CSCI971/CSCI471 Modern Cryptography
Assignment 1

Name: Karan Goel
Student Number: 7836685

September 1, 2024

1 Task A: Monoalphabetic Substitution Cipher

The Monoalphabetic Substitution Cipher is a classical encryption technique where each letter
in the plaintext is replaced by a letter from a fixed alphabet that has been shuffled or reordered.
It establishes a one-to-one correspondence between the letters of the plaintext and ciphertext,
facilitating both encryption and decryption.

How It Works

1. Substitution Table: A substitution table is created, mapping each letter of the alphabet to
a different letter. For instance, with the substitution alphabet BOVXTFZDEUSGYMWLJOCPHIANKR,

the mappings are:
*A—B
*B—Q
+C—V
* and so on.
2. Encryption: Each letter in the plaintext is substituted with its corresponding letter from

the substitution table. For example, the plaintext KARAN encrypted using the table be-
comes SBOBM.

3. Decryption: To reverse the process, the inverse of the substitution table is used. Each
letter in the ciphertext is mapped back to its original letter in the plaintext.

Breaking the Monoalphabetic Substitution Cipher

Ciphered text will exhibit a similar index of coincidence to the plaintext language. For exam-
ple, English text encrypted with a monoalphabetic substitution cipher retains a letter frequency
distribution akin to normal English text.

For instance, in English, the letters E, T, A, O, and N are the most frequent. If a ciphertext
has a similar distribution of letters, it might be a monoalphabetic substitution cipher.

1

* Statistical Analysis: This method involves using statistical techniques to infer the substi-
tution alphabet. A common approach is to start with a random substitution, then calculate
the likelihood of the resulting plaintext based on letter frequency and patterns.

Example 1.1. Suppose the ciphertext is XLMW MWXLIW!. An attacker might use statisti-
cal analysis to guess that the most frequent letters in the ciphertext correspond to the most
frequent letters in English, such as E, T, A, etc. By iterating and adjusting the substitution
based on letter frequency and common English words, the attacker might deduce that:

-X—H

-L—E

-M—=L

-W—=0

Eventually, the plaintext might be revealed as THIS HELLO!.

* Known Plaintext Attack: If parts of the plaintext are known or can be guessed, they
can be used to deduce the substitution pattern. This approach often involves identifying
common words or phrases in the ciphertext.

Example 1.2. Suppose the ciphertext is KXK LYF! and the attacker knows that the
plaintext includes the phrase HELLO!. By comparing this known plaintext with the ci-
phertext, the attacker might deduce:

-K—H

-X—E

- L—L

-Y—=0

Applying this mapping to the rest of the ciphertext, the plaintext could be revealed as
HELLO!.

2 Task B: Digital Signature Algorithm Modification

In digital signatures, the goal is to ensure that a signature generated by Alice can only be verified
by Bob, who knows the secret key skp.

To ensure the security of the digital signature algorithm, the following modifications are
needed:

Signing Algorithm:

* The signing algorithm uses Alice’s secret key sk 4 to produce a signature S on the message
m. The signature is then encrypted using Bob’s public key pkp to ensure that only Bob
can verify it.

S = sign(m, ska)

encrypted_signature = Encrypt(S, pkp)

2

Verification Algorithm:

* The verification algorithm uses Bob’s private key skp to decrypt the encrypted signature.
It then uses Alice’s public key pk 4 to verify the decrypted signature against the message
m.

decrypted_signature = Decrypt(encrypted_signature, skp)

verify(decrypted_signature, m, pk 4)

2. Explanation of the Necessity for Changes

1. Ensuring Bob’s Exclusive Verification Capability:

* By encrypting the signature with Bob’s public key pkp, the signature is made such
that only Bob, who possesses the corresponding private key sk, can decrypt and
verify it. This ensures that, even though Alice uses her own secret key sk 4 to sign the
message, the signature is verifiable only by Bob’s key pair. Without this adjustment,
anyone who has Alice’s public key pk 4 could verify the signature, which would not
meet the requirement.

