
CSCI471/971
Modern Cryptography

Public Key Cryptography III

Rupeng Yang

SCIT UOW

RoadMap

• Week 1-2: Preliminaries

• Week 3-4: Symmetric-Key Cryptography

• Week 5-6: PKC from factoring
• Week 7: PKC from DL

Roadmap
Classical Ciphers

One-Time Pad

Blockcipher SKE

Hash MAC

RSA TDF

PKE

Signature

Blind Signature

Definition of an Abelian Group

• A Group is a set of objects together with an operation defined between any
two objects in the set.

• Let G denote a set and • denote an operation

• (G, •) is an Abelian group if all the following conditions are met:
• Closure: a • bG for all aG and bG

• Associative: for all a, b, c G, (a•b) •c = a • (b•c)

• Commutative: for all a, b G, a•b = b•a

• Identity: there exists an element e G such that
a G, a•e = e•a = a

• Inverse: a G, there exists an element b in G, such that a • b = b • a = e

Definition of an Abelian Group

• If |G| is finite, we said (G, •) is a finite group and let |G| denote the order of the
group.

• If (G, •) is a group, (H, •) is a subgroup of (G, •) if
• H ⊆ G

• (H, •) is a group

• We usually use multiplicative notation to describe the group:
• the group operation applied to g, h is denoted by g · h or simply gh

• the identity is denoted by 1 (The identity element in a group G is unique)

• the inverse of an element g is denoted by g−1 (Each element has a unique inverse)

The Group 𝑍5
∗

• Let 𝑍5
∗ be the set {1, 2, 3, 4}

• Consider the operator x mod 5

• Is (𝑍5
∗ , x mod 5) a group?

* mod 5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Group Exponentiation

• we use gn to denote g · g … · g

• It is easy to compute 𝑔𝑛 given g and n.

• Let (G, •) be a finite Abelian group with q = | G | , the order of the
group. Then for any element g ∈ G, it holds that gq = 1

• Let (G, •) be a finite Abelian group with q = | G | > 1. Then for any g ∈
G and any integer x, we have

gx = g[x mod q]

n times

Cyclic Group

• Let (G, ·) be a finite group of order q. For arbitrary g ∈ G, consider the set

〈g〉 = { g0, g1 , . . . } .

• 〈g〉 is a finite set.

• (〈g〉 , ·) is a subgroup of (G, ·) .

• Let p=|<g>|, then <g>= { g0, g1 , . . . , gp-1}

• (〈g〉 , ·) is a cyclic group with order p=| 〈g〉 | and g is a generator of (〈g〉 , ·).

9

An example: 𝑍11
∗

1 2 3 4 5 6 7 8 9 10

1 1 1

2 2 4 8 5 10 9 7 3 6 1

3 3 9 5 4 1 3

4 4 5 9 3 1 4

5 5 3 4 9 1 5

6 6 3 7 9 10 5 8 4 2 1

7 7 5 2 3 10 4 6 9 8 1

8 8 9 6 4 10 3 2 5 7 1

9 9 4 3 5 1 9

10 10 1 10

Hard Problems in Cyclic Groups
• The Discrete Logarithm Problem (DLP)

Given a cyclic group G of order q, a generator g in G, and a group element h in G, find
the unique non-negative number a<q such that h = ga.

• The Computational Diffie-Hellman Problem

Given a cyclic group G of order q, a generator g in G, and two group elements ga and gb

,find gab.

• The Decisional Diffie-Hellman Problem

Given a cyclic group G of order q, a generator g in G, and two group elements ga and gb

, distinguish gab from a random group element.

• The group 𝑍𝑝
∗ = {1, 2, …, p-1} where p is a large prime number

• The DDH problem is easy in 𝑍𝑝
∗ .

• The DLP and the CDH problem are assumed to be hard in 𝑍𝑝
∗ for large

enough p.

• The prime order subgroup of 𝑍𝑝
∗

• The DLP, the CDH problem, and the DDH problem are assumed to be hard
in this subgroup if the group order is large enough.

• Elliptic curve groups
• The DLP, the CDH problem, and the DDH problem are assumed to be hard

in this subgroup if the group order is large enough.

