CSCl471/971
Modern Cryptography

Key Management

Rupeng Yang
SCIT UOW

RoadMap
* Week 1-2: Preliminaries
* Week 3-4: Symmetric-Key Cryptography
* Week 5-7: Public-Key Encryption and Digital Signature

* Week 8: Key Management

Roadmap

Blockcipher
Hash

RSA

DL

I

Motivation

* When discussing symmetric-key cryptosystems, we always assume
that secret keys are shared securely between the sender and the
receiver. But how?

 We can use a secure channel.
* But what if there is no secure channel between the sender and the receiver?

Key Exchange

How to share a key securely?

* We can use a PKE scheme. If the public key of the receiver is not known to the sender in
advance, then we need complete the above task in the following two steps:

* We do not use the PKE/Signature scheme to protect the communication directly because
it is much more expensive to run a PKE/Signature than running a SKE/MAC.

How to transform a message securely?

* We may not hope to use a full PKE scheme, because
* There is no PKE yet.

* Asolution to share the same secret key via an insecure channel was due to DH in 1976.
* The first PKE scheme was proposed by RSA in 1978.

 Other solutions are more efficient than PKE.

* A protocol that establish a shared secret key via an insecure channel is denoted as a key
exchange protocol.

Key Exchange Protocol

* A key exchange protocol involves two parties that communicate via a public channel.
* Both parties do not take any input.

* The goal of the protocol is to establish a shared secret that is hidden to anyone observes
the public channel.

Key Exchange Protocol

* A key exchange protocol involves two parties that communicate via a public channel.

* Both parties do not take any input.

* The goal of the protocol is to establish a shared secret that is hidden to anyone observes
the public channel.

* A key exchange protocol should satisfy
* Correctness: if both parties run honestly, then they will get the same secret key.

e Security: an adversary that observes the communication between honest parties cannot learn any
information about the shared secret key.

This is usually defined by requiring that the adversary cannot distinguish the shared secret key from a random string.

The security definition only works for a passive adversary and it is not secure against an active attacker, e.g., the man-
in-the-middle attack.

We need an authenticated key exchange protocol to defend against active attacks.

Preliminaries on Cyclic Group

* Let (G,g,p) be a cyclic group, where G is the set of group element, g is the generator,
and p is the group order:
+ G={g%g',...,8""}
¢ gh=1
* The following operations are easy in the group (G,g,p):
* Given any hy, h,in G, itis easy to compute h; - h,
 Forany hin G and forany x,y in [0,p-1], given h*and hY, it is easy to compute h**Y=hX-hY
* Forany hy, h, in G and for any x in[0,p-1], given h,*and h,X, we can compute (h, - h,)*= h*- hX
 Givenany hin Gand any x in [0,p-1], itis easy to compute h*

e The following operations are hard in the group (G,g,p):
e Given g% itis hard to compute x (The DL problem)

* Given g¥and g, itis hard to compute g© (The CDH problem)
* Given g¥and g, it is hard to distinguish g¥¥ from a random group element in G (The DDH problem)

Diffie-Hellman Key Exchange

* We assume that all parties agree on a common group G of order g and a
common generator g of G.

Sample X, in [0,g-1]
Y =g*s

Y =g¥s Sample Xz in [0,9-1]

K =(Yg)Xa = gXaXe K=(Y,)Xe = gXaXs

Diffie-Hellman Key Exchange

* We assume that all parties agree on a common group G of order g and a
common generator g of G.

* Step One:
* A chooses a random number X, in [0,g-1] and computes Y,=g*».

* B chooses a random number X; in [0,9-1] and computes Yg=g%s.
* Then Asends Y,to B and B sends Y to A.

* Step two:
* A computes K,=(Yg)*a.
* B computes Ky=(Y,)"e.

* Both K, and Kz are equal to g*»*s,

Security of Diffie-Hellman protocol

* If the DDH problem is hard in the group G.

* The protocol can prevent the adversary from distinguishing the shared secret key
from a random string, i.e., the adversary cannot learn any information about the
shared secret key.

