
Software Requirements,

Specifications and Formal

Methods

Dr. Shixun Huang

Lecture 1- Introduction

2

Software engineering

• The economies of ALL developed nations are

dependent on software.

• More and more systems are software controlled

• Software engineering is concerned with theories,

methods and tools for professional software

development.

• Expenditure on software represents a

significant fraction of GDP in all developed countries.

3

Software project failure

• Increasing system complexity

– As new software engineering techniques help us to build larger,

more complex systems, the demands change.

– Systems have to be built and delivered more quickly; larger,

even more complex systems are required;

– Systems have to have new capabilities that were previously

thought to be impossible.

• Failure to use software engineering methods

– It is fairly easy to write computer programs without using

software engineering methods and techniques. Many companies

have drifted into software development as their products and

services have evolved.

– They do not use software engineering methods in their everyday

work. Consequently, their software is often more expensive and

less reliable than it should be.
4

Software engineering

• Software engineering is an engineering discipline that

is concerned with all aspects of software production

from the early stages of system specification through

to maintaining the system after it has gone into use.

• Engineering discipline

– Using appropriate theories and methods to solve problems

bearing in mind organizational and financial constraints.

• All aspects of software production

– Not just technical process of development.

– Also project management and the development of tools,

methods etc. to support software production.

5

Importance of software engineering

• More and more, individuals and society rely on

advanced software systems. We need to be able to

produce reliable and trustworthy systems

economically and quickly.

• It is usually cheaper, in the long run, to use software

engineering methods and techniques for software

systems rather than just write the programs as.

• For most types of system, the majority of costs are the

costs of changing the software after it has gone into

use.

6

Frequently asked questions about software

engineering

Question Answer

What is software? Computer programs and associated documentation.

Software products may be developed for a particular

customer or may be developed for a general market.

What are the attributes of good software? Good software should deliver the required functionality

and performance to the user and should be efficient,

maintainable and user-friendly.

What is software engineering? Software engineering is an engineering discipline that is

concerned with all aspects of software production.

What are the fundamental software

engineering activities?

Requirement specification, software development,

software validation and software evolution.

What is the difference between software

engineering and computer science?

Computer science focuses on theory and fundamentals;

software engineering is concerned with the practicalities

of developing and delivering useful software.

What is the difference between software

engineering and system engineering?

System engineering is concerned with all aspects of

computer-based systems development including

hardware, software and process engineering. Software

engineering is part of this more general process.

7

Frequently asked questions about software

engineering

Question Answer

What are the key challenges facing

software engineering?

Coping with increasing diversity, demands for reduced

delivery times and developing trustworthy software.

What are the best software engineering

techniques and methods?

While all software projects have to be professionally

managed and developed, different techniques are

appropriate for different types of system. For example,

games should always be developed using a series of

prototypes whereas safety critical control systems require

a complete and analyzable specification to be developed.

You can’t, therefore, say that one method is better than

another.

What differences has the web made to

software engineering?

The web has led to the availability of software services

and the possibility of developing highly distributed service-

based systems. Web-based systems development has led

to important advances in programming languages and

software reuse.

8

Essential attributes of good software

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to

meet the changing needs of customers. This is a critical attribute

because software change is an inevitable requirement of a

changing business environment.

Dependability and

security

Software dependability includes a range of characteristics

including reliability, security and safety. Dependable software

should not cause physical or economic damage in the event of

system failure. Malicious users should not be able to access or

damage the system.

Efficiency Software should not make wasteful use of system resources such

as memory and processor cycles. Efficiency therefore includes

responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is

designed. This means that it must be understandable, usable and

compatible with other systems that they use.

9

System stakeholders

• Any person or organization who is affected by the

system in some way and so who has a legitimate

interest

• Stakeholder types

– System managers

– System designers

– System developers

– System owners

– End users

– External stakeholders

10

The software process

• A structured set of activities required to develop a

software system.

• Many different software processes but all involve:

– Specification – defining what the system should do;

– Design and implementation – defining the organization of the

system and implementing the system;

– Validation – checking that it does what the customer wants;

– Evolution – changing the system in response to changing

customer needs.

• A software process model is an abstract

representation of a process. It presents a description

of a process from some particular perspective.

11

Software process models

• The waterfall model

– Plan-driven model. Separate and distinct phases of specification

and development.

• Incremental development

– Specification, development and validation are interleaved. May

be plan-driven or agile.

• Integration and configuration

– The system is assembled from existing configurable components.

May be plan-driven or agile.

