CSCI971/CSCI471 Modern Cryptography
Assignment 2

Name: Karan Goel
Student Number: 7836685

October 20, 2024

1 Task A: Ring Signatures in Privacy-Preserving Cryptocur-
rencies

Ring signatures are cryptographic signatures designed for privacy preservation, allowing a
signer (the sender) to generate a signature on behalf of a group of potential signers without
disclosing the actual identity of the member who signed.

In the realm of cryptocurrencies, ring signatures are utilized by platforms like Monero.
They obscure the sender’s identity by mixing their transaction with those of other users, making
it challenging to trace the transaction back to a specific individual.

1.1 How Ring Signature Works

The signature scheme assumes that all parties agree on a cyclic group G of order ¢, a generator
g of G, and a hash function H : {0,1}* — Z,.

* KeyGen()\): Taking as input a security parameter A, the probabilistic polynomial-time
(P.P.T.) algorithm:
1. Chooses a uniform x € Z, and computes h = g*.
2. The public key is h, and the private key is x.
* Sign(sk, M, (hq, ..., h;)): Taking as input a message M, a set of public keys (h1, ..., k),
and a secret key sk = x;, the P.P.T. algorithm:
1. Chooses a random number r;.
2. Computes R; = g".
3. Foreach j € [1,1] where j # i:
— Chooses random c; and z;.

)
— Computes 1?; = /.
J

4. Computes c = H(Ry,..., R, M).
5. Computes ¢; = ¢ — >, ¢;.
6. Computes z; =7; + ¢; - ©; mod q.
7. The signature is ((Ry, ¢y, 21), ..., (R, ¢, 21)).
* Verify(S, M, (hy,...,h;)): Taking as input a signed message M, a set of public keys
(hi,...,h), and a signature ((Ry, ¢y, 21), ..., (R, ¢, 21)), the PP.T. algorithm:
1. Computes ¢ = H(Ry, ..., R, M).
2. Accepts the signature if:

- c= 22:1 ¢; mod g,
- g% = R;hy forall j.

1.2 Cryptocurrency Transaction with Ring Signatures

A cryptocurrency platform utilizes ring signatures to enhance the privacy of its users during
transactions.
Alice, Bob, Charlie, and David are all users of the cryptocurrency platform.

1. Key Generation:

* Each user generates their own public/private key pair.
Alice: (PK4,SKa)

Bob: (PKp,SKpg)

Charlie: (PK¢, SK¢)

David: (PKp, SKp)

2. Making a Transaction:
* Alice wants to send 10 coins to a merchant but does not want anyone to know that
she is the one making the transaction.

» To preserve her privacy, Alice creates a ring signature that includes her own key
(SK_A) along with the public keys of Bob, Charlie, and David, forming a ring of
public keys: PK_A, PK_B,PK_C,PK_D.

3. Creating the Ring Signature:

* Alice signs the transaction message, which includes details such as the amount (10
coins), the recipient’s address, and the ring of public keys.

* The ring signature proves that the transaction was authorized by one of the mem-
bers in the group (Alice, Bob, Charlie, or David) without revealing which member
actually signed it.

4. Broadcasting the Transaction:

* Alice broadcasts the transaction along with the ring signature to the cryptocurrency
network.

5. Verification by the Network:

* Miners and nodes in the network receive the transaction. They verify the ring sig-
nature using the public keys of Alice, Bob, Charlie, and David.

* The network confirms that the signature is valid, meaning one of the members of the
group approved the transaction, but it cannot tell which member it was.

Key Benefits of Ring Signatures in Cryptocurrency:

* Anonymity: The transaction obscures the sender’s identity, providing privacy for users
like Alice. This prevents potential tracking of her spending habits or balances by out-
siders.

* Security: The transaction is still verifiable, ensuring that only legitimate members of the
group can authorize transactions without exposing their identities.

* Enhanced Privacy: Users can transact without fear of exposing their financial activity,
making the cryptocurrency more appealing for privacy-conscious individuals.

2 Task B: Recover the Secret Key of Schnorr Signature Given
Two Signatures

2.1 Given:
* Two Schnorr signatures:

- (R, z) for message M,
— (R, z2) for message M,

* The public key P corresponding to the secret key k.
* The random nonce 7 used to compute R:
R=g"

where g is the generator of the elliptic curve.