2. Security and Integrity of the Signature:

* Encrypting the signature with Bob’s public key adds an extra layer of security. It
ensures that the signature, while proving that the message came from Alice (via
ska), is also tied to Bob’s verification process. This change maintains the integrity
and authenticity of the signature and ensures it can only be verified by Bob.

3. Preventing Unauthorized Verification:

* If the signature does not involve Bob’s public key, other parties who possess Alice’s
public key might be able to verify the signature. By embedding Bob’s public key
in the signature creation and verification process, the system restricts verification to
Bob alone, thus preventing unauthorized parties from verifying the signature. This
ensures that Bob is the sole verifier of Alice’s signatures.

3 Task C: Output of a 16-Round Feistel Network

In a Feistel network, the input is split into two halves, and a series of rounds are performed
using a round function. For this task, we will analyze the output of a 16-round Feistel network
where the round function is the identity function, meaning F'(R) = R.

Feistel Network Overview

A Feistel network consists of the following steps:

1. Initial Split: The input is divided into two equal halves: L (the left half) and R, (the
right half).

2. Round Function Application: In each round 7, the round function F' is applied to R;
using the round sub-key K;. The output of this function is then XORed with L; to produce
the new left half, and the right half remains unchanged.

3. Swap: After each round, the left and right halves are swapped, so that the output (L, 1, R;11)
of the current round becomes the input for the next round. This swapping occurs at each
round except the final round.

Detailed Steps

Given:

* The round function F' is defined as F'(R;, K;) = R;, where K is the round sub-key
(though it is not used in this case).

¢ The network has 16 rounds.

Round 1:
Apply the round function: F(Ry, Ky) = Ry
Ly = Ry
Ry = Lo ® F(Ro, Ko) = Lo @ Ry
Round 2:

Apply the round function: F(R;, K;) = R1 = Lo @ Ry
Ly=Ry=Lo® Ry
Rg :Ll@F(Rl,Kl) :R0@<L0@RQ) :LO

Round 3:

Apply the round function: F(Rs, K3) = Ry = Lo
Ly =Ry = Lo
Ry = Ly ® F(Ry, K3) = (Lo ® Ry) ® Lo = Ry

Round 4:
Apply the round function: F(R3, K3) = R3 = Ry
Ly = R3 = Ry
Ry = Ls® F(Rs, K3) = Lo @ Ry
Round 5:

Apply the round function: F'(Ry, K;) = Ry = Lo @ Ry
Ls=Ry=Lo® Ry
R5 — L4@F(R4,K4) — Ro@ (Lo@RQ) — LO

Round 6:

Apply the round function: F(Rs5, K5) = Rs = Lo
Le = Rs = Lo
Rg = Ls ® F(Rs, K5) = (Lo ® Ro) ® Lo = Ry

Observing the Pattern:
It becomes evident that after every three rounds this pattern repeats:

 After 1 round: (L, Ry) = (Ro, Lo ® Ry)
 After 2 rounds: (Ls, Ry) = (Lo @ Ry, Lo)
* After 3 rounds: (L3, R3) = (Lo, Ro)

Final Output

After 16 rounds, the Feistel network will produce:
Lis = Ry
Ris = Lo

Thus, after 16 rounds, the output of the Feistel network with the round function defined as
F(R;, K;) = R; will be the same as the initial input but swapped (Ro, Ly). This is because
the Feistel network does not perform the final swap at the end of the last round, which would
otherwise restore the input order.

4 Task D: Security of the MAC Scheme

Consider a Message Authentication Code (MAC) generation algorithm based on a block cipher
[with block length n. The MAC generation algorithm operates as follows:

1. Input: A secret key & for the block cipher F' and a message M € {0,1}".
2. Parsing: The message M is divided into [blocks my, mo, ..., m;.

3. Tag Computation: For each block m;, compute ¢; = Fj(m;).

4. Output: The MAC tag T' = (t1, 1o, ..., ;).

To justify this scheme is not secure we can see what kind of attack an adversory can perform.

