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Definition of an Abelian Group

• A Group is a set of objects together with an operation defined between any 
two objects in the set.

• Let G denote a set and • denote an operation

• (G, •) is an Abelian group if all the following conditions are met:
• Closure: a • bG for all aG and bG

• Associative: for all a, b, c G, (a•b) •c  = a • (b•c)

• Commutative: for all a, b G, a•b = b•a

• Identity: there exists an element e G such that 
a G, a•e = e•a = a

• Inverse: a G, there exists an element b in G, such that a • b = b • a = e



Definition of an Abelian Group

• If |G| is finite, we said (G, •) is a finite group and let |G| denote the order of the 
group.

• If (G, •) is a group, (H, •) is a subgroup of (G, •) if 
• H ⊆ G

• (H, •) is a group

• We usually use multiplicative notation to describe the group:
• the group operation applied to g, h is denoted by g · h or simply gh

• the identity is denoted by 1 (The identity element in a group G is unique)

• the inverse of an element g is denoted by g−1 (Each element has a unique inverse)



The Group 𝑍5
∗

• Let 𝑍5
∗ be the set {1, 2, 3, 4}

• Consider the operator x mod 5

• Is (𝑍5
∗ , x mod 5) a group?

* mod 5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1



Group Exponentiation

• we use gn to denote g · g  … · g

• It is easy to compute 𝑔𝑛 given g and n.

• Let (G, •) be a finite Abelian group with q = | G | , the order of the 
group. Then for any element g ∈ G, it holds that gq = 1

• Let (G, •) be a finite Abelian group with q = | G | > 1. Then for any g ∈ 
G and any integer x, we have 

gx = g[x mod q] 

n times



Cyclic Group

• Let (G, ·) be a finite group of order q. For arbitrary g ∈ G, consider the set 

〈g〉 = { g0, g1 , . . . } .

• 〈g〉 is a finite set. 

• (〈g〉 , ·) is a subgroup of (G, ·) .

• Let p=|<g>|, then <g>= { g0, g1 , . . . , gp-1} 

• (〈g〉 , ·) is a cyclic group with order p=| 〈g〉 | and g is a generator of (〈g〉 , ·).
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An example: 𝑍11
∗

1 2 3 4 5 6 7 8 9 10

1 1 1

2 2 4 8 5 10 9 7 3 6 1

3 3 9 5 4 1 3

4 4 5 9 3 1 4

5 5 3 4 9 1 5

6 6 3 7 9 10 5 8 4 2 1

7 7 5 2 3 10 4 6 9 8 1

8 8 9 6 4 10 3 2 5 7 1

9 9 4 3 5 1 9

10 10 1 10



Hard Problems in Cyclic Groups
• The Discrete Logarithm Problem (DLP)

Given a cyclic group G of order q, a generator g  in G, and a group element  h  in G, find 
the unique non-negative number a<q such that  h = ga.

• The Computational Diffie-Hellman Problem

Given a cyclic group G of order q, a generator g  in G,  and two group elements ga and gb 

,find gab.

• The Decisional Diffie-Hellman Problem

Given a cyclic group G of order q, a generator g  in G,  and two group elements ga and gb 

, distinguish gab from a random group element.



• The group 𝑍𝑝
∗  = {1, 2, …, p-1} where p is a large prime number

• The DDH problem is easy in 𝑍𝑝
∗ .

• The DLP and the CDH problem are assumed to be hard in 𝑍𝑝
∗  for large 

enough p.

• The prime order subgroup of 𝑍𝑝
∗  

• The DLP, the CDH problem, and the DDH problem are assumed to be hard 
in this subgroup if the group order is large enough.

• Elliptic curve groups
• The DLP, the CDH problem, and the DDH problem are assumed to be hard 

in this subgroup if the group order is large enough.

How to instantiate a cyclic group



Digital Signature from Cyclic Groups



key Public information about the sender. 
Usually, we denote it as the verification key.

Sign

message tag

Verify

Accept/Reject

message+tag

Channel

Digital Signatures

The data that Alice sent to Bob cannot be modified by the adversary (even by Bob).
Bob only needs to know that pk belongs to Alice (no need to share a secret key!)



Digital Signatures

• KeyGen(λ): Taking as input a security parameter λ, the key 
generation algorithms returns (pk,sk)

• Sign(sk, M): Taking as input a message M and a secret key sk, 
the  signing algorithm returns a signature denoted by S.

S←Sign(sk, M)

• Verify(S,M,pk): Taking as input signed message (S,M) and the 
public key pk, the verification algorithm returns 1 or 0.



Digital Signatures

• Correctness: For all generated (pk,sk) and all S←Sign(sk, M), 
we have 

Pr[Verify(S,M,pk)=1]=1

Verify(S,M,pk)=1: Here 1 means that the signature is valid



1. Run KeyGen to get (pk,sk)

Algorithms KeyGen, Sign, Verify are 
public.