The parameters of schemes based on DLP

* The modulus p should have the same size as that of the RSA modulus
N for the same security level

e 80-bit security: p is a 1024-bit prime number
e 112-bit security: p is a 2048-bit prime number
e 128-bit security: p is a 3072-bit prime number

* If we use the subgroup G of Z;, that has prime order g

e 80-bit security: p is a 1024-bit prime number and g is a 160-bit prime number

* 112-bit security: p is a 2048-bit prime number and q is a 224-bit prime
number

* 128-bit security: p is a 3072-bit prime number and q is a 256-bit prime
number

Man-in-the-Middle Attack for Diffie-Hellman Key Exchange
Protocol

* In the protoocl:
* Step One:
* A chooses a random number X, in [0,g-1] and computes Y,=g*A.
* B chooses a random number Xz in [0,g-1] and computes Yz=g*®.
a—hestsones, o B asd B senes Lol
* The adversary cuts the communication between A and B, and
* It samples X; in [0,9-1] and computes Y =gt
* Then it sends Y to both A and B.
* Step two:
* A computes K',=(Y¢) A= gXAXE
* B computes K’'g=(Yg)*B = gXBXE
* The adversary computes K'y=(Y,)*E = g"AXEand K’g=(Yg)XE = gXBXE,
 Thatis, both A and B are sharing secret key with the attacker.

* The problem can be solved if we add authentications in the protocol.

Motivation

* When discussing symmetric-key cryptosystems, we always assume
that secret keys are shared securely between the sender and the
receiver. But how?

 We can use a secure channel.

* We can use a (authenticated) key exchange protocol if no secure channel is
available?

 When discussing public-key cryptosystems, we always assume that
the correct public keys are distributed. But how?
* We can use a secure channel.
e But what if there is no secure channel?

Key Management and PKI|

What happens when you visit a website
(securely)

This is not secure!!!! (because the public key could be
replaced by the adversary.)

Can we guarantee integrity by using a signature?
Again, how to get the public key of siganture!

AN

v

moodle

\ 4

I .\.1‘.‘
[l mm &1

N

Certificate (Idea)

* We can solve the problem by asking a trusted third party to sign
the public key of Alice.

e |tisimpossible to directly assume that an entity knows the public

cey of another entity, but it is reasonable to assume that we ALL

<now the public key of a trusted third party, such as Google.

* The trusted party is called a certificate authority (CA).

Certificate (Idea

Certificate Viewer: *.uowplatform.edu.au

Detail . . o pe .
— e The public key of Amazon is pk*. (Certificate Authority)
ssued To (We trust this public key. Suppose that everyone trusts this)
Common Name (CN) * uowplatform.edu.au
Organization (0) <Not Part O Certificate> * When we browse “www.uow.edu.au”, the web server sends its

Organizational Unit (OU) <Not Part Of Certificate>

public key pk to us. But we don’t know pk belongs to UOW or not.

Issued By
Common Name (CN) Amazon RSA 2048 MO3 * The CA uses sk* to genera a digital signature S UOW on
Organization (0) Amazon ” ” -
Organizational Unit (OU) <Not Part Of Certificate> M= P k bEIO Ngs to UOW

Validity Period

 With pkand S_UOW, we know that pk bleongs to UOW

Issued On Sunday, January 28, 2024 at 11:00:00 AM
Expires On Wednesday, February 26, 2025 at 10:59:59 AM
SHA-256
Fingerprints
Certificate 94214f43c6c89081e23eb349f116b09fed4a37b366e5f1c5e60d12
9e6bc739aaf
Public Key e1df8a3b21a208a42c5f1c82cdfe7a7cf39b0fd74905577c4b2f6a

f02d5e2ced

Certificate (Idea)

Certificate Viewer: *.uowplatform.edu.au X Certificate Viewer: *.uowplatform.edu.au X

General = Details General = Details
Certificate Hierarchy Certificate Hierarchy
<« Amazon Root CA 1 < Amazon Root CA 1
< Amazon RSA 2048 M03 “ Amazon RSA 2048 M03

*uowplatform.edu.au * uowplatform.edu.au

Certificate Fields Certificate Fields

EXTendea key Usage
Y g Not After

CRL Distribution Points .
Subject
Authority Information Access . i
« Subject Public Key Info
Certificate Basic Constraints . . .
Subject Public Key Algorithm
Signed Certificate Timestamp List . .
Subject's Public Key
Certificate Signature Algorithm
+ Extensions
Certificate Signature Value
Certification Authority Key ID
+ SHA-256 Fingerprints
Certificate Subject Key ID