How to instantiate a cyclic group

Digital Signature from Cyclic Groups

key Public information about the sender.
Usually, we denote it as the verification key.

Sign

message tag

Verify

Accept/Reject

message+tag

Channel

Digital Signatures

The data that Alice sent to Bob cannot be modified by the adversary (even by Bob).
Bob only needs to know that pk belongs to Alice (no need to share a secret key!)

Digital Signatures

• KeyGen(λ): Taking as input a security parameter λ, the key
generation algorithms returns (pk,sk)

• Sign(sk, M): Taking as input a message M and a secret key sk,
the signing algorithm returns a signature denoted by S.

S←Sign(sk, M)

• Verify(S,M,pk): Taking as input signed message (S,M) and the
public key pk, the verification algorithm returns 1 or 0.

Digital Signatures

• Correctness: For all generated (pk,sk) and all S←Sign(sk, M),
we have

Pr[Verify(S,M,pk)=1]=1

Verify(S,M,pk)=1: Here 1 means that the signature is valid

1. Run KeyGen to get (pk,sk)

Algorithms KeyGen, Sign, Verify are
public.

4. Attacker returns (m*,t*)
Attacker wins if Verify(pk,m*,t*)=1

and m* is not queried in Step 3.

3.1 Attacker sends m to challenger

3.3 Send t to the Attacker

3.2 Run Sign(sk, m) to get t

Security Model for Signature: Unforgeability
under Chosen Message Attacks

A message authentication code
Scheme is Secure if NO efficient
attacker can win with a probability
of 1/poly(λ).

2. Send pk to the Attacker

Preliminaries on Cyclic Group

• Let (G,g,p) be a cyclic group, where G is the set of group element, g is the generator,
and p is the group order:
• G={ g0, g1 , . . . , gp-1}

• gp=1

• The following operations are easy in the group (G,g,p):
• Given any h1, h2 in G, it is easy to compute h1 · h2

• For any h in G and for any x,y in [0,p-1], given hx and hy, it is easy to compute hx+y =hx ·hy

• For any h1, h2 in G and for any x in[0,p-1], given h1
x and h2

x , we can compute (h1 · h2)x= h1
x · h2

x

• Given any h in G and any x in [0,p-1], it is easy to compute hx

• The following operations are hard in the group (G,g,p):
• Given gx, it is hard to compute x (The DL problem)

• Given gx and gy, it is hard to compute gxy (The CDH problem)
• Given gx and gy, it is hard to distinguish gxy from a random group element in G (The DDH problem)

Schnorr Signature
• KeyGen(λ): Taking as input a security parameter λ, the P.P.T. algorithm

1. Chooses a cyclic group G of order q and a generator g of G.
2. Specifies a secure hash function H: {0,1}* →𝑍𝑞.

3. Chooses a uniform x ∈ Zq and compute h = gx .
4. The public key is (G, q, g, h, H) and the private key is (G, q, g, x, H).

• Sign(sk, M): Taking as input a message M and a secret key sk=(G, q, g, x, H), the P.P.T. algorithm
1. Choose a random number r and computes R=gr

2. Compute c=H(R, M)
3. Compute z=r+ c*x mod q
4. The signature is (R,z)

• Verify(S,M,pk): Taking as input a signed message M, the public key pk=(G, q, g, h, H), and a

signature (R,z), the P.P.T. algorithm
1. Compute c’=H(R,M) and Accept the signature if gz=R· hc’

• Correctness.

Schnorr Signature
• KeyGen(λ): Taking as input a security parameter λ, the P.P.T. algorithm

1. Chooses a cyclic group G of order q and a generator g of G.
2. Specifies a secure hash function H: {0,1}* →𝑍𝑞.

3. Chooses a uniform x ∈ Zq and compute h = gx .
4. The public key is (G, q, g, h, H) and the private key is (G, q, g, x, H).

