
CSCI971/CSCI471 Modern Cryptography
Assignment 1

Name: Karan Goel
Student Number: 7836685

September 1, 2024

1 Task A: Monoalphabetic Substitution Cipher
The Monoalphabetic Substitution Cipher is a classical encryption technique where each letter
in the plaintext is replaced by a different letter from a fixed, shuffled alphabet. This establishes
a one-to-one correspondence between the letters of the plaintext and the ciphertext, enabling
both encryption and decryption.

How It Works
1. Substitution Table: A substitution table is first created, mapping each letter of the alpha-

bet to a different letter. For example, with the substitution alphabet BQVXTFZDEUSGYMWLJOCPHIANKR,
the mappings would be:

• A → B

• B → Q

• C → V

• and so on.

2. Encryption: Each letter in the plaintext is replaced by its corresponding letter in the
substitution table. For instance, using the table above, the plaintext KARAN would be
encrypted as SBOBM.

3. Decryption: To decrypt, the inverse of the substitution table is used, mapping each letter
in the ciphertext back to the original letter in the plaintext.

Breaking the Monoalphabetic Substitution Cipher
Monoalphabetic substitution ciphers are relatively easy to break since the ciphertext still resem-
bles the structure of the original language. The frequency of letters in the ciphertext will often
mirror those in the plaintext, making it easier to identify.

1



In English, for example, letters like E, T, A, O, and N appear most frequently. If the cipher-
text shows a similar distribution, it likely uses a monoalphabetic substitution cipher.

To break a monoalphabetic substitution cipher, several methods can be employed:

• Statistical Analysis: By analyzing letter frequencies and patterns, one can infer the sub-
stitution alphabet. Starting with a random guess and refining it based on statistical patterns
often leads to deciphering the plaintext.

Example 1.1. For instance, given the ciphertext MK MWXXW!, an attacker might guess
that the most frequent letters correspond to common letters like E, T, A, or O in En-
glish. By adjusting the substitution accordingly, the plaintext could be revealed as HI
HELLO!.

• Known Plaintext Attack: If parts of the plaintext are known or guessed, this information
can help deduce the substitution pattern. By identifying common words or phrases in the
ciphertext, the attacker can reverse-engineer the substitution.

Example 1.2. Suppose the ciphertext MWXXW! corresponds to the known plaintext HELLO!.
The attacker could deduce:

– M → H

– W → E

– X → L

– W → O

Applying these mappings to the ciphertext would reveal the plaintext as HELLO!.

2 Task B: Modifying the Digital Signature Algorithm
In digital signatures, the main objective is to ensure that only Bob, who has the secret key skB,
can verify a signature created by Alice.

To enhance the security of the digital signature algorithm, the following modifications are
proposed:

Signing Algorithm
• Alice uses her secret key skA to generate a signature S for the message m. After that, the

signature is encrypted using Bob’s public key pkB to ensure that only Bob can decrypt
and verify it.

S = sign(m, skA)

encrypted signature = Encrypt(S, pkB)

2



Verification Algorithm
• Bob uses his private key skB to decrypt the encrypted signature. Once decrypted, he uses

Alice’s public key pkA to verify that the signature matches the message m.

decrypted signature = Decrypt(encrypted signature, skB)

verify(decrypted signature,m, pkA)

Why These Changes Are Necessary
1. Ensuring Only Bob Can Verify the Signature:

• Encrypting the signature with Bob’s public key pkB ensures that only Bob, who
has the corresponding private key skB, can decrypt and verify it. This modification
makes sure that, even though Alice uses her secret key skA to sign the message,
only Bob’s key pair can verify the signature. Without this step, anyone with Alice’s
public key pkA could verify the signature.

2. Enhancing Security and Integrity:

• Adding encryption with Bob’s public key provides an extra layer of security. It
ties the signature not only to Alice (via skA) but also to Bob’s verification process,
maintaining the integrity and authenticity of the signature. This way, the signature
can only be verified by Bob, ensuring its exclusivity.

3 Task C: Output of a 16-Round Feistel Network
In a Feistel network, the input data is divided into two halves, and a series of rounds are applied
using a specific round function. In this task, we’ll examine the output of a 16-round Feistel
network where the round function is simply the identity function, meaning F (R) = R.

Overview of the Feistel Network
A Feistel network operates as follows:

1. Initial Split: The input data is split into two equal halves: L0 (left half) and R0 (right
half).

2. Round Function Application: In each round i, the round function F is applied to Ri

along with a round sub-key Ki. The result is XORed with Li to create the new left half,
while the right half remains unchanged.

3. Swap: After each round, the left and right halves are swapped, so the output (Li+1, Ri+1)
from one round becomes the input for the next. This swapping occurs in every round
except the final one.

3



Detailed Steps
Given:

• The round function F is defined as F (Ri, Ki) = Ri, where Ki is the round sub-key,
though it isn’t used here.

• The network consists of 16 rounds.

