
Software Requirements,

Specifications and Formal

Methods

Dr. Shixun Huang

Requirements Engineering Process

2

Requirements engineering processes

 The processes used for RE vary widely depending on the
application domain, the people involved and the
organisation developing the requirements.

 However, there are a number of generic activities
common to all processes

▪ Requirements elicitation/discovery

▪ Requirements analysis and reconciliation

▪ Requirements representation/modeling

▪ Requirements verification and validation

▪ Requirements management

3

A spiral view of the requirements

engineering process

4

Requirements Elicitation/Discovery

 Sometimes called requirements elicitation or

requirements discovery.

 Involves technical staff working with customers to find

out about the application domain, the services that the

system should provide and the system’s operational

constraints.

 May involve end-users, managers, engineers involved in

maintenance, domain experts, trade unions, etc. These

are called stakeholders.

5

Requirements Analysis and Agreement

Requirements analysis and agreement involves techniques

to deal with a number of problems with requirements in

their “raw” form after they are collected from the customer.

Problems with raw requirements include the following:

 They don’t always make sense.

 They often contradict one another (and not always

obviously so).

 They may be inconsistent.

 They may be incomplete.

 They may be vague or just wrong.

 They may interact and be dependent on each other.

6

Requirements Representation

 Requirements representation (or modeling) involves

converting the requirements processed raw

requirements into some forms (usually natural language,

mathematics, and visualizations).

 Proper representations facilitate communication of

requirements and conversion into a system architecture

and design.

 Various techniques are used for requirements

representation including informal (e.g., natural language,

sketches, and diagrams), formal (mathematically sound

representations), and semiformal (convertible to a sound

representation or can be made fully formal by the

addition of a semantic framework).

7

Requirements Validation

 Requirements validation is the process of determining if

the specification is a correct representation of the

customers’ needs.

 Validation answers the question “Am I building the right

product?” Requirements validation involves various

semiformal and formal methods, text-based tools,

visualizations, inspections, and so on

8

Requirements Management

 Requirements management involves managing the

realities of changing requirements over time.

 It also involves fostering traceability through appropriate

aggregation and subordination of requirements and

communicating changes in requirements to those who

need to know.

 Managers also need to learn the skills to intelligently

push back when scope creep ensues. Using tools to

track changes and maintain traceability can significantly

ease the burden of requirements management.

9

Requirements Engineer Roles

 Requirements engineer as software systems engineer

 Requirements engineer as subject matter expert (SME)

 Requirements engineer as architect

 Requirements engineer as business process expert

Role of the Customer

 Helping the requirements engineer understand what they need and

want (elicitation and validation)

 Helping the requirements engineer understand what they don’t want

(elicitation and validation)

 Providing domain knowledge when necessary and possible

 Alerting the requirements engineer quickly and clearly when they

discover that they or others have made mistakes

 Alerting the requirements engineer quickly when they determine that

changes are necessary

 Controlling their urges to have “aha moments” that cause major

scope creep

 Sticking to all agreements

Problems with Traditional Requirements

Engineering

 Natural language problems (e.g., ambiguity, imprecision)

 Domain understanding

 Dealing with complexity (especially temporal behavior)

 Difficulties in enveloping system behavior

 Incompleteness (missing functionality)

 Over-completeness (gold-plating)

 Overextension (dangerous “all”)

 Inconsistency

 Incorrectness

 and more

Preparing for Requirements Elicitation

Product Mission Statement

 The first thing we need to do when undertaking the development of a

new system, or redesign of an old one, is to obtain or develop a

concise description of what it is supposed to do.

 Such a statement is often called a product mission statement (or

system mission statement)

 The product mission statement allows us to weigh the importance of

various features

 Writing mission statements can be a contentious business, and many

people resent or fear doing so because there can be a tendency to

get bogged down in minutiae.

 A product mission statement should be very short, descriptive,

compelling, and never detailed.

Preparing for Requirements Elicitation

Encounter with Your Customers

 You need to understand the application domain, and the

vocabulary used by your customers

 Customers don’t always know what they want

 Never make assumptions