• Sign(sk, M): Taking as input a message M and a secret key sk=(G, q, g, x, H), the P.P.T. algorithm
1. Choose a random number r and computes R=gr

2. Compute c=H(R, M)
3. Compute z=r+ c*x mod q
4. The signature is (R,z)

• Verify(S,M,pk): Taking as input a signed message M, the public key pk=(G, q, g, h, H), and a

signature (R,z), the P.P.T. algorithm
1. Compute c’=H(R,M) and Accept the signature if gz=R· hc’

• Security.
• The scheme is secure assuming the hardness of the Discrete Logarithm Problem and H is modeled as an

idealized hash function (random oracle).
• Notice: The random number r must be kept secret and never repeat. (The reasons are given in the workshop)

The parameters of schemes based on DLP

• If we use the group 𝑍𝑝
∗ . The modulus p should have the same size as

that of the RSA modulus N for the same security level
• 80-bit security: p is a 1024-bit prime number

• 112-bit security: p is a 2048-bit prime number

• 128-bit security: p is a 3072-bit prime number

• If we use the subgroup G of 𝑍𝑝
∗ that has prime order q

• 80-bit security: p is a 1024-bit prime number and q is a 160-bit prime number

• 112-bit security: p is a 2048-bit prime number and q is a 224-bit prime
number

• 128-bit security: p is a 3072-bit prime number and q is a 256-bit prime
number

21

Implementing Signature
import os
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import dsa

Key Generation
private_key = dsa.generate_private_key(key_size=1024)
public_key=private_key.public_key()

Sign
data = b"signed data"
signature = private_key.sign(data,hashes.SHA256())
print(signature)

Verify
data2 = b"signed data2"
public_key.verify(signature, data,hashes.SHA256())
print("signature is a valid signature for data")

public_key.verify(signature, data2,hashes.SHA256())

The codes are implemented using the pyca/cryptography library (https://cryptography.io/).
• This is a python library depending on OpenSSL

https://cryptography.io/

Public-Key Encryption from
Cyclic Groups

Public Key

Secret key

Encryption

message
(plaintext)

ciphertext

Decryption

message
(plaintext)

ciphertext

Channel

Public-Key Encryption

Public-Key Encryption

• KeyGen(λ): Taking as input a security parameter λ, the P.P.T.
algorithms returns (pk,sk)

• Enc(pk, M): Taking as input a message M and a public key pk,
the algorithm returns a ciphertertext denoted by CT.

CT←Enc(pk, M)

• Dec(CT,sk): Taking as input ciphertext CT and the secret key
sk, the algorithm returns M or ┴.

Public-Key Encryption

• Correctness: For all generated (pk,sk) and all CT←Enc(pk, M),
we have

Pr[Dec(CT, sk)=M]=1

Security Model (IND-CPA)

Setup: The challenger chooses a key pair (pk,sk) and pk is given to the adversary.

Challenge: The adversary chooses any two different messages M_0 and M_1. The
challenger chooses a random c and computes the challenge ciphertext

CT*=Enc(M_c, pk),
which is given to the adversary.

Guess: The adversary returns the guess c’ and wins if c’=c.

We say that the encryption is secure if every P.P.T adversary can only win the game with
negligible advantage defined as

 Pr[c’=c]-½

Preliminaries on Cyclic Group

• Let (G,g,p) be a cyclic group, where G is the set of group element, g is the generator,
and p is the group order:
• G={ g0, g1 , . . . , gp-1}

• gp=1

• The following operations are easy in the group (G,g,p):
• Given any h1, h2 in G, it is easy to compute h1 · h2

• For any h in G and for any x,y in [0,p-1], given hx and hy, it is easy to compute hx+y =hx ·hy

• For any h1, h2 in G and for any x in[0,p-1], given h1
x and h2

x , we can compute (h1 · h2)x= h1
x · h2

x

• Given any h in G and any x in [0,p-1], it is easy to compute hx

• The following operations are hard in the group (G,g,p):
• Given gx, it is hard to compute x (The DL problem)

• Given gx and gy, it is hard to compute gxy (The CDH problem)
• Given gx and gy, it is hard to distinguish gxy from a random group element in G (The DDH problem)

The El Gamal Cryptosystem

• Key generation:
• Choose a group G of order q and a generator g of G. Then choose a uniform x ∈ Zq and compute h =

gx .

• The public key is (G, q, g, h) and the private key is (G, q, g, x). The message space is G.

