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Change management

 Changes are inevitable in software development 
 New requirements emerged at any time in the software 

development lifecycle. 
• E.g. new functionalities

 Changes in business environments
• E.g. competition, laws, new markets, new customers, etc. 

 Changes in infrastructure environments
• E.g. new servers, new equipments, etc. 

 New technology arriving
• E.g. New version of OS, new standards, etc. 

 Bugs need fixing
 Performance needs improvement
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Change management (cont.)

Change management provides a structured 
framework for handling both maintenance 
and evolution changes.

Maintenance and evolution are critical, 
accounting for a majority of a system’s cost.
 More than 60% of software developers will be 

working on software maintenance and evolution.

As the organization grows and the business 
environment rapidly changes, changes to 
the service-oriented architecture (SOA) 
are inevitable. 



Change propagation
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changes

changes

changes

changes
The ripple 

effect

As a change is started on a software system, other 
coordinated changes are often needed at the same time in 
other parts of the software (a far-reaching consequence).



Scenario: E-commerce Website

Initial Change:
 The development team decides to update the 

payment gateway API integration in an e-
commerce website.

Coordinated Changes Needed:
 User Interface (UI) Update: The new payment might 

support additional payment options (mobile wallets), 
requiring changes to the checkout page UI to display 
these options.

 Database Changes: If the new API supports more 
detailed transaction data (e.g., customer location, 
device details), the database schema may need to be 
updated to store this additional information.
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Scenario: E-commerce Website

Coordinated Changes Needed:
 Backend Logic Changes: such as new 

authentication methods or response structures.
 Testing and Validation
 Documentation Update: The internal and external 

documentation (e.g., API documentation, user guides) 
should be updated to reflect the new payment 
process.
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Change propagation in SOA

Determine 
Initial Entity To 

Change
Change Entity Check for 

inconsistencies
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YES
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For each entity

No more 
changes

 an Entity typically refers to a distinct unit that 
represents data or a business concept.

Change propagation

Change request
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Consistency constraints

 To support change propagation, it’s essential to 
ensure the system maintains consistency. 

We can use consistency constraints (defined 
using Object Constraint Language (OCL)) to 
identify inconsistencies. 

 These constraints act as rules that the system 
must adhere to, 
 when violated, they could reflect the change has 

caused an inconsistency.



OCL Constraint

 Imagine a university enrollment system with two main 
entities:Student and Course

 The system enforces a rule that each student can enroll in a 
maximum of 5 courses per semester. This rule is defined as 
a consistency constraint using Object Constraint 
Language (OCL).

• context Student
• inv MaxCourses:
•     self.courses->size() <= 5

 Initial Change:
 The university decides to add a new rule that allows honor 

students to enroll in up to 7 courses per semester instead of 5. 
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OCL Constraint

 If any of the constraints are violated during the enrollment 
process (e.g., a student tries to enroll in more than the 
allowed courses), the system will trigger an error, signaling 
that the change has introduced an inconsistency.

 To support this change and ensure the system remains 
consistent, we can:
 Student Entity Update: A new attribute isHonorStudent must be 

added to the Student entity
 Modify OCL Constraint: 

• if self.isHonorStudent then
•         self.courses->size() <= 7
•     else
•         self.courses->size() <= 5
•     endif
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Propagating changes by fixing inconsistencies

Ways of resolving a fact/rule violation 
(i.e. inconsistencies) are represented as 
Belief-Desire-Intention (BDI) plans, i.e. 
repair plans.
 model multiple options
 model the cascading nature of change 

propagation. 



Repair plans

Repair plan can be formally defined with 
the structure:
 Triggering event: The occurrence that 

initiates the plan (e.g., an inconsistency).
 Context condition: The conditions under 

which the plan can be applied.
 Plan body: The actions taken to resolve the 

inconsistency.
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Repair plans

 Plan = triggering-event : context-condition <- 
plan-body

1. Event e1 occurs
2. Plans 1-3 relevant to handle e1
3. Assume c1 & c3 true, c2 false
4. Plans 1 & 3 are applicable
5. Select (e.g.) plan P1 and start
 executing b1
 b1 which may include primitive 
 repair actions (e.g. add, create, modify, etc.) and/or 

sub-events, hence cascade.
 