4. Attacker returns (m*,t*)
Attacker wins if Verify(pk,m*,t*)=1

and m* is not queried in Step 3. 

3.1 Attacker sends m to challenger

3.3 Send t to the Attacker

3.2 Run Sign(sk, m) to get t

Security Model for Signature: Unforgeability 
under Chosen Message Attacks

A message authentication code 
Scheme is Secure if NO efficient 
attacker can win with a probability 
of 1/poly(λ).

2. Send pk to the Attacker



Preliminaries on Cyclic Group

• Let (G,g,p) be a cyclic group, where G is the set of group element, g is the generator, 
and p is the group order:
• G={ g0, g1 , . . . , gp-1}

• gp=1

• The following operations are easy in the group (G,g,p):
• Given any h1, h2 in G, it is easy to compute h1 · h2

• For any h in G and for any x,y in [0,p-1], given hx and hy, it is easy to compute hx+y =hx ·hy 

• For any h1, h2 in G and for any x in[0,p-1], given h1
x and h2

x , we can compute (h1 · h2)x= h1
x · h2

x 

• Given any h in G and any x in [0,p-1], it is easy to compute hx

• The following operations are hard in the group (G,g,p):
• Given gx, it is hard to compute x (The DL problem)

• Given gx and gy, it is hard to compute gxy (The CDH problem)
• Given gx and gy, it is hard to distinguish gxy from a random group element in G (The DDH problem)



Schnorr Signature
• KeyGen(λ): Taking as input a security parameter λ, the P.P.T. algorithm 

1. Chooses a cyclic group G of order q and a generator g of G. 
2. Specifies a secure hash function H: {0,1}* →𝑍𝑞. 

3. Chooses a uniform x ∈ Zq and compute h = gx . 
4. The public key is (G, q, g, h, H) and the private key is (G, q, g, x, H).

• Sign(sk, M): Taking as input a message M and a secret key sk=(G, q, g, x, H), the  P.P.T. algorithm 
1. Choose a random number r and computes R=gr

2. Compute c=H(R, M)
3. Compute  z=r+ c*x mod q
4. The signature is  (R,z)

• Verify(S,M,pk): Taking as input a signed message M, the public key pk=(G, q, g, h, H), and a 

signature (R,z), the P.P.T. algorithm 
1. Compute c’=H(R,M) and Accept the signature if  gz=R· hc’

• Correctness.



Schnorr Signature
• KeyGen(λ): Taking as input a security parameter λ, the P.P.T. algorithm 

1. Chooses a cyclic group G of order q and a generator g of G. 
2. Specifies a secure hash function H: {0,1}* →𝑍𝑞. 

3. Chooses a uniform x ∈ Zq and compute h = gx . 
4. The public key is (G, q, g, h, H) and the private key is (G, q, g, x, H).

• Sign(sk, M): Taking as input a message M and a secret key sk=(G, q, g, x, H), the  P.P.T. algorithm 
1. Choose a random number r and computes R=gr

2. Compute c=H(R, M)
3. Compute  z=r+ c*x mod q
4. The signature is  (R,z)

• Verify(S,M,pk): Taking as input a signed message M, the public key pk=(G, q, g, h, H), and a 

signature (R,z), the P.P.T. algorithm 
1. Compute c’=H(R,M) and Accept the signature if  gz=R· hc’

• Security.
• The scheme is secure assuming the hardness of the Discrete Logarithm Problem and H is modeled as an 

idealized hash function (random oracle).
• Notice: The random number r must be kept secret and never repeat. (The reasons are given in the  workshop)



The parameters of schemes based on DLP

• If we use the group 𝑍𝑝
∗ . The modulus p should have the same size as 

that of the RSA modulus N for the same security level
• 80-bit security: p is a 1024-bit prime number

• 112-bit security: p is a 2048-bit prime number

• 128-bit security: p is a 3072-bit prime number

• If we use the subgroup G of 𝑍𝑝
∗  that has prime order q

• 80-bit security: p is a 1024-bit prime number and q is a 160-bit prime number

• 112-bit security: p is a 2048-bit prime number and q is a 224-bit prime 
number

• 128-bit security: p is a 3072-bit prime number and q is a 256-bit prime 
number
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Implementing Signature
import os
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import dsa

# Key Generation
private_key = dsa.generate_private_key(key_size=1024)
public_key=private_key.public_key()

# Sign 
data = b"signed data"
signature = private_key.sign(data,hashes.SHA256())
print(signature)

# Verify
data2 = b"signed data2"
public_key.verify(signature, data,hashes.SHA256())
print("signature is a valid signature for data")

public_key.verify(signature, data2,hashes.SHA256())

The codes are implemented using the pyca/cryptography library (https://cryptography.io/).
• This is a python library depending on OpenSSL

https://cryptography.io/


Public-Key Encryption from 
Cyclic Groups



Public Key

Secret key

Encryption

message
(plaintext)

ciphertext

Decryption

message
(plaintext)

ciphertext

Channel

Public-Key Encryption



Public-Key Encryption

• KeyGen(λ): Taking as input a security parameter λ, the P.P.T. 
algorithms returns (pk,sk)

• Enc(pk, M): Taking as input a message M and a public key pk, 
the algorithm returns a ciphertertext denoted by CT.