Field Value .
Field Value

320F530908C783D34190FDBA2CBA159C -
DES57 3F1F6C 54 387CB0O7C A16BF6 76 13 E3 Modulus (2048 bits):
D5 D8 92 FE A9 92 1A 6D 06 FE 06 2F D9 C7 83 60 BB 5254 9AE1D9 32 36 CB 552954 4B EB 2368
A4 AE 69 05 60 ED OA CE 55 BB 4B 97 0B AC 5B 07 656124 DD EOGA 49 3F02A884 21E337857B
F134 7D 83 A6 28 C5 B8 3120 9C 1C 8D 53 5D AA 706F 1210 A7C2D14AC7FC63D508C75710
N7 RA RN AA R? 8F NR 25 QR AN N2 NA R4 2R FR KA FO 8B 11 A0 39 EE 5E AC 6F 8F E6 45 F2 83 2B 04

FA RF R 48 A7 NR AN 1N 1F 1A 72 RA 4 RN 22 AR
Export...

Export...

Get A Certificate

* The system can be sketched as follows:

* Alice securely sends PK, to the certificate authority.

* Alice receives a certificate C, that binds PK, to Alice. The main component in
C, is a signature on PK, and some necessary auxiliary information, which is
signed by the certificate authority.

* This certificate can be verifiable by everyone who has the public key of the
certificate authority.

* A certificate has the following form:
M = [PK,, Alice's ID, validity period, ...].
Sp= SignSKT(M)
C,=(M,S,,...)

Use A Certificate

* When Bob wants to send an encrypted message to Alice:

* He obtains Alice's certificate.

 Verifies the signature in the certificate using the public key of the certificate
authority.

 Verifies the identity of the owner of the certificate
* Verifies the certificate has not been expired, etc.
* Extracts PK, and uses it to encrypt the message.

* Question: how to ensure Alice has the correct public key of the
certificate authority?

Trusted Root Certificates

* Question: how to ensure Bob has the correct public key of the
the certificate authority?

— If it is a root certificates authority, its public key will be hardwired in
the code of web browser/operation system.

— If it is not a root certificates, then its public key also includes a
certificate authenticating its public key. The certificate is issued by
another certificates authority.

Trusted Root Certificates in MACOS

= AAA Certificate Services
Coertificate o N
Root certificate authority
- Expires: Monday, January 1, 2029 at 10:59:59 Australian Eastern Daylight Time
@ This certificate is valid

Name Kind

L] AAA Certificate Services certificate
=] AC RAIZ FNMT-RCM certificate
=] ACCVRAIZ1 certificate
=] Actalis Authentication Root CA certificate
=] AffirmTrust Commercial certificate
=] AffirmTrust Networking certificate
] AffirmTrust Premium certificate
2] AffirmTrust Premium ECC certificate
=] Amazon Root CA 1 certificate
=] Amazon Root CA 2 certificate
[Z2] Amazon Root CA 3 certificate
2] Amazon Root CA 4 certificate
=] ANF Global Root CA certificate
=] Apple Root CA certificate
=] Apple Root CA - G2 certificate
2] Apple Root CA - G3 certificate
[l Apple Root Certificate Authority certificate
] Atos TrustedRoot 2011 certificate
=] Autoridad de Certificacion Firmaprofesional CIF A62634068 certificate
2] Baltimore CyberTrust Root certificate
] Buypass Class 2 Root CA certificate
=] Buypass Class 3 Root CA certificate
] CA Disig Root R2 certificate
=] Certainly Root E1 certificate
] Certainly Root R1 certificate
=] Certigna certificate
[l certSIGN ROOT CA certificate
] certSIGN ROOT CA G2 certificate
[Z] Certum CA certificate
=] Certum EC-384 CA certificate
=] Certum Trusted Network CA certificate
=] Certum Trusted Network CA 2 certificate
[l Certum Trusted Root CA certificate
|.] CFCA EVROOT certificate
=] Chambers of Commerce Root certificate
[Chambers of Commerce Root - 2008 certificate
2] Cisco Root CA 2048 certificate