Round 1:

Apply the round function: F (R0, K0) = R0

L1 = R0

R1 = L0 ⊕ F (R0, K0) = L0 ⊕R0

Round 2:

Apply the round function: F (R1, K1) = R1 = L0 ⊕R0

L2 = R1 = L0 ⊕R0

R2 = L1 ⊕ F (R1, K1) = R0 ⊕ (L0 ⊕R0) = L0

Round 3:

Apply the round function: F (R2, K2) = R2 = L0

L3 = R2 = L0

R3 = L2 ⊕ F (R2, K2) = (L0 ⊕R0)⊕ L0 = R0

Round 4:

Apply the round function: F (R3, K3) = R3 = R0

L4 = R3 = R0

R4 = L3 ⊕ F (R3, K3) = L0 ⊕R0

Round 5:

Apply the round function: F (R4, K4) = R4 = L0 ⊕R0

L5 = R4 = L0 ⊕R0

R5 = L4 ⊕ F (R4, K4) = R0 ⊕ (L0 ⊕R0) = L0

Round 6:

Apply the round function: F (R5, K5) = R5 = L0

L6 = R5 = L0

R6 = L5 ⊕ F (R5, K5) = (L0 ⊕R0)⊕ L0 = R0

4



Observing the Pattern
We observe that after every three rounds, the pattern repeats:

• After 1 round: (L1, R1) = (R0, L0 ⊕R0)

• After 2 rounds: (L2, R2) = (L0 ⊕R0, L0)

• After 3 rounds: (L3, R3) = (L0, R0)

Final Output
After 16 rounds, the Feistel network will output:

L16 = L0 ⊕R0

R16 = R0

Thus, the output of the 16-round Feistel network, with the identity round function F (Ri, Ki) =
Ri, will be (L0 ⊕R0, R0). This occurs because the final round does not include a swap.

4 Task D: Security of the MAC Scheme
Consider a Message Authentication Code (MAC) generation algorithm based on a block cipher
F with block length n. The MAC generation algorithm operates as follows:

1. Input: A secret key k for the block cipher F and a message M ∈ {0, 1}nl.

2. Parsing: The message M is divided into l blocks m1,m2, . . . ,ml.

3. Tag Computation: For each block mi, compute ti = Fk(mi).

4. Output: The MAC tag T = (t1, t2, . . . , tl).

Attacks on the MAC Scheme
The MAC scheme described is vulnerable to several attacks due to the block-wise independence
of tag computation. Below are three such attacks:

Simple Substitution Attack

1. The adversary queries the MAC for a message M = (m1,m2, . . . ,ml) to obtain the tag
T = (t1, t2, . . . , tl).

2. The adversary replaces a block m1 with a new block m′
1 for which the tag t′1 = Fk(m

′
1)

is known.

3. The adversary forms a modified message M ′ = (m′
1,m2, . . . ,ml) and its corresponding

valid tag T ′ = (t′1, t2, . . . , tl).

5



Birthday Attack

1. The adversary generates a large set of messages M1,M2, . . . ,MN .

2. The adversary queries the MAC for these messages to obtain their tags.

3. The adversary looks for two messages Mi and Mj that produce the same tag for at least
one block, exploiting the birthday paradox.

4. The adversary combines blocks from Mi and Mj to create a new message with a valid
MAC.

Block Swapping Attack

1. The adversary selects two messages M = (m1,m2) and M ′ = (m3,m4).

2. The adversary queries the MAC for these messages to obtain their tags T = (t1, t2) and
T ′ = (t3, t4).

3. The adversary swaps blocks between the two messages to form a new message M ′′ =
(m1,m4).

4. The adversary constructs the new tag T ′′ = (t1, t4), which is valid for the new message
M ′′.

Summary
These attacks demonstrate that the block-wise independent processing in this MAC scheme
allows an attacker to forge valid message/tag pairs, compromising the scheme’s security.

5 Task E: Forging an RSA Signature
In this task, we explore how to forge the RSA signature for the message 45, given the signatures
for the messages 3 and 5, using the properties of modular arithmetic in the RSA signature
scheme.

1. Overview of the RSA Signature Scheme
The RSA signature process works as follows:

• Signing: To sign a message m, you compute the signature as signature = md mod n,
where d is the private key and n is the RSA modulus.

• Verification: To verify a signature s, check that se mod n = m, where e is the public
key.

6



2. What We Have
We are given the signatures for the messages 3 and 5:

• s3 = 3d mod n

• s5 = 5d mod n

Here, d is the private key.

3. Our Goal
We want to forge the signature for the message 45. Specifically, we need to find s45 such that:

s45 = 45d mod n

4. Breaking Down 45
Let’s express 45 using its prime factors:

45 = 32 · 5

So, when we raise 45 to the power d, we have:

45d = (32 · 5)d = 32d · 5d

5. Using the Given Signatures
We already know:

• s3 = 3d mod n

• s5 = 5d mod n

Thus, we can express 32d and 5d as:

32d = (3d)2 = s23

5d = s5

So, we can combine them to find:

45d = 32d · 5d ≡ (s23 · s5) mod n

6. Forging the Signature
We can now compute the forged signature s45 as:

s45 = (s23 · s5) mod n

7



7. Verifying the Forged Signature
To verify that s45 is indeed the correct signature for 45, check:

se45 mod n

This should equal 45, where e is the public exponent.

Result
• First, obtain the signatures for 3 and 5, denoted as s3 and s5.

• Then, compute the forged signature:

s45 = (s23 · s5) mod n

• This s45 is the valid RSA signature for the message 45.

This approach works because the RSA signature scheme’s reliance on modular arithmetic
allows us to construct signatures for composite messages from the signatures of their factors.

8