• In practice, most large systems are developed using a

process that incorporates elements from all of these

models.

12

The waterfall model

13

Waterfall model phases

• There are separate identified phases in the waterfall

model:

– Requirements analysis and definition

– System and software design

– Implementation and unit testing

– Integration and system testing

– Operation and maintenance

• The main drawback of the waterfall model is the

difficulty of accommodating change after the process

is underway. In principle, a phase has to be complete

before moving onto the next phase.

14

Waterfall model problems

• Inflexible partitioning of the project into distinct

stages makes it difficult to respond to changing

customer requirements.

– Therefore, this model is only appropriate when the requirements

are well-understood and changes will be fairly limited during the

design process.

– Few business systems have stable requirements.

• The waterfall model is mostly used for large systems

engineering projects where a system is developed at

several sites.

– In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

15

Incremental development

16

Incremental development benefits

• The cost of accommodating changing customer

requirements is reduced.

– The amount of analysis and documentation that has to be redone

is much less than is required with the waterfall model.

• It is easier to get customer feedback on the

development work that has been done.

– Customers can comment on demonstrations of the software and

see how much has been implemented.

• More rapid delivery and deployment of useful

software to the customer is possible.

– Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.

17

Incremental development problems

• The process is not visible.

– Managers need regular deliverables to measure progress. If

systems are developed quickly, it is not cost-effective to produce

documents that reflect every version of the system.

• System structure tends to degrade as new increments

are added.

– Unless time and money is spent on refactoring to improve the

software, regular change tends to corrupt its structure.

– Incorporating further software changes becomes increasingly

difficult and costly.

18

Integration and configuration

• Based on software reuse where systems are integrated

from existing components or application systems

(sometimes called COTS -Commercial-off-the-shelf)

systems).

• Reused elements may be configured to adapt their

behaviour and functionality to a user’s requirements

• Reuse is now the standard approach for building

many types of business system

19

Types of reusable software

• Stand-alone application systems (sometimes called

COTS) that are configured for use in a particular

environment.

• Collections of objects that are developed as a package

to be integrated with a component framework such as

.NET or J2EE.

• Web services that are developed according to service

standards and which are available for remote

invocation.

20

Reuse-oriented software engineering

21

Requirements engineering

Definition

• Requirements engineering is the branch of software

engineering concerned with the real-world goals for,

functions of, and constraints on software systems. It

is also concerned with the relationship of these

factors to precise specifications of software behavior,

and to their evolution over time and across software

families. (Zave 1997)

22

Requirements engineering

• The process of establishing the services that a

customer requires from a system and the constraints

under which it operates and is developed.

• The system requirements are the descriptions of the

system services and constraints that are generated

during the requirements engineering process.

23

What is a requirement?

• It may range from a high-level abstract statement of
a service or of a system constraint to a detailed
mathematical functional specification.

• These varying representation forms occur because

– Stakeholders have needs at different levels, hence, depend on

different abstraction representations.

– Stakeholders also have varying abilities to make and read these

representations (e.g., a business customer vs. a design engineer),

leading to diverse quality in the requirements.

24

Requirements vs. Goals

Some engineers and customers often confuse

requirements and goals

• Goals are high-level objectives of a business,

organization, or system,

– A goal: to build the safest bridge in the world

• Goals are difficult to prove and evolve as stakeholders

change their minds

• Requirements specify how a goal should be

accomplished by a proposed system.

– Requirements: building techniques, bridge materials, qualifications

of the contractor and engineers,

Requirements Level Classification

Sommerville (2005) suggests organizing them into

three levels of abstraction:

• User requirements

– discovered first, are used as the basis for final acceptance

testing.

• System requirements

– Developed after the user requirements, are used as the basis for

the integration testing that precedes acceptance testing.

• Design specifications

– Are derived from the system requirements are used for unit

testing as each code unit is implemented.

26

User Requirements

• User requirements are abstract statements written in

natural language with accompanying informal

diagrams.

• They specify what services (user functionality) the

system is expected to provide and any constraints.

• Collected user requirements often appear as a

“concept of operations” (Conops) document.

• In many situations user stories can play the role of

user requirements.

27

System Requirements

• System requirements are detailed descriptions of the

services and constraints.

• System requirements are sometimes referred to as

functional specification or technical annex (a term

that is rarely used).

• These requirements are derived from analysis of the

user requirements and they should be structured and

precise.

• The requirements are collected in a systems

requirements specification (SRS) document.

• Use cases can play the role of system requirement in

many situations.
28

Design Requirements

• Finally, design specifications emerge from the

analysis and design documentation used as the basis

for implementation by developers.

