
1

CSCI427/927 Systems Development

Service-oriented architectural patterns
Microservices

Acknowledgement: Materials on these slides are adapted from “Engineering Software Products: An
Introduction to Modern Software Engineering” by Ian Sommerville

 A software service is a software component that can be
accessed remotely.
 Decompose a system into components that can be

easily replicated, run in parallel, and moved
 The service is accessed through its published interface

and all details of the service implementation are
hidden.

 Services often do not maintain any internal state.
State information is either stored in a database or is
maintained by the service requestor.

 When a service request is made, the state information may
be included as part of the request and the updated state
information is returned as part of the service result.

 As there is no local state, services can be dynamically
reallocated from one virtual server to another and
replicated across several servers.

Software services

2

 This service can be accessed remotely by any
client application, like a mobile weather app or a
website, via the internet.
 Easily replicated, run in parallel, and moved
 Published Interface and Encapsulation
 Stateless (does not maintain any internal state between

requests and any necessary state information, like a
user's location or preferences, is included in the request)

 Any persistent state information must be managed by
the client (service requestor) or stored in an external
database

 When experiencing high load, the service can be
replicated to additional servers to distribute the load

Weather Forecasting Service

3

 Big Web Services emerged in the early 2000s
 World Wide Web during the late 1990s and early 2000s
 Increased Demand for B2B Integration
 Services exchanging large and complex XML texts
 Time-consuming to analyze the XML messages and extract the encoded data

 Most software services do not require the full generality provided
by these web service protocols.
 services with low latency and high throughput
 services with straightforward requirements, such as standard HTTP methods

(GET, POST, PUT, DELETE) and typically using JSON

 Consequently, modern service-oriented systems, use simpler,
‘lighter weight’ service-interaction protocols that have lower
overheads and, consequently, faster execution.

Modern web services

4

 Microservices are small-scale, stateless,
services that have a single responsibility (one
specific function or task). They are combined
to create applications.

 They are completely independent with their own
database and UI management code.

 Software products that use microservices have a
microservices architecture.

 If you need to create cloud-based software
products that are adaptable, scalable and
resilient => design them around a microservices
architecture.

Microservices

5

 Microservices communicate by exchanging messages.

 A message that is sent between services includes some
administrative information, a request and the data
required to deliver the requested service.

 Services return a response to service request messages.
 An authentication service may send a message to a login

service that includes the name input by the user.
 The response may be a token associated with a valid

user name or might be an error saying that there is no
registered user.

Microservice communication

6

Authentication system

 User registration, where users provide information about their identity,
security information, mobile (cell) phone number and email address.

 Authentication using UID/password.

 Two-factor authentication using code sent to mobile phone.

 User information management e.g. change password or mobile phone
number.

 Reset forgotten password.

Each of these features could be implemented as a separate service that uses
a central shared database to hold authentication information.

However, these features are too large to be microservices.

need to break down the coarse-grain features into more detailed
functions.

A microservice example

7

© Ian Sommerville 2018:Microservices architecture

Functional breakdown of authentication features

8

© Ian Sommerville 2018:Microservices architecture

Authentication microservices

9

 Self-contained
Microservices do not have external dependencies. They manage their
own data and implement their own user interface.

 Lightweight
Microservices communicate using lightweight protocols (https,
websockets), so that service communication overheads are low.

 Implementation-independent
Microservices may be implemented using different programming
languages and may use different technologies (e.g. different types of
database) in their implementation.

 Independently deployable
Each microservice runs in its own process and is independently
deployable, using automated systems.

Characteristics of microservices

1
0

 A well-designed microservice should have high cohesion and low
coupling.
 Cohesion (internal) is a measure of the number of relationships

that parts of a component have with each other. High cohesion
means that all of the parts that are needed to deliver the
component’s functionality are included in the component.

 Coupling (external) is a measure of the number of relationships
that one component has with other components in the system.
Low coupling means that components do not have many
relationships with other components.

 Each microservice should have a single responsibility i.e. it should
do one thing only and it should do it well.
 However, ‘one thing only’ is difficult to define in a way that’s

applicable to all services.
 Responsibility does not always mean a single, functional activity.

Microservice characteristics

11

© Ian Sommerville 2018:Microservices architecture

Password management service

1
2

• The range of functionality that might be included in a
password management microservice

© Ian Sommerville 2018:Microservices architecture

Microservice support code

13

• This code includes the set of tools, libraries, utilities, and helper
functions

• NOT part of the core business logic of a microservice
• BUT to support the microservice’s operation and integration within a

larger microservices architecture.

 A microservices architecture is an architectural style – a
tried and tested way using small, independent services that
each perform a specific function.

 This architectural style addresses two problems:
 Independent Updates: Unlike monolithic applications, where

any change requires rebuilding, retesting, and redeploying the
entire system, microservices allow individual components to be
updated independently without affecting others. This speeds up
development and reduces the risk of unintended side effects.