CT←Enc(pk, M)

• Dec(CT,sk): Taking as input ciphertext CT and the secret key 
sk, the algorithm returns M or ┴.



Public-Key Encryption

• Correctness: For all generated (pk,sk) and all CT←Enc(pk, M), 
we have 

Pr[Dec(CT, sk)=M]=1



Security Model (IND-CPA)

Setup: The challenger chooses a key pair (pk,sk) and pk is given to the adversary.

Challenge: The adversary chooses any two different messages M_0 and M_1.  The 
challenger chooses a random c and computes the challenge ciphertext 

CT*=Enc(M_c, pk), 
which is given to the adversary.

Guess: The adversary returns the guess c’ and wins if c’=c.

We say that the encryption is secure if every P.P.T adversary can only win the game with 
negligible advantage defined as 

 Pr[c’=c]-½



Preliminaries on Cyclic Group

• Let (G,g,p) be a cyclic group, where G is the set of group element, g is the generator, 
and p is the group order:
• G={ g0, g1 , . . . , gp-1}

• gp=1

• The following operations are easy in the group (G,g,p):
• Given any h1, h2 in G, it is easy to compute h1 · h2

• For any h in G and for any x,y in [0,p-1], given hx and hy, it is easy to compute hx+y =hx ·hy 

• For any h1, h2 in G and for any x in[0,p-1], given h1
x and h2

x , we can compute (h1 · h2)x= h1
x · h2

x 

• Given any h in G and any x in [0,p-1], it is easy to compute hx

• The following operations are hard in the group (G,g,p):
• Given gx, it is hard to compute x (The DL problem)

• Given gx and gy, it is hard to compute gxy (The CDH problem)
• Given gx and gy, it is hard to distinguish gxy from a random group element in G (The DDH problem)



The El Gamal Cryptosystem

• Key generation:
• Choose a group G of order q and a generator g of G. Then choose a uniform x ∈ Zq and compute h = 

gx . 

• The public key is (G, q, g, h) and the private key is (G, q, g, x). The message space is G.

• Encryption:
• on input a public key pk = (G, q, g, h) and a message m ∈ G, choose a uniform r ∈ Zq and output the 

ciphertext (gr, hr·m)

• Decryption:
• on input a private key sk = (G, q, g, x). and a ciphertext (c1 , c2) , output m= c2 (c1

x )-1.

• Correctness.

• The El Gamal is not a trapdoor function.



Security of El Gamal Encryption

• The security of the secret key depends on the difficulty of the discrete 
logarithm problem directly. Hardness of DLP is the necessary condition for 
the security of El Gamal encryption.

• But it is unknown if DLP is the sufficient condition for the security of El 
Gamal encryption.



Security of El Gamal Encryption

• If one can solve the CDH problem, then it can decrypt without having to know 
the secret key. Hardness of CDH is the necessary condition for the security of El 
Gamal encryption.

• If one can recover the message m from a ciphertext (c1 , c2) = (gr, hr·m) given 
only the public key (G, q, g, h) , then it can compute hr= grx given h= gx and gr. 
Hardness of CDH is the sufficient condition for the one-way security of El Gamal 
encryption.



Security of El Gamal Encryption

• If one can solve the DDH problem, then it can distinguish encryption of 1 and 
encryption of a random group element. Hardness of DDH is the necessary 
condition for the IND-CPA security of El Gamal encryption.

• If we further assume hardness of the decisional Diffie-Hellman problem, the 
ciphertext would be indistinguishable from random group elements, i.e., El 
Gamal is IND-CPA secure.



• The group 𝑍𝑝
∗  = {1, 2, …, p-1} where p is a large prime number

• The DLP and the CDH problem are assumed to be hard in 𝑍𝑝
∗  for large enough p.

• The El Gamal encryption in 𝑍𝑝
∗  has one-way CPA security.

• The DDH problem is easy in 𝑍𝑝
∗ .

• The El Gamal encryption in 𝑍𝑝
∗  does not have IND-CPA security.

• The prime order subgroup of 𝑍𝑝
∗  

• The DLP, the CDH problem, and the DDH problem are assumed to be hard in this 
subgroup if the group order is large enough.