• Encryption:
• on input a public key pk = (G, q, g, h) and a message m ∈ G, choose a uniform r ∈ Zq and output the

ciphertext (gr, hr·m)

• Decryption:
• on input a private key sk = (G, q, g, x). and a ciphertext (c1 , c2) , output m= c2 (c1

x)-1.

• Correctness.

• The El Gamal is not a trapdoor function.

Security of El Gamal Encryption

• The security of the secret key depends on the difficulty of the discrete
logarithm problem directly. Hardness of DLP is the necessary condition for
the security of El Gamal encryption.

• But it is unknown if DLP is the sufficient condition for the security of El
Gamal encryption.

Security of El Gamal Encryption

• If one can solve the CDH problem, then it can decrypt without having to know
the secret key. Hardness of CDH is the necessary condition for the security of El
Gamal encryption.

• If one can recover the message m from a ciphertext (c1 , c2) = (gr, hr·m) given
only the public key (G, q, g, h) , then it can compute hr= grx given h= gx and gr.
Hardness of CDH is the sufficient condition for the one-way security of El Gamal
encryption.

Security of El Gamal Encryption

• If one can solve the DDH problem, then it can distinguish encryption of 1 and
encryption of a random group element. Hardness of DDH is the necessary
condition for the IND-CPA security of El Gamal encryption.

• If we further assume hardness of the decisional Diffie-Hellman problem, the
ciphertext would be indistinguishable from random group elements, i.e., El
Gamal is IND-CPA secure.

• The group 𝑍𝑝
∗ = {1, 2, …, p-1} where p is a large prime number

• The DLP and the CDH problem are assumed to be hard in 𝑍𝑝
∗ for large enough p.

• The El Gamal encryption in 𝑍𝑝
∗ has one-way CPA security.

• The DDH problem is easy in 𝑍𝑝
∗ .

• The El Gamal encryption in 𝑍𝑝
∗ does not have IND-CPA security.

• The prime order subgroup of 𝑍𝑝
∗

• The DLP, the CDH problem, and the DDH problem are assumed to be hard in this
subgroup if the group order is large enough.

• The El Gamal encryption in this subgroup has IND-CPA security.

Security of ElGamal encryption
in different groups

The parameters of schemes based on DLP

• If we use the group 𝑍𝑝
∗ . The modulus p should have the same size as

that of the RSA modulus N for the same security level
• 80-bit security: p is a 1024-bit prime number

• 112-bit security: p is a 2048-bit prime number

• 128-bit security: p is a 3072-bit prime number

• If we use the subgroup G of 𝑍𝑝
∗ that has prime order q

• 80-bit security: p is a 1024-bit prime number and q is a 160-bit prime number

• 112-bit security: p is a 2048-bit prime number and q is a 224-bit prime
number

• 128-bit security: p is a 3072-bit prime number and q is a 256-bit prime
number

34

Another Look at ElGamal and
(Fully) Homomorphic Encryption

The El Gamal Cryptosystem
• Key generation:

• Choose a group G of order q and a generator g of G. Then choose a uniform x ∈ Zq and
compute h = gx .

• The public key is (G, q, g, h) and the private key is (G, q, g, x). The message space is G.

• Encryption:

• on input a public key pk = (G, q, g, h) and a message m ∈ G, choose a uniform r ∈ Zq and
output the ciphertext (gr, hr·m)

• Decryption:

• on input a private key sk = (G, q, g, x). and a ciphertext (c1 , c2) , output m= c2 (c1
x)-1.

• Now, let us try to ”multiple” two ciphertexts…

The El Gamal Cryptosystem
• Key generation:

• Choose a group G of order q and a generator g of G. Then choose a uniform x ∈ Zq and
compute h = gx . x

• The public key is (G, q, g, h) and the private key is (G, q, g, x). The message space is G.

• Encryption:

• on input a public key pk = (G, q, g, h) and a message m ∈ G, choose a uniform r ∈ Zq and
output the ciphertext (gr, hr·m)

• Decryption:

• on input a private key sk = (G, q, g, x). and a ciphertext (c1 , c2) , output m= c2 (c1
x)-1.