2.2 Steps to Recover the Secret Key:

1. Signature Definition: In the Schnorr signature scheme, the signature (R, s) for a mes-
sage M is defined as:
s=r+k-H(M,R) mod q

where H is a hash function, £ is the secret key, ¢ is the order of the group, and r is the
random nonce.

2.3

Set Up the Equations: For each signature, we can write the following equations:
zn=r+k-H(M;,R) modq

zg=r+k-H(My,R) mod q

. Subtract the Equations: Subtract the two equations to eliminate r:

21_22:(k.H<M17R)_k'H(M27R)) mOdq
Factor out £:
21— 2 = k- (H(My, R) = H(My, R)) mod g
Let AH = H(M,, R) — H(Ma, R). The equation simplifies to:

21— 2o=k-AH modq

Solve for k: To find k£, rearrange the equation and compute the modular inverse of AH
in the finite field defined by ¢. This step is valid only if A H is non-zero.

21 — 22

k=" T

mod ¢

. Final Recovery of the Secret Key k: The secret key £ can be recovered using:

k= (x—2)-(AH" modgq) modq

Conditions:

The same nonce R should be used for computing signatures. If different nonces were
used, this method wouldn’t work.

The subtraction and recovery rely on AH not being zero (i.e., H (M, R) # H(Ms, R)).

3 Task C: Variant of IBS for multiple identities

3.1

Syntax for Variant IBS

This variant of IBS includes the following algorithms:

e Setup(\):

This algorithm takes as input a security parameter A and outputs:

— A master public key M PK,
— A master secret key MSK.

* KeyGen(M PK, MSK,{IDy,1Ds,...,ID,}):
This is the key generation algorithm run by the Private Key Generator (PKG). Given the
master public key M PK, master secret key M SK, and a set of identities { /Dy, IDs, ..., ID,},
the PKG generates a single accumulated private key SKy;p, 1p,.... 1p,} for the set of iden-
tities. The same private key can be used to sign messages for any identity in the set.

* Sign(M, MPK,SKy;p,...ip,} ID):
The signing algorithm takes as input the master public key M P K, the accumulated pri-
vate key SK{/p, ip,,..ip,}, an identity /D € {IDy,...,ID,}, and a message M. It
outputs a signature o on the message M for the identity /D, provided that /D is within
the set {ID;,...,ID,}.

» Verify(M,o, MPK, ID):
The verification algorithm takes as input the master public key M PK, an identity D, a
message M, and a signature o. It outputs a Boolean value indicating whether the signature
is valid for the given identity and message.

3.2 Correctness

The correctness of the scheme requires the following condition to be satisfied:

Forany ID € {IDy,1D,,...,ID,}, if a valid signature o is generated using the
accumulated private key SK;p, rp,... 1p,} for a message M, then the verification
algorithm should output True when verifying (M PK, 1D, M, o).

Formally, this can be expressed as:

If o = Slgn(]\/[PK, SK{ID1,1D2 [Dn},[D,M) and ID € {[Dl,IDQ, R 7[Dn}7

.....

then:
Pr[Verify(M,o, MPK,ID) = 1] =1,

where Verify(M, o, M PK,ID) = 1 indicates that the signature is valid.

4 Task D: IND-CPA of Variant of El Gamal

4.1 Scheme Overview

* Key Generation:

Choose two groups G and G of order ¢, where a pairing functione : G X G — Gr
exists.

Choose a generator g € G and a secret key x € Z,.
Compute h = ¢* € G.
Public key: (G, Gr,e,q,9,h).

— Private key: (G,Gr,€,q,9g,).

* Encryption:

— To encrypt a message m € G:

1. Choose arandom r € Z,.

r T

2. Compute the ciphertext (c1,c2) = (¢",h" - m) = (¢", g*" - m).

* Decryption:

- Given a ciphertext (¢, c2) = (¢", g"" - m):

1. Compute ¢ = (¢")* = ¢*".
2. Recover the message as m = ¢y - ()™t = (¢°" -m) - (¢°") "1 = m.

4.2 IND-CPA Attack

To show that the scheme is not IND-CPA secure, we can present an attack in which an adversary
distinguishes between two chosen plaintexts m, and m;.