Date Modified

Expires

Jan 1, 2029 at 10:59:59
Jan 1, 2030 at 11:00:00
Dec 31, 2030 at 20:37:37
Sep 22, 2030 at 21:22:02
Jan 1, 2031 at 01:06:06
Jan 1, 2031 at 01:08:24
Jan 1, 2041 at 01:10:36
Jan 1, 2041 at 01:20:24
Jan 17, 2038 at 11:00:00
May 26, 2040 at 10:00:00
May 26, 2040 at 10:00:00
May 26, 2040 at 10:00:00
Jun 6, 2033 at 03:45:38
Feb 10, 2035 at 08:40:36
May 1, 2039 at 04:10:09
May 1, 2039 at 04:19:06
Feb 10, 2025 at 11:18:14
Jan 1, 2031 at 10:59:59
Dec 31, 2030 at 19:38:15
May 13, 2025 at 09:59:00
Oct 26, 2040 at 19:38:03
Oct 26, 2040 at 19:28:58
Jul 19, 2042 at 19:15:30
Apr 1, 2046 at 10:00:00
Apr 1, 2046 at 10:00:00
Jun 30, 2027 at 01:13:05
Jul 5, 2031 at 03:20:04
Feb 6, 2042 at 20:27:35
Jun 11, 2027 at 20:46:39
Mar 26, 2043 at 18:24:54
Dec 31, 2029 at 23:07:37
Oct 6, 2046 at 18:39:56
Mar 16, 2043 at 23:10:13
Dec 31, 2029 at 14:07:01
Oct 1, 2037 at 02:13:44
Jul 31, 2038 at 22:29:50
May 15, 2029 at 06:25:42

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Gortgfivcrte

Trust
Details
Subject Name
Country or Region
Organization
Common Name

Issuer Name
Country or Region
Organization
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Key Size

Amazon Root CA 4

Root certificate authority

Expires: Saturday, May 26, 2040 at 10:00:00 Australian Eastern Standard Time
@ This certificate is valid

us
Amazon
Amazon Root CA 4

us
Amazon
Amazon Root CA 4

06 6C 9F D7 C1BB 10 4C 28 43 E5717B 7B 2C C8 1A C1 0E
3

ECDSA Signature with SHA-384 (1.2.840.10045.4.3.3)
None

Tuesday, May 26, 2015 at 10:00:00 Australian Eastern Standard Time
Saturday, May 26, 2040 at 10:00:00 Australian Eastern Standard Time

Elliptic Curve Public Key (1.2.840.10045.2.1)
Elliptic Curve secp384r1 (1.3.132.0.34)

97 bytes : 04 D2 AB 8A 37 4F A3 53 ...

384 bits

raal A

intermediate CA's

USErs

RSA

DL

Blockcipher

Hash

summary

e Key Exchange
* Motivation and Application Scenario
e Definition
* Construction
* Man-in-the-Middle Attack

* PKI

* Motivation
* How to certificate a public key

	Slide 1: CSCI471/971 Modern Cryptography
	Slide 2
	Slide 3: Roadmap
	Slide 4: Motivation
	Slide 5: Key Exchange
	Slide 6: How to share a key securely?
	Slide 7: How to transform a message securely?
	Slide 8: Key Exchange Protocol
	Slide 9: Key Exchange Protocol
	Slide 10: Preliminaries on Cyclic Group
	Slide 11: Diffie-Hellman Key Exchange
	Slide 12: Diffie-Hellman Key Exchange
	Slide 13: Security of Diffie-Hellman protocol
	Slide 14: The parameters of schemes based on DLP
	Slide 15: Man-in-the-Middle Attack for Diffie-Hellman Key Exchange Protocol
	Slide 16: Motivation
	Slide 17: Key Management and PKI
	Slide 18: What happens when you visit a website (securely)
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Get A Certificate
	Slide 23: Use A Certificate
	Slide 24: Trusted Root Certificates
	Slide 25: Trusted Root Certificates in MACOS
	Slide 26
	Slide 27
	Slide 28: Summary