Homomorphic Evaluation:
(c1 , c2) = (gr, hr·m)
(c’1 , c’2) = (gr’, hr’·m’)
(c1·c’1, c2·c’2) = (gr+r’, hr+r’·m·m’)

Homomorphic Encryption
• An encryption scheme that supports homomorphic operations over ciphertexts are

denoted as homomorphic encryption.

• Why homomorphic encryption is useful?
• Assume that you would like to compute the product of some numbers, which are distributed

among different users.

• The numbers are encrypted before being sent to you to make them secure.

• In addition, you do not want to decrypt all ciphertexts and compute the result; instead, you would
like to borrow the computation power of some untrusted cloud.

• Then the ciphertexts will be sent to the cloud and the cloud will compute the product of the
ciphertexts.

• Finally, you decrypt the ciphertext returned by the cloud to recover the product of the numbers.

• It would be more useful if we can perform any computation over the encrypted data.
• That is denoted as fully homomorphic encryption.

Fully Homomorphic Encryption

Bob generates a key pair (pk,sk). pk is public key and published
to all others, while sk is secret and only known by Bob.

The data that Alice sent to Bob is unknown to the adversary, even Charlie.

Alice
pk,m

Bob
(pk,sk)

Charlie
pk

Fully Homomorphic Encryption

• KeyGen(λ): Taking as input a security parameter λ, the P.P.T.
algorithms returns (pk,sk)

• Enc(pk, M): Taking as input a message M and a public key pk, the
algorithm returns a ciphertertext denoted by CT.

CT←Enc(pk, M)

• Dec(CT,sk): Taking as input ciphertext CT and the secret key sk, the
algorithm returns M or ┴.

• Eval(pk,f,CT): Taking as input ciphertext CT, public key pk, and a
function f, the algorithm returns another ciphertext CT’

Fully Homomorphic Encryption

• Correctness: For all generated (pk,sk), all CT←Enc(pk, M),
and all function f, we have

Pr[Dec(Eval(pk,f,CT), sk)=f(M)]=1

• Security: Standard IND-CPA security.

• Construction: Existing FHE schemes are constructed from
lattice and the concrete constructions are beyond the scope
of this subject.

Implementing PKE II

• El Gamal encryption is not naturally supported in main
stream cryptography libraries like OpenSSL.

• You can implement it by using existing interfaces such as DH
key exchange or DSA signature.

– You are not recommended to do this unless you have a strong
reason.

Roadmap
Classical Ciphers

One-Time Pad

Blockcipher SKE

Hash MAC

RSA TDF

PKE

Signature

Blind Signature

DL

PKE

Signature

HE

Summary

• Cyclic Group

• Schnorr Signature
• Construction

• Correctness

• Security
• Insecurity of weak implementation

• ElGamal Encryption
• Construction

• Correctness

• Security

• Homomorphic Encryption
• Notion and syntax

• Partially homomorphic encryption from
ElGamal

	Slide 1: CSCI471/971 Modern Cryptography
	Slide 2
	Slide 3: Roadmap
	Slide 4: Definition of an Abelian Group
	Slide 5: Definition of an Abelian Group
	Slide 6: The Group, Z 5
	Slide 7: The Group, Z 5
	Slide 8: Group Exponentiation
	Slide 9: Cyclic Group
	Slide 10: An example: Z 11
	Slide 11: Hard Problems in Cyclic Groups
	Slide 12
	Slide 13: Digital Signature from Cyclic Groups
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Preliminaries on Cyclic Group
	Slide 19
	Slide 20
	Slide 21: The parameters of schemes based on DLP
	Slide 22: Implementing Signature
	Slide 23: Public-Key Encryption from Cyclic Groups
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Preliminaries on Cyclic Group
	Slide 29: The El Gamal Cryptosystem
	Slide 30: Security of El Gamal Encryption
	Slide 31: Security of El Gamal Encryption
	Slide 32: Security of El Gamal Encryption
	Slide 33
	Slide 34: The parameters of schemes based on DLP
	Slide 35: Another Look at ElGamal and (Fully) Homomorphic Encryption
	Slide 36: The El Gamal Cryptosystem
	Slide 37: The El Gamal Cryptosystem
	Slide 38: Homomorphic Encryption
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Implementing PKE II
	Slide 43: Roadmap
	Slide 44: Summary