1. Challenge Setup:

The adversary selects two messages mg, m; € G and submits them to the challenger.

The challenger randomly chooses a bit b € {0,1} and encrypts m; using the en-
cryption scheme. The ciphertext given to the adversary is (¢1,¢c2) = (g7, ¢*" - myp),
where r is randomly chosen.

2. Adversary’s Observation:

The adversary has access to the ciphertext (c1, c2) = (¢, ¢*" - myp).

The adversary can compute the pairing e(cq, h) = e(g”, ¢*) = e(g, g)*", which is
the same as e(c1, h) = e(cy, g°).

3. Attack:

The adversary now tries to distinguish between m, and m; .
The encryption scheme leaks information through the pairing operation.
The adversary can compute (¢, g) = e(g", g) = e(g,9)".

This pairing gives the adversary access to e(g, g)", which is independent of the en-
crypted message m,.

The adversary can compare ¢, with e(g, g)" - mg and e(g, g)" - m; to check which
one matches.

4.3 Conclusion

Since the adversary can compute pairings that allow them to distinguish between the two chosen
plaintexts m(and m; with non-negligible probability, the scheme is not IND-CPA secure.

6

5 Task E: Message Proof

5.1 Proof Outline

To prove that the message M is either ¢! or ¢*°°, we can employ a zero-knowledge proof.
This proof will convince the verifier that M is one of the two possible values, without revealing
which one it is or any other information about the message.

5.2 Commitment Phase

 Encryption: The prover encrypts both possible values M; = ¢'% and M, = ¢*"° using
the same random value 7:

CTl = (Clla 021) - (97" h" - 9100)
CTy = (C},C3) = (¢", h" - g°)

« Commitments: The prover creates commitments for C{ and C? to hide the choice of r.

5.3 Challenge Phase

The verifier selects a random challenge b € {1,2}. The challenge asks the prover to show that
the ciphertext C'T" = (C, Cy) corresponds to either C'T; or C'T5.

5.4 Response Phase
The prover responds based on the challenge b:
« If the challenge is b = 1 (the prover must prove that M = ¢'%°):

The prover reveals the randomness 7 used for encrypting ¢g'%.

The prover sends 7 to the verifier.

The verifier checks the validity by verifying:
Cl = gr and CQ =h"- 9100

If both equations hold true, then the proof is valid for M = g%,

« If the challenge is b = 2 (the prover must prove that M = ¢**°):

The prover reveals the randomness 7 used for encrypting g%,

The prover sends 7 to the verifier.

The verifier checks the validity by verifying:
Cl = gr and CQ =h"- 9200

If both equations hold true, then the proof is valid for M = g%,

7

5.5 Verification Phase

The verifier ensures that the ciphertext C'I" corresponds to either C'7T7 or C'T, based on the
challenge. The verifier confirms that:

e If b = 1, then the prover has correctly demonstrated that M = ¢,

e If b = 2, then the prover has correctly demonstrated that M = g%,

5.6 Zero-Knowledge Property

This proof construction has the following zero-knowledge properties:

* No Additional Information: The verifier learns nothing about r or which specific M
was chosen, as they only validate the correctness of the ciphertext against the challenge
without gaining insights into the values used in the encryption.

* Indistinguishability: Since the prover only reveals information pertaining to the chal-
lenge, the process ensures that the proof remains indistinguishable from one where the
prover is simply guessing M.

Thus, the prover successfully demonstrates that M is either ¢'% or ¢*°°, without revealing
any other information.

	Contents
	Task A: Ring Signatures in Privacy-Preserving Cryptocurrencies
	How Ring Signature Works
	Cryptocurrency Transaction with Ring Signatures

	Task B: Recover the Secret Key of Schnorr Signature Given Two Signatures
	Given:
	Steps to Recover the Secret Key:
	Conditions:

	Task C: Variant of IBS for multiple identities
	Syntax for Variant IBS
	Correctness

	Task D: IND-CPA of Variant of El Gamal
	Scheme Overview
	IND-CPA Attack
	Conclusion

	Task E: Message Proof
	Proof Outline
	Commitment Phase
	Challenge Phase
	Response Phase
	Verification Phase
	Zero-Knowledge Property

