
Service Change Management

CSCI427/CSCI927
Service-Oriented Software

Engineering

2

Change management

 Changes are inevitable in software development
 New requirements emerged at any time in the software

development lifecycle.
• E.g. new functionalities

 Changes in business environments
• E.g. competition, laws, new markets, new customers, etc.

 Changes in infrastructure environments
• E.g. new servers, new equipments, etc.

 New technology arriving
• E.g. New version of OS, new standards, etc.

 Bugs need fixing
 Performance needs improvement

3

Change management (cont.)

Change management provides a structured
framework for handling both maintenance
and evolution changes.

Maintenance and evolution are critical,
accounting for a majority of a system’s cost.
 More than 60% of software developers will be

working on software maintenance and evolution.

As the organization grows and the business
environment rapidly changes, changes to
the service-oriented architecture (SOA)
are inevitable.

Change propagation
4

changes

changes

changes

changes
The ripple

effect

As a change is started on a software system, other
coordinated changes are often needed at the same time in
other parts of the software (a far-reaching consequence).

Scenario: E-commerce Website

Initial Change:
 The development team decides to update the

payment gateway API integration in an e-
commerce website.

Coordinated Changes Needed:
 User Interface (UI) Update: The new payment might

support additional payment options (mobile wallets),
requiring changes to the checkout page UI to display
these options.

 Database Changes: If the new API supports more
detailed transaction data (e.g., customer location,
device details), the database schema may need to be
updated to store this additional information.

5

Scenario: E-commerce Website

Coordinated Changes Needed:
 Backend Logic Changes: such as new

authentication methods or response structures.
 Testing and Validation
 Documentation Update: The internal and external

documentation (e.g., API documentation, user guides)
should be updated to reflect the new payment
process.

6

7

Change propagation in SOA

Determine
Initial Entity To

Change
Change Entity Check for

inconsistencies

Determine
Other Entities

to Change

YES

NO

For each entity

No more
changes

 an Entity typically refers to a distinct unit that
represents data or a business concept.

Change propagation

Change request

8

Consistency constraints

 To support change propagation, it’s essential to
ensure the system maintains consistency.

We can use consistency constraints (defined
using Object Constraint Language (OCL)) to
identify inconsistencies.

 These constraints act as rules that the system
must adhere to,
 when violated, they could reflect the change has

caused an inconsistency.

OCL Constraint

 Imagine a university enrollment system with two main
entities:Student and Course

 The system enforces a rule that each student can enroll in a
maximum of 5 courses per semester. This rule is defined as
a consistency constraint using Object Constraint
Language (OCL).

• context Student
• inv MaxCourses:
• self.courses->size() <= 5

 Initial Change:
 The university decides to add a new rule that allows honor

students to enroll in up to 7 courses per semester instead of 5.

9

OCL Constraint

 If any of the constraints are violated during the enrollment
process (e.g., a student tries to enroll in more than the
allowed courses), the system will trigger an error, signaling
that the change has introduced an inconsistency.

 To support this change and ensure the system remains
consistent, we can:
 Student Entity Update: A new attribute isHonorStudent must be

added to the Student entity
 Modify OCL Constraint:

• if self.isHonorStudent then
• self.courses->size() <= 7
• else
• self.courses->size() <= 5
• endif

10

11

Propagating changes by fixing inconsistencies

Ways of resolving a fact/rule violation
(i.e. inconsistencies) are represented as
Belief-Desire-Intention (BDI) plans, i.e.
repair plans.
 model multiple options
 model the cascading nature of change

propagation.

Repair plans

Repair plan can be formally defined with
the structure:
 Triggering event: The occurrence that

initiates the plan (e.g., an inconsistency).
 Context condition: The conditions under

which the plan can be applied.
 Plan body: The actions taken to resolve the

inconsistency.

12

13

Repair plans

 Plan = triggering-event : context-condition <-
plan-body

1. Event e1 occurs
2. Plans 1-3 relevant to handle e1
3. Assume c1 & c3 true, c2 false
4. Plans 1 & 3 are applicable
5. Select (e.g.) plan P1 and start
 executing b1
 b1 which may include primitive
 repair actions (e.g. add, create, modify, etc.) and/or

sub-events, hence cascade.

Plan library

Plan1 = e1 : c1 <- b1

Plan2 = e1 : c2 <- b2

Plan3 = e1 : c3 <- b3

Plan4 = e2 : c4 <- b4

…………….