• The system design specification is essentially derived

directly from analysis of the system requirements

specification.

29

Requirements Level Classification

30

Requirements Level Classification

For an airline baggage handling system

• A user requirement

– The system shall track baggage from check-in to arrival.

• Some related system requirements

– Each bag processed shall trigger a baggage event.

• Some design specifications

– To handle each triggered baggage event, the system shall use an

event-driven architecture with a message queue to ensure real-

time processing and tracking of each bag

31

Requirements Level Classification

For a pet store POS system

• A user requirement

– The system shall accurately compute sale totals, including

discounts, taxes, refunds, and rebates; print an accurate receipt;

and update inventory counts accordingly

• Some related system requirements

– The system shall integrate with a payment processing module to

compute the correct sale total, including taxes, discounts,

refunds, and rebates.

– The system shall interface with an inventory management

module to update inventory counts after each sale.

32

Requirements Level Classification

For a pet store POS system

• Some design specifications

– The system shall use a relational database with tables for

customers, products, inventory, and transactions to ensure

efficient storage and retrieval of data.

– The system shall provide a graphical user interface (GUI) with

intuitive workflows for cashier operations, including product

scanning, manual input for discounts, and receipt printing.

• The systems specification in the appendices also

contains numerous specifications organized by level

for your exploration.

33

Requirements Specifications Types

Another taxonomy for requirements specifications

focuses on the type of requirement

• Functional requirements (FRs)

• Non-functional requirements (NFRs)

• Domain requirements

34

Functional Requirements

Functional requirements (FRs)

• describe the services the system should provide and

how the system will react to its inputs.

• need to explicitly state certain behaviors that the

system should not do

• can be high level and general or they can be detailed,

expressing inputs, outputs, exceptions

• natural language, visual models, formal methods

35

Functional Requirements

Functional requirements (FRs) in the POS system

• 4.1 When the operator presses the “total” button, the

current sale enters the closed-out state.

– 4.1.1 When a sale enters the closed-out state, a total for each

nonsale item is computed as number of items times the list price

of the item.

– 4.1.2 When a sale enters the closed-out state, a total for each sale

item is computed.

36

Non-functional Requirements

Non-functional requirements

• describe how the system behaves with respect to some

observable attributes such as reliability, reusability,

maintainability, etc.

• are more important in distinguishing between the

competing products

• are subjective, relative, and they tend to become

scattered among multiple modules when they are

mapped from the requirements domain to the solution

space.

• can often interact
37

Non-functional Requirements

Despite the challenging nature of NFRs, reports

consistently indicate that neglecting them can lead to

catastrophic project failures, or at the very least, to

considerable delays and consequently to significant

increases in the final cost

– In 1992, The London Ambulance Service (LAS) introduced a new

computer aided dispatch system which was intended to automate the

system that dispatched ambulances in response to calls from the

public and the emergency services. This new system was extremely

inefficient and ambulance response times increased markedly. The

failure of the system was mainly due to a failure to consider “human

and organizational factors” in the design of the system (Finkelstein

and Dowell 1996).

38

Non-functional Requirements

Neto et al. (2000) enumerate some of the well-known

problems of the software development due to the NFRs

omission:

• cost and schedule overruns,

• software systems discontinuation, and

• dissatisfaction of software systems users.

For all that, it is important to affirm that NFRs should

affect all levels of the software/ systems life cycle and

should be identified as soon as possible, and their

elicitation must be accurate and complete.
39

Non-functional Requirements

To deal with the NFRs, five common NFR categories are

identified

• quality,

• design,

• economic,

• operating, and

• political/cultural.

40

NFR Categories: Quality

Quality requirements are

• the most important category in the NFR world.

• the totality of characteristics of an entity that bear on

its ability to satisfy stated and implied needs

(ISO12601).

• may include safety, privacy, reliability, usability, and

maintainability requirements.

• can be evaluated by measuring internal attributes, by

measuring external attributes, or by measuring quality

in use attributes.

Key Process Stages

42

NFR Categories: Design

Design/Implementation Constraints:

• Constraints are not usually subject to negotiation and, once

agreed upon, are off-limits during design trade-offs.

• Constraints are defined as restrictions on the design of the

system, or the process by which a system is developed, that do

not affect the external behavior of the system but that must be

fulfilled to meet technical, business, or contractual obligations

(Leffingwell and Widrig 2003).

• A key property of a constraint is that a penalty or loss of some

kind applies if the constraint is not respected.