Plan library

Plan1 = e1 : c1 <- b1

Plan2 = e1 : c2 <- b2

Plan3 = e1 : c3 <- b3

Plan4 = e2 : c4 <- b4

…………….
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Change propagation framework for SoaML
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Change propagation framework for SoaML

 At the design stage, a repair administrator 
defines consistency constraints using OCL.

 The repair plan generator uses the OCL 
constraints as inputs, and produces a set of event-
triggered repair plans
 form a library of solutions.
 used by the change propagation engine to resolve 

constraint violations.
Repair plans are generated ahead of time, but:
 at runtime, the design is checked against OCL 

constraints.
 If a violation occurs, a repair plan is selected and 

executed to resolve the issue.
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Change propagation framework
Repair/change option selection

 Problem: how to select between different applicable 
(repair) plan instances to fix a given constraint 
violation?

Option 1: Calculating the cost of each repair plan 
instance based on a set of primitive costs, and 
choosing the cheapest plan.

• The cheapest cost heuristic may not always lead to the 
best way to resolve inconsistencies

• Choice amongst alternative repair plans are necessarily 
driven by domain specific consideration, and cannot 
be adequately captured in a cost-based approach. 
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Change propagation framework
Select repair plans

Option 2: 
 the best inconsistency resolution is the one 

for which the resulting model, after having 
fixed all violations, is “conceptually closest” 
to the original model.
 adopting a minimal-change approach to 

filter repair options in our change propagation 
framework
 focus on service choreography in a SoaML 

model
• focuses on the sequence and rules of interactions 

between multiple services
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Change propagation framework
Select repair plans

 Encode this representation of a service choreography (i.e. UML 
activity diagram) into semantically-annotated diagrams called 
Semantic Process Networks (SPNet)

 A SPNet is a digraph <V, E> in which each node is of the form 
<ID, nodetype, owner> and each edge is of the form <<u, 
v>, edgetype, condition>.
 Each event, activity, decision, or fork/join in an activity diagram maps to 

a node.
 The owner attribute of a node refers to the service role

 Based on the SPNets, we then define a class of proximity 
(similarity) relations that allow us to compare alternative 
modifications of a service choreography in terms of how much 
they deviate from the original model.
 Semantic proximity
 Structural proximity
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Structural proximity

 Each SPNet is associated with a proximity relation 
                     : spni is closer to spn than spnj

 The proximity relations can be defined in a number of 
ways to reflect various intuition, e.g. set cardinality-
oriented proximity measurement. 

• The symmetric difference of two sets A and B is a set that contains 
elements which are in either A or B, but not in both.
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Structural proximity
Example

Original “Regulating Service” service 
choreography (SC0) 

Domain-specific constraint:
“Packages known to be held by a 
regulatory agent must not be routed 
by a shipping organization until the 
package is known to be cleared by 
the regulatory agent.”

This domain-specific constraint is 
violated in the original service 
choreography.
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Structural proximity
Example (cont.)

Resolved “Regulating Service” service 
choreography (SC1)

Resolved “Regulating Service” service 
choreography (SC2)
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Structural proximity
Example (cont.)

Now we need to select between SC1 and 
SC2.
 Convert SC0, SC1 and SC2 into its SPNet 

representation
 Calculate the edge difference between SC0 

and SC1, and between SC0 and SC2
 Select the one that “closer” to SC0
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Structural proximity
Example (cont.)

 1->0:
 AssessPackage->HandlePackage (SC1)
 HandlePackage-> RoutePackage (SC1)
 RoutePackage-> DecisionNode (SC1)
 AssessPackage->RoutePackage(SC0)
 RoutePackage->HandlePackage (SC0)
 HandlePackage-> DecisionNode (SC0)

 2->0:
 AssessPackage->HandlePackage (SC2)
 UpdateStatus->RoutePackage (SC2)
 AssessPackage->RoutePackage (SC0) 
 RoutePackage->HandlePackage (SC0)

.

It means that SC2 is closer to SC0 than SC1 and consequently 
SC2 is the preferable repair/change option 
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