 Targeted Scaling: In a monolithic system, increasing demand
requires scaling the entire application, which can be inefficient.
Microservices enable scaling only the parts of the system
that need it, optimizing resource use and improving
performance for high-demand features.

Microservices architecture

14

 Microservices are self-contained and run in separate
processes.

 In cloud-based systems, each microservice may be
deployed in its own container. This means a
microservice can be stopped and restarted without affecting
other parts of the system.

 If the demand on a service increases, service replicas can
be quickly created and deployed. These do not require a
more powerful server so ‘scaling-out’ is, typically, much
cheaper than ’scaling up’.

Benefits of microservices
architecture

15

Imagine that you are developing a photo printing service for
mobile devices.
 Users can upload photos to your server from their phone or

specify photos from their Instagram account that they
would like to be printed.

 Prints can be made at different sizes and on different media.
 Users can chose print size and print medium. For example,

they may decide to print a picture onto a mug or a T-shirt.
 The prints or other media are prepared and then posted to

their home.
 They pay for prints either using a payment service such as

Android or Apple Pay or by registering a credit card with the
printing service provider.

A photo printing system for mobile
devices

16

 All functionalities (photo management,
order processing, payment, shipping, etc.)
are implemented in a single codebase.
This means any change to one part of the
system (e.g., updating the payment
processing logic) requires deploying the
entire application again.

 All data (user, photos, orders, payments)
is stored in a common, centralized
database.

A monolithic client-server example

17

© Ian Sommerville 2018:Microservices architecture

A microservices architecture for a photo printing system

1
8

© Ian Sommerville 2018:Microservices architecture

Microservices architecture - key design questions

1
9

• Each service decides how to best provide its functionality, so
technology choices should be made by the service implementation
team, not the system architect.

• Although individual microservices are independent, they have to
coordinate and communicate to provide the overall system service.

 Microservices communicate by exchanging messages.

 A message that is sent between services includes some
administrative information, a request and the data
required to deliver the requested service.

 Services return a response to service request messages.
 An authentication service may send a message to a login

service that includes the name input by the user.
 The response may be a token associated with a valid

user name or might be an error saying that there is no
registered user.

Microservice communication

2
0

 Balance fine-grain functionality and system performance
 Single-function services => many microservices but require communication

between services to perform user functions. This slows the system due to the
overhead of packaging and unpackaging messages.

 Follow the ‘common closure principle’
 Elements of a system that are likely to be changed at the same time should be

located within the same service. Most new and changed requirements should
therefore only affect a single service.

 Associate services with business capabilities
 This means mapping out the various microservices that align with each business

capability, ensuring each service is focused on delivering the required functionality.

 Design services so that they only have access to the data
that they need
 If there is an overlap between the data used by different services, you need a

mechanism to propagate data changes to all services using the same data.

Decomposition guidelines

21

 Services communicate by exchanging messages that include
information about the originator of the message, as well as the
data that is the input to or output from the request.

 When you are designing a microservices architecture, you have to
establish a standard for communications that all microservices
should follow. Some of the key decisions that you have to make are
 should service interaction be synchronous or asynchronous?
 should services communicate directly or via message broker

middleware?
 what protocol should be used for messages exchanged between

services?

Service communications

22

 In a synchronous interaction, service A issues a request to
service B. Service A then suspends processing while B is
processing the request.
 It waits until service B has returned the required

information before continuing execution.
 In an asynchronous interaction, service A issues the

request that is queued for processing by service B. A then
continues processing without waiting for B to finish its
computations.
 Sometime later, service B completes the earlier request

from service A and queues the result to be retrieved by
A.

 Service A, therefore, has to check its queue
periodically to see if a result is available.

Synchronous and asynchronous
interaction

23

© Ian Sommerville 2018:Microservices architecture

Synchronous and asynchronous microservice interaction

2
4

 Direct service communication requires that interacting
services know each other’s address.
 The services interact by sending requests directly to these

addresses.

 Indirect communication involves naming the service that is
required and sending that request to a message broker
middleware (sometimes called a message bus).
 The message broker is then responsible for finding the

service that can fulfil the service request.

Direct and indirect service
communication

25

© Ian Sommerville 2018:Microservices architecture

Direct and indirect service communication

2
6

 Direct Service Communication:
 Faster and simpler but requires knowing the URI of the requested

service.
 Failure if the URI changes.

 Indirect Communication:
 Facilitates service versioning and can route requests to the most

recent version.
 It is complicated.

 Message Brokers:
 Route requests and may handle message translation.
 With Message Protocols (define message structure and data

requirements between services)
 Support synchronous and asynchronous interactions.
 Simplify service modifications and replacements but increase

system complexity.

Direct and indirect service
communication

27

 You should isolate data within each
service with as little data sharing as
possible.

 If data sharing is unavoidable, you should
design microservices so that most sharing
is ‘read-only’, with a minimal number of
services responsible for data updates.