• An example of design/implementation constraints includes the

restrictions on using certain architectural patterns or specific

programming languages.

NFR Categories: others

• Economic Constraints: These are constraints which

include the immediate and/or long-term development

cost.

• Operating Constraints: These are constraints which

include physical constraints, personnel availability,

skill-level considerations, system accessibility for

maintenance, etc.

• Political/Cultural Constraints: These are constraints

which include policy and legal issues (e.g., what laws

and standards apply to the product).

Types of Nonfunctional Requirement

45

Domain Requirements

• Domain requirements are derived from the application

domain.

• These types of requirements may consist of new

functional requirements or constraints on existing

functional requirements, or they may specify how

particular computations must be performed.

46

Domain Requirements

• In the baggage handling system, for example, various

domain realities create requirements.

• There are industry standards.

• There are constraints imposed by existing hardware

available.

• And there may be constraints on performance

mandated by collective bargaining agreements with

the baggage handlers union.

47

Domain Requirements

For the pet store POS system, domain requirements are

imposed by the conventional store practices. For

example:

• Handling of cash, credit cards, and coupons

• Conventions in the pet store industry (e.g., frequent-

buyer incentives, buy one get one free)

• Sale of items

48

Domain Vocabulary Understanding

• The requirements engineer must be sure to fully

understand the application domain vocabulary as

there can be subtle and profound differences in the

use of terms in different domains.

Mentcare: A patient information system for

mental health care

• A patient information system to support mental health

care is a medical information system that maintains

information about patients suffering from mental

health problems and the treatments that they have

received.

• Most mental health patients do not require dedicated

hospital treatment but need to attend specialist clinics

regularly where they can meet a doctor who has

detailed knowledge of their problems.

• To make it easier for patients to attend, these clinics

are not just run in hospitals. They may also be held in

local medical practices or community centres.
50

Mentcare

• Mentcare is an information system that is intended for

use in clinics.

• It makes use of a centralized database of patient

information but has also been designed to run on a

PC, so that it may be accessed and used from sites

that do not have secure network connectivity.

• When the local systems have secure network access,

they use patient information in the database but they

can download and use local copies of patient records

when they are disconnected.

51

Mentcare goals

• To generate management information that allows

health service managers to assess performance against

local and government targets.

• To provide medical staff with information to support

the treatment of patients.

52

The organization of the Mentcare system

53

Key features of the Mentcare system

• Individual care management

– Clinicians can create records for patients, edit the information in the

system, view patient history, etc. The system supports data

summaries so that doctors can quickly learn about the key problems

and treatments that have been prescribed.

• Patient monitoring

– The system monitors the records of patients that are involved in

treatment and issues warnings if possible problems are detected.

• Administrative reporting

– The system generates monthly management reports showing the

number of patients treated at each clinic, the number of patients

who have entered and left the care system, number of patients

sectioned, the drugs prescribed and their costs, etc.

54

Mentcare system concerns

• Privacy

– It is essential that patient information is confidential and is never

disclosed to anyone apart from authorised medical staff and the

patient themselves.

• Safety

– Some mental illnesses cause patients to become suicidal or a

danger to other people. Wherever possible, the system should

warn medical staff about potentially suicidal or dangerous

patients.

– The system must be available when needed otherwise safety may

be compromised and it may be impossible to prescribe the

correct medication to patients.

55

Readers of different types of requirements

specification

56

User and system requirements

57

Mentcare system: functional requirements

• A user shall be able to search the appointments lists

for all clinics.

• The system shall generate each day, for each clinic, a

list of patients who are expected to attend

appointments that day.

• Each staff member using the system shall be uniquely

identified by his or her 8-digit employee number.

58

Examples of nonfunctional requirements in the

Mentcare system

59

Product requirement
The Mentcare system shall be available to all clinics during normal

working hours (Mon–Fri, 0830–17.30). Downtime within normal
working hours shall not exceed five seconds in any one day.

Organizational requirement
Users of the Mentcare system shall authenticate themselves using

their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out in

HStan-03-2006-priv.

Usability requirements

• The system should be easy to use by medical staff and

should be organized in such a way that user errors are

minimized. (Goal)

• Medical staff shall be able to use all the system

functions after four hours of training. After this

training, the average number of errors made by

experienced users shall not exceed two per hour of

system use. (Testable non-functional requirement)

60

Metrics for specifying nonfunctional

requirements

61

Property Measure

Speed Processed transactions/second

User/event response time

Screen refresh time

Size Mbytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

Requirement Documents

Requirement document describes the following

• The services and functions which the system should
provide.

