
1

CSCI427/927 Systems Development

Alpha Algorithm in Process Mining
α-algorithm or α-miner

Acknowledgement: Materials on these slides are adapted from “Process-oriented System Analysis &
Process mining"

Definitions

 Let T be a set of activities (Tasks) and T * the set
of all sequences of arbitrary length over T, then
we have:
 σ ∈ T * is called execution sequence, if all activities

in σ belong to the same process instance
 W ⊆ T * is called execution log (workflow log)

 Assumptions
 In each process model, each activity appears at least

once
 Each direct neighbor relation between activities is

represented at least once

Execution Logs
case 1 : task A
case 2 : task A
case 3 : task A
case 3 : task B
case 1 : task B
case 1 : task C
case 2 : task C
case 4 : task A
case 2 : task B
case 2 : task D
case 5 : task E
case 4 : task C
case 1 : task D
case 3 : task C
case 3 : task D
case 4 : task B
case 5 : task F
case 4 : task D

Execution Logs
case 1 : task A
case 2 : task A
case 3 : task A
case 3 : task B
case 1 : task B
case 1 : task C
case 2 : task C
case 4 : task A
case 2 : task B
case 2 : task D
case 5 : task E
case 4 : task C
case 1 : task D
case 3 : task C
case 3 : task D
case 4 : task B
case 5 : task F
case 4 : task D

Execution sequences:
Case 1: ABCD
Case 2: ACBD
Case 3: ABCD
Case 4: ACBD
Case 5: EF
Resulting
workflow log:
W = {ABCD, ACBD, EF}

Order relations
Log based order relations for pairs of activities
a, b ∈ T in a workflow log W:
 Direct successor

a >w b i.e. in an execution sequence b directly follows a

 Causality
a →w b i.e. a >w b and not b >w a

 Concurrency
a ║w b i.e. a >w b and b >w a

 Exclusiveness
a #w b i.e. not a >w b and not b >w a
 Activity pairs which never succeed each other

case 1 : task A
case 2 : task A
case 3 : task A
case 3 : task B
case 1 : task B
case 1 : task C
case 2 : task C
case 4 : task A
case 2 : task B
case 2 : task D
case 5 : task E
case 4 : task C
case 1 : task D
case 3 : task C
case 3 : task D
case 4 : task B
case 5 : task F
case 4 : task D

 W = {ABCD, ACBD, EF}
• Direct successor
• Causality
• Concurrency

Execution log analysis

case 1 : task A
case 2 : task A
case 3 : task A
case 3 : task B
case 1 : task B
case 1 : task C
case 2 : task C
case 4 : task A
case 2 : task B
case 2 : task D
case 5 : task E
case 4 : task C
case 1 : task D
case 3 : task C
case 3 : task D
case 4 : task B
case 5 : task F
case 4 : task D

A>B
A>C
B>C
B>D
C>B
C>D
E>F

A→B

A→C

B→D

C→D

E→F

B||C
C||B

1) 2) 3)

• W = {ABCD, ACBD, EF}
• Direct successor
• Causality
• Concurrency

Execution log analysis

α-Algorithm

 The idea is to utilize order relations for deriving a
workflow net that is compliant with these
relations

α-Algorithm

 Idea (a)

a → b

⇔

α-Algorithm

 Idea (b)

a→ b, a→ c and b # c

⇔

α-Algorithm

 Idea (c)

b→ d, c→ d and b # c

⇔

α-Algorithm

 Idea (d)

a→ b, a→ c and b || c

⇔

α-Algorithm
 Idea (e)

b→ d, c→ d and b || c

⇔

The Alpha-Algorithm (simplified)
1. Identify the set of all tasks in the log as TW.
2. Identify the set of all tasks that have been observed as the first task
in some case as TI.
3. Identify the set of all tasks that have been observed as the last task
in some case as TO.
4. Identify the set of all connections to be potentially represented in the
process model as a set XW. Add the following elements to XW:

a. Pattern (a): all pairs for which hold a→b.
b. Pattern (b): all triples for which hold a→(b#c).
c. Pattern (c): all triples for which hold (b#c)→d.

 Note that triples for which Pattern (d) a→(b||c) or Pattern (e)
(b||c)→d hold are not included in XW.

The Alpha-Algorithm (cont.)
5. Construct the set YW as a subset of XW by:

a. Eliminating a→b and a→c if there exists some a→(b#c).
b. Eliminating b→c and b→d if there exists some (b#c)→d.

6. Connect start and end events in the following way:
a. If there are multiple tasks in the set TI of first tasks, then draw a start
event leading to an XOR-split, which connects to every task in TI.
Otherwise, directly connect the start event with the only first task.

b. For each task in the set TO of last tasks, add an end event and draw an
arc from the task to the end event.

The Alpha-Algorithm (cont.)
7. Construct the flow arcs in the following way:

a. Pattern (a): For each a→b in YW, draw an arc a to b.
b. Pattern (b): For each a→(b#c) in YW, draw an arc from a to an XOR-
split, and from there to b and c.
c. Pattern (c): For each (b#c)→d in YW, draw an arc from b and c to an
XOR-join, and from there to d.
d. Pattern (d) and (e): If a task in the so constructed process model has
multiple incoming or multiple outgoing arcs, bundle these arcs with an
AND-split or AND-join, respectively.

8. Return the newly constructed process model.

α-Algorithm Example

case 1 : task A
case 2 : task A
case 3 : task A
case 3 : task B
case 1 : task B
case 1 : task C
case 2 : task C
case 4 : task A
case 2 : task B
case 2 : task D
case 5 : task E
case 4 : task C
case 1 : task D
case 3 : task C
case 3 : task D
case 4 : task B
case 5 : task F
case 4 : task D

α-Algorithm Example
case 1 : task A
case 2 : task A
case 3 : task A
case 3 : task B
case 1 : task B
case 1 : task C
case 2 : task C
case 4 : task A
case 2 : task B
case 2 : task D
case 5 : task E
case 4 : task C
case 1 : task D
case 3 : task C
case 3 : task D
case 4 : task B
case 5 : task F
case 4 : task D

α-Algorithm

	CSCI427/927 Systems Development
	Definitions
	Execution Logs
	Execution Logs
	Order relations
	Slide Number 6
	Slide Number 7
	α-Algorithm
	α-Algorithm
	α-Algorithm
	α-Algorithm
	α-Algorithm
	α-Algorithm
	The Alpha-Algorithm (simplified)
	The Alpha-Algorithm (cont.)
	The Alpha-Algorithm (cont.)
	α-Algorithm Example
	α-Algorithm Example