• The El Gamal encryption in this subgroup has IND-CPA security.

Security of ElGamal encryption
in different groups



The parameters of schemes based on DLP

• If we use the group 𝑍𝑝
∗ . The modulus p should have the same size as 

that of the RSA modulus N for the same security level
• 80-bit security: p is a 1024-bit prime number

• 112-bit security: p is a 2048-bit prime number

• 128-bit security: p is a 3072-bit prime number

• If we use the subgroup G of 𝑍𝑝
∗  that has prime order q

• 80-bit security: p is a 1024-bit prime number and q is a 160-bit prime number

• 112-bit security: p is a 2048-bit prime number and q is a 224-bit prime 
number

• 128-bit security: p is a 3072-bit prime number and q is a 256-bit prime 
number
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Another Look at ElGamal and 
(Fully) Homomorphic Encryption



The El Gamal Cryptosystem
• Key generation:

• Choose a group G of order q and a generator g of G. Then choose a uniform x ∈ Zq and 
compute h = gx . 

• The public key is (G, q, g, h) and the private key is (G, q, g, x). The message space is G.

• Encryption:

• on input a public key pk = (G, q, g, h) and a message m ∈ G, choose a uniform r ∈ Zq and 
output the ciphertext (gr, hr·m)

• Decryption:

• on input a private key sk = (G, q, g, x). and a ciphertext (c1 , c2) , output m= c2 (c1
x )-1.

• Now, let us try to ”multiple” two ciphertexts…



The El Gamal Cryptosystem
• Key generation:

• Choose a group G of order q and a generator g of G. Then choose a uniform x ∈ Zq and 
compute h = gx . x

• The public key is (G, q, g, h) and the private key is (G, q, g, x). The message space is G.

• Encryption:

• on input a public key pk = (G, q, g, h) and a message m ∈ G, choose a uniform r ∈ Zq and 
output the ciphertext (gr, hr·m)

• Decryption:

• on input a private key sk = (G, q, g, x). and a ciphertext (c1 , c2) , output m= c2 (c1
x )-1.

Homomorphic Evaluation:
(c1 , c2) = (gr, hr·m)
(c’1 , c’2) = (gr’, hr’·m’)
(c1·c’1, c2·c’2) = (gr+r’, hr+r’·m·m’)



Homomorphic Encryption
• An encryption scheme that supports homomorphic operations over ciphertexts are 

denoted as homomorphic encryption.

• Why homomorphic encryption is useful?
• Assume that you would like to compute the product of some numbers, which are distributed 

among different users.

• The numbers are encrypted before being sent to you to make them secure.

• In addition, you do not want to decrypt all ciphertexts and compute the result; instead, you would 
like to borrow the computation power of some untrusted cloud.

• Then the ciphertexts will be sent to the cloud and the cloud will compute the product of the 
ciphertexts.

• Finally, you decrypt the ciphertext returned by the cloud to recover the product of the numbers.

• It would be more useful if we can perform any computation over the encrypted data.
• That is denoted as fully homomorphic encryption.



Fully Homomorphic Encryption

Bob generates a key pair (pk,sk). pk is public key and published 
to all others, while sk is secret and only known by Bob.

The data that Alice sent to Bob is unknown to the adversary, even Charlie.

Alice
pk,m 

Bob
(pk,sk)

Charlie
pk



Fully Homomorphic Encryption

• KeyGen(λ): Taking as input a security parameter λ, the P.P.T. 
algorithms returns (pk,sk)

• Enc(pk, M): Taking as input a message M and a public key pk, the 
algorithm returns a ciphertertext denoted by CT.

CT←Enc(pk, M)

• Dec(CT,sk): Taking as input ciphertext CT and the secret key sk, the 
algorithm returns M or ┴.

• Eval(pk,f,CT): Taking as input ciphertext CT, public key pk, and a 
function f, the algorithm returns another ciphertext CT’



Fully Homomorphic Encryption

• Correctness: For all generated (pk,sk), all CT←Enc(pk, M), 
and all function f, we have 

Pr[Dec(Eval(pk,f,CT), sk)=f(M)]=1

• Security: Standard IND-CPA security.

• Construction: Existing FHE schemes are constructed from 
lattice and the concrete constructions are beyond the scope 
of this subject.



Implementing PKE II

• El Gamal encryption is not naturally supported in main 
stream cryptography libraries like OpenSSL.

• You can implement it by using existing interfaces such as DH 
key exchange or DSA signature.

– You are not recommended to do this unless you have a strong 
reason.
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Summary

• Cyclic Group

• Schnorr Signature
• Construction

• Correctness

• Security
• Insecurity of weak implementation

• ElGamal Encryption
• Construction

• Correctness

• Security

• Homomorphic Encryption
• Notion and syntax

• Partially homomorphic encryption from 
ElGamal
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