next, let us try to define the security…
We need to define unforgeability (since it is a signature) and
privacy of message (since it is a blind signature).

1. Run KeyGen to get (pk,sk)

Algorithms KeyGen, Sign, Verify are
public.

4. Attacker returns (m*,t*)
Attacker wins if Verify(pk,m*,t*)=1

and m* is not queried in Step 3.

3.1 Attacker sends m to challenger

3.3 Send t to the Attacker

3.2 Run Sign(sk, m) to get t

Unforgeability of Signature

A message authentication code
Scheme is Secure if NO efficient
attacker can win with a probability
of 1/poly(λ).

2. Send pk to the Attacker

However, in blind signature, anyone can get the signature without revealing the message…
• Can we force the adversary to reveal the message to the challenger?

• Yes we can define like this, but in the applications, the conditions may not be satisfied….
• The problem is solved by requiring the adversary to give q+1 different sigantures if it has made q queries.

• The definition is good enough for main applications of blind signature, such as electronic cash or electronic voting.

1. Run KeyGen to get (pk,sk)

Algorithms KeyGen, Sign, Verify are
public.

4. Attacker returns ((m1*,t1*), … (mq+1*,tq+1*))
Attacker wins if Verify(pk,mi*,ti*)=1 for all
i from 1 to q+1, and all mi* are different.

Unforgeability of Blind Signature

A message authentication code
Scheme is Secure if NO efficient
attacker can win with a probability
of 1/poly(λ).

2. Send pk to the Attacker

3 Attacker and challenger runs the
sign protocol

Repeat for q times

Privacy of Blind signature
• Who should be the adversary for privacy?

• The signer!

• Our goal is to prevent the singer from knowing any information about the message it has been signed.

• How to define the privacy? Can we define the message indistinguishability following IND-
CPA security of PKE?
• That means, the signer (adversary) selects two messages; the challenger runs the signing protocol

with the signer (adversary) using one of them.

• But this security definition cannot prevent the signer from “marking” you when running the protocol
with you, i.e., it may produce a signature that is different from the usual ones and then it can detect
you when you use your signature. The attack does not conflict with the security definition.

• How to define the privacy?
• We allow the signer (adversary) to choose many messages; then the challenger runs the signing

protocol with the signer (adversary) using these messages, but in a shuffled order.

• The adversary’s goal is to match the signing sessions with the messages.

• We are not going to show the formal definition.

RSA Blind Signatures

• The key generation and the verification algorithm is unchanged.
• KeyGen:

• Generate primes P and Q, compute N = PQ

• Generate d and e such that de = 1 mod (P-1)(Q-1)

• Public Key (N, e)

• Private Key (N,d)

• Verify:
• Input a message M and a signature S

• Check Se = H(M) mod N

RSA Blind Signatures

• We transform the signing algorithm into a 3-step protocol
• Message masking (by requester):

• Choose a random value r

• Compute m = H(M)

• Compute B = rem mod N

• Send B to the signer

• Signing (by signer):
• Signer computes C = Bd mod N
• Signer sends C back to the requester

• Signature Extracting (by requester):
• The requester computes S = C/r mod N
• S is a valid signature for M

RSA Blind Signatures

• Correctness
• C = Bd mod N = (rem)d mod N = rde md mod N = rmd mod N
• C/r = md mod N = H(M)d mod N

• Unforgeability
• Unforgeability comes from unforgeability of RSA signature

• It is possible to generate signature on messages that are not queried!
• But the attacker can create at most n valid message/signature pairs if he has

asked the signer to sign for n times.

• Privacy
• Unconditional privacy

Implementing Signature
import os
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import rsa,padding

Key Generation
private_key = rsa.generate_private_key(public_exponent=65537, key_size=2048)
public_key=private_key.public_key()

Sign
data = b"signed data"
signature = private_key.sign(data,padding.PSS(
 mgf=padding.MGF1(hashes.SHA256()),
 salt_length=padding.PSS.MAX_LENGTH),
 hashes.SHA256())
print(signature)

Verify

data2 = b"signed data2"
public_key.verify(signature, data, padding.PSS(
 mgf=padding.MGF1(hashes.SHA256()),
 salt_length=padding.PSS.MAX_LENGTH),
hashes.SHA256())
print("signature is a valid signature for data")

public_key.verify(signature, data2, padding.PSS(
 mgf=padding.MGF1(hashes.SHA256()),
 salt_length=padding.PSS.MAX_LENGTH),
 hashes.SHA256())

The codes are implemented using the pyca/cryptography library
(https://cryptography.io/).
• This is a python library depending on OpenSSL

https://cryptography.io/

Roadmap
Classical Ciphers

One-Time Pad

Blockcipher SKE

Hash MAC

RSA TDF

PKE

Signature

Blind Signature

Summary

• Secure PKE
• The Definition

• Application Scenario

• Syntax

• Correctness

• Security
• CPA is the minimal requirement

• IND-CPA security

• IND-CCA Security

• IND-CCA1 Security

• The Construction
• PKE from one-way trapdoor function

• RSA as a one-way trapdoor function

• RSA-OAEP

• Digital Signature
• The Definition

• Application Scenario

• Syntax

• Correctness

• Security

• The Construction
• Construction from one-way trapdoor function

• Security*

• RSA-FDH

• Blind Signature
• Definition

• Application Scenarios

• Syntax and Correctness

• Security*

• RSA Blind Signature

	Slide 1: CSCI471/971 Modern Cryptography
	Slide 2
	Slide 3: Roadmap
	Slide 4: Definition of Public-Key Encryption
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Security Model of Public-Key Encryption
	Slide 10: Security Model of Public-Key Encryption
	Slide 11: Security Model of Public-Key Encryption
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: PKE with IND-CPA Security from One-Way Trapdoor Function
	Slide 19: One-Way Trapdoor Function
	Slide 20: Pseudorandomness from One-Way (Trapdoor) Functions
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Preliminaries on RSA
	Slide 25: RSA as a Trapdoor One-Way Function
	Slide 26: Optimal Asymmetric Encryption Padding (RSA-OAEP)
	Slide 27: Implementing PKE
	Slide 28: Definition of Digital Signature
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Security Model for Signature
	Slide 33: Security Model for Signature
	Slide 34
	Slide 35: Secure Signature from One-Way Trapdoor Function
	Slide 36: One-Way Trapdoor Function
	Slide 37
	Slide 38: Security of The Signature
	Slide 39: Security of The Signature
	Slide 40: Preliminaries on RSA
	Slide 41: RSA Full-Domain Hash (RSA-FDH) Signature
	Slide 42: Blind Signature and RSA Blind Signature
	Slide 43: Blind signatures
	Slide 44: Blind Signature
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Privacy of Blind signature
	Slide 51: RSA Blind Signatures
	Slide 52: RSA Blind Signatures
	Slide 53: RSA Blind Signatures
	Slide 54: Implementing Signature
	Slide 55: Roadmap
	Slide 56: Summary