• The constraints under which the system must operate.

• Overall properties of the system, i.e. constraints on the
system’s emergent properties.

• Definitions of other systems which the system must
integrate with

• Information about the application domain of the system,
e.g. how to carry out particular types of computation.

• Constraints on the process used to develop the system.

The Template

• All of requirements and constraints are written in a

requirements specification. This is a complete

description of the product’s capabilities.

• Specification can take many forms such as informal

specifications (diagrams) or formal specifications

with well established mathematical models.

• The IEEE Requirements Specification Template is a

compartmentalized container for a requirements

description. It gives you a framework for writing a

specification.

The IEEE Template of Requirement

Documents

Product Constraints – restrictions and limitations that

apply to the project

1. The purpose of the product

2. The client, customer and other stakeholder

3. Users of the product

4. Requirements constraints

5. Naming conventions and definitions

6. Relevant facts

7. Assumptions

The Template (continue)

Functional requirements

8. The scope of the product

9. Functional and data requirements

Non-functional requirements

10. Look and feel requirements

11. Usability requirements

12. Performance requirements

13. Operational requirements

14. Maintainability and portability requirements

15. Security requirements

16. Cultural and political requirements

Legal requirements

The Template (continue)

Project issues

18. Open issues

19. Off-the-shelf solutions

20. New problems

21. Tasks

22. Cutover

23. Risk

24. Costs

25. User documentation

26. Waiting room

Guideline for Writing Requirements

1. Use standard templates for describing requirements.

2. Use language simply, consistently, and concisely.

3. Use diagrams appropriately.

4. Supplement natural language with other descriptions

of requirements.

5. Specify requirements quantitatively.

We will learn formal specification techniques in this

subject.

	Slide 1
	Slide 2: Lecture 1- Introduction
	Slide 3: Software engineering
	Slide 4: Software project failure
	Slide 5: Software engineering
	Slide 6: Importance of software engineering
	Slide 7: Frequently asked questions about software engineering
	Slide 8: Frequently asked questions about software engineering
	Slide 9: Essential attributes of good software
	Slide 10: System stakeholders
	Slide 11: The software process
	Slide 12: Software process models
	Slide 13: The waterfall model
	Slide 14: Waterfall model phases
	Slide 15: Waterfall model problems
	Slide 16: Incremental development
	Slide 17: Incremental development benefits
	Slide 18: Incremental development problems
	Slide 19: Integration and configuration
	Slide 20: Types of reusable software
	Slide 21: Reuse-oriented software engineering
	Slide 22: Requirements engineering
	Slide 23: Requirements engineering
	Slide 24: What is a requirement?
	Slide 25: Requirements vs. Goals
	Slide 26: Requirements Level Classification
	Slide 27: User Requirements
	Slide 28: System Requirements
	Slide 29: Design Requirements
	Slide 30: Requirements Level Classification
	Slide 31: Requirements Level Classification
	Slide 32: Requirements Level Classification
	Slide 33: Requirements Level Classification
	Slide 34: Requirements Specifications Types
	Slide 35: Functional Requirements
	Slide 36: Functional Requirements
	Slide 37: Non-functional Requirements
	Slide 38: Non-functional Requirements
	Slide 39: Non-functional Requirements
	Slide 40: Non-functional Requirements
	Slide 41: NFR Categories: Quality
	Slide 42: Key Process Stages
	Slide 43: NFR Categories: Design
	Slide 44: NFR Categories: others
	Slide 45: Types of Nonfunctional Requirement
	Slide 46: Domain Requirements
	Slide 47: Domain Requirements
	Slide 48: Domain Requirements
	Slide 49: Domain Vocabulary Understanding
	Slide 50: Mentcare: A patient information system for mental health care
	Slide 51: Mentcare
	Slide 52: Mentcare goals
	Slide 53: The organization of the Mentcare system
	Slide 54: Key features of the Mentcare system
	Slide 55: Mentcare system concerns
	Slide 56: Readers of different types of requirements specification
	Slide 57: User and system requirements
	Slide 58: Mentcare system: functional requirements
	Slide 59: Examples of nonfunctional requirements in the Mentcare system
	Slide 60: Usability requirements
	Slide 61: Metrics for specifying nonfunctional requirements
	Slide 62: Requirement Documents
	Slide 63: The Template
	Slide 64: The IEEE Template of Requirement Documents
	Slide 65: The Template (continue)
	Slide 66: The Template (continue)
	Slide 67: Guideline for Writing Requirements