 If services are replicated in your system,
you must include a mechanism that can
keep the database copies used by replica
services consistent.

Microservice data design

28

Concurrent updates to shared data have the potential to
cause database inconsistency.

An ACID (atomicity, consistency, isolation, and durability)
transaction is impractical in a microservices architecture.

A transaction is all-or-nothing, and a transaction brings the
system from one valid state to another, maintaining data
integrity.

 In a microservices architecture, transactions may span multiple
services, each with its own database.

Systems that use microservices have to be designed to tolerate
some degree of data inconsistency.

Inconsistency management

29

Two types of inconsistency have to be managed:

 Dependent data inconsistency

 The actions or failures of one service can cause the data managed by
another service to become inconsistent.

 A user places an online order for a book, triggering below services:
 Stock Management Service: Reduces the number of books in stock

by 1 and increases the number of books "pending sale" by 1.
 Order Service: Places the order in a queue of orders to be fulfilled.
 The stock level for the book becomes incorrect if the order service

fails.
 To address this:

• Service Failure Detection: Implement mechanisms to detect when a service failure occurs.
• Compensating Transaction: If the order service fails, initiate a compensating transaction in

the stock management service to restore the stock level by incrementing it for the
unfulfilled order.

Inconsistency management

30

Two types of inconsistency have to be managed:

 Replica inconsistency

 There are several replicas of the same service, with their own
database copy and each updates its own copy of the service data.

 Two identical instances of the stock management service (Service A
and Service B) each with their own stock database.
 Service A updates the stock for book X.
 Service B updates the stock for book Y.
 Problem: Discrepancies can arise if these updates are not synchronized,

leading to inconsistent stock data across replicas.

 You need a way of making these databases ‘eventually
consistent’ so that all replicas are working on the same data
eventually.

Inconsistency management

31

 Eventual consistency is a situation where
the system guarantees that the databases
will eventually become consistent.

 You can implement eventual consistency
by maintaining a transaction log (also
related to Service analytics).

Eventual consistency

32

 When a database
change is made, this is
recorded on a ‘pending
updates’ log.

 Other service instances
look at this log, update
their own database and
indicate that they have
made the change.

Eventual consistency

33

 Most user sessions involve a series of
interactions in which operations have to
be carried out in a specific order.

 This is called a workflow.
 An authentication workflow for UID/password

authentication shows the steps involved in
authenticating a user.
 Define Workflow Steps
 Central Coordinator to ensure the correct order
 State Management
 Error Handling and Recovery (retry mechanisms and

compensating actions)
 Service Communication

Service coordination

34

© Ian Sommerville 2018:Microservices architecture

Authentication workflow

3
5

 Internal service failure
These are conditions that are detected by the service and can be
reported to the service client in an error message. An example of this
type of failure is a service that takes a URL as an input and discovers that
this is an invalid link.

 External service failure
These failures have an external cause, which affects the availability of a
service. Failure may cause the service to become unresponsive and
actions have to be taken to restart the service.

 Service performance failure
The performance of the service degrades to an unacceptable level. This
may be due to a heavy load or an internal problem with the service.
External service monitoring can be used to detect performance failures
and unresponsive services.

Failure types in a microservices
system

36

 How to detect failure
 A timeout is a counter that this associated with the service

requests and starts running when the request is made.
 Once the counter reaches some predefined value, such as 10

seconds, the calling service assumes that the service
request has failed and acts accordingly.

 The problem with the timeout approach is that every
service call to a ‘failed service’ is delayed by the
timeout value so the whole system slows down.
 Instead of using timeouts explicitly when a service call is

made, another option is using a circuit breaker. Like an
electrical circuit breaker, this immediately denies access to a
failed service without the delays associated with timeouts.

Timeouts and circuit breakers

37

© Ian Sommerville 2018:Microservices architecture

Using a circuit breaker to cope with service failure

3
8

	CSCI427/927 Systems Development
	Software services
	Weather Forecasting Service
	Modern web services
	Microservices
	Microservice communication
	A microservice example
	Functional breakdown of authentication features
	Authentication microservices
	Characteristics of microservices
	Microservice characteristics
	Password management service
	Microservice support code
	Microservices architecture
	Benefits of microservices architecture
	A photo printing system for mobile devices
	A monolithic client-server example
	A microservices architecture for a photo printing system
	Microservices architecture - key design questions
	Microservice communication
	Decomposition guidelines
	Service communications
	Synchronous and asynchronous interaction
	Synchronous and asynchronous microservice interaction
	Direct and indirect service communication
	Direct and indirect service communication
	Direct and indirect service communication
	Microservice data design
	Inconsistency management
	Inconsistency management
	Inconsistency management
	Eventual consistency
	Eventual consistency
	Service coordination
	Authentication workflow
	Failure types in a microservices system
	Timeouts and circuit breakers
	Using a circuit breaker to cope with service failure