5 Attacks on the MAC Scheme

The MAC scheme described is vulnerable to several chosen-message attacks where an attacker
can exploit the block-wise independence of the tag computation to forge valid message/tag
pairs. Below, we describe three such attacks: the Simple Substitution Attack, the Birthday
Attack, and the Block Swapping Attack.

Simple Substitution Attack

In the Simple Substitution Attack, the attacker first chooses a message M = (mq, ma, ..., my)
and queries the MAC scheme to receive the tag T' = (¢1,ts,...,%;). To generate a new mes-
sage/tag pair, the attacker creates a modified message M’ = (m), mo, ..., m;) by replacing
one block of the original message with a different block m, for which they already have a tag
t) = Fy(m}) from a previous query. The new valid tag is constructed as 7" = (¢}, s, ..., ;).
Birthday Attack

In the Birthday Attack, the attacker leverages the birthday paradox, which suggests that in a
sufficiently large set of data, the probability of a collision increases significantly. Here’s how
this can be applied to the MAC scheme:

* The attacker generates a large number of different messages My, My, ..., My, where
each message is structured such that each block is independently chosen (e.g., M; =
(mila M2, . . . 7mil))-

* The attacker queries the MAC scheme with each of these messages to receive the corre-
sponding tags 11,75, ..., Ty, where each tag T; = (t;1,t;0,...,ty) is composed of the
block-wise MACs.

* Due to the birthday paradox, when the number of messages /V is sufficiently large (ap-
proximately 2/2, where n is the block size in bits), there is a high probability that two
different messages M; and M; will produce the same tag for at least one block, i.e.,
tir, = t;i, for some k.

* Once the attacker finds such a collision, they can create a new valid message M’ by
combining blocks from M; and M}, and the corresponding tag will also be valid.

Block Swapping Attack

In the Block Swapping Attack, the attacker selects two messages, M = (my,my) and M’ =
(ms,my), and queries the MAC scheme to receive the tags 7' = (¢1,t5) and 7" = (t¢3,t4). The
attacker then generates a new message M"” = (m;, m4) by swapping blocks between the two
original messages. The new tag 7" = (t1,t4) is formed by combining the corresponding tags
from each original message.

Summary

Each of these attacks demonstrates how the lack of interdependence between blocks in the
MAC scheme allows an attacker to manipulate known message/tag pairs to forge new valid
pairs, ultimately compromising the security of the MAC scheme. By carefully selecting and
manipulating blocks from known messages, the attacker can generate new messages with valid
MAC:s.

6 Task E: Forging RSA Signature

Consider the textbook RSA signature scheme. Given the signatures for messages 3 and 5, we
want to forge the signature for message 45. Here is the step-by-step process:

1. RSA Signature Scheme Overview

In the RSA signature scheme:

d

* Signing: To sign a message m, compute signature = m® mod n, where d is the private

key and n is the RSA modulus.
* Verification: To verify a signature s for message m, check if s® mod n = m, where e is

the public key.

2. Given Information

Suppose the signatures for messages 3 and 5 are:
e 53 =3% modn
e 55 =5% mod n

where d is the private key.

3. Goal

Forge the signature for message 45. We need to find s45 such that:

s45 = 45¢ mod n

4. Use Modular Arithmetic Properties
Decompose 45 into its prime factors:
45 =3%-5
Thus:
45¢ = (32 5)d = 3% . 5

5. Relate to Given Signatures

We know:
e 535 =23% modn

e 55 =5% modn

Thus:
3% — (39)2 = &2
54 = Ss
Combining these:

454 = 3% .57 = (s2. 55) mod n

6. Compute the Forged Signature

The forged signature s45 can be computed as:

s45 = (53 -85) mod n

7. Verification
To verify the forged signature, check:
sy; mod n

should equal 45, where e is the public exponent.

Summary
* Obtain the signatures for 3 and 5: s3 and ss.

* Compute:
45 = (52-55) mod n

* The result sy5 is the forged signature for message 45.

This method works because the RSA signature scheme’s property of exponentiation and
multiplication allows the creation of signatures for products of known messages, leveraging
modular arithmetic.