14

Change propagation framework for SoaML

Generate
repair plan

typesOCL constraints

Repair plan types
Repair Plan

Library

Modification
(e.g. change context conditions

remove plan types,
change plan body)

Check
constraints

Violated facts

Filter repair
plans

Repair plan instances

Plan instances with least cost

Select one
plan to
execute

User selection

Chosen repair plan instances

Consistency
rules OCL constraints

User preferences

SoaML metamodelMeta-model

Meta-model

SoaML model

Execute plan

changes

model

Tool
Developer

Tool
Developer

Enterprise
Architect /
Modeller

Generate
repair plan
instances

Repair plan types

Consistency rules

Change propagation framework for SoaML

 At the design stage, a repair administrator
defines consistency constraints using OCL.

 The repair plan generator uses the OCL
constraints as inputs, and produces a set of event-
triggered repair plans
 form a library of solutions.
 used by the change propagation engine to resolve

constraint violations.
Repair plans are generated ahead of time, but:
 at runtime, the design is checked against OCL

constraints.
 If a violation occurs, a repair plan is selected and

executed to resolve the issue.
15

16

Change propagation framework
Repair/change option selection

 Problem: how to select between different applicable
(repair) plan instances to fix a given constraint
violation?

Option 1: Calculating the cost of each repair plan
instance based on a set of primitive costs, and
choosing the cheapest plan.

• The cheapest cost heuristic may not always lead to the
best way to resolve inconsistencies

• Choice amongst alternative repair plans are necessarily
driven by domain specific consideration, and cannot
be adequately captured in a cost-based approach.

17

Change propagation framework
Select repair plans

Option 2:
 the best inconsistency resolution is the one

for which the resulting model, after having
fixed all violations, is “conceptually closest”
to the original model.
 adopting a minimal-change approach to

filter repair options in our change propagation
framework
 focus on service choreography in a SoaML

model
• focuses on the sequence and rules of interactions

between multiple services

18

Change propagation framework
Select repair plans

 Encode this representation of a service choreography (i.e. UML
activity diagram) into semantically-annotated diagrams called
Semantic Process Networks (SPNet)

 A SPNet is a digraph <V, E> in which each node is of the form
<ID, nodetype, owner> and each edge is of the form <<u,
v>, edgetype, condition>.
 Each event, activity, decision, or fork/join in an activity diagram maps to

a node.
 The owner attribute of a node refers to the service role

 Based on the SPNets, we then define a class of proximity
(similarity) relations that allow us to compare alternative
modifications of a service choreography in terms of how much
they deviate from the original model.
 Semantic proximity
 Structural proximity

19

Structural proximity

 Each SPNet is associated with a proximity relation
 : spni is closer to spn than spnj

 The proximity relations can be defined in a number of
ways to reflect various intuition, e.g. set cardinality-
oriented proximity measurement.

• The symmetric difference of two sets A and B is a set that contains
elements which are in either A or B, but not in both.

20

Structural proximity
Example

Original “Regulating Service” service
choreography (SC0)

Domain-specific constraint:
“Packages known to be held by a
regulatory agent must not be routed
by a shipping organization until the
package is known to be cleared by
the regulatory agent.”

This domain-specific constraint is
violated in the original service
choreography.

21

Structural proximity
Example (cont.)

Resolved “Regulating Service” service
choreography (SC1)

Resolved “Regulating Service” service
choreography (SC2)

22

Structural proximity
Example (cont.)

Now we need to select between SC1 and
SC2.
 Convert SC0, SC1 and SC2 into its SPNet

representation
 Calculate the edge difference between SC0

and SC1, and between SC0 and SC2
 Select the one that “closer” to SC0

23

Structural proximity
Example (cont.)

 1->0:
 AssessPackage->HandlePackage (SC1)
 HandlePackage-> RoutePackage (SC1)
 RoutePackage-> DecisionNode (SC1)
 AssessPackage->RoutePackage(SC0)
 RoutePackage->HandlePackage (SC0)
 HandlePackage-> DecisionNode (SC0)

 2->0:
 AssessPackage->HandlePackage (SC2)
 UpdateStatus->RoutePackage (SC2)
 AssessPackage->RoutePackage (SC0)
 RoutePackage->HandlePackage (SC0)

.

It means that SC2 is closer to SC0 than SC1 and consequently
SC2 is the preferable repair/change option

	Service Change Management
	Change management
	Change management (cont.)
	Change propagation
	Scenario: E-commerce Website
	Scenario: E-commerce Website
	Change propagation in SOA
	Consistency constraints
	OCL Constraint
	OCL Constraint
	Propagating changes by fixing inconsistencies
	Repair plans
	Repair plans
	Change propagation framework for SoaML
	Change propagation framework for SoaML
	Change propagation framework�Repair/change option selection
	Change propagation framework�Select repair plans
	Change propagation framework�Select repair plans
	Structural proximity
	Structural proximity�Example
	Structural proximity�Example (cont.)
	Structural proximity�Example (cont.)
	Structural proximity�Example (cont.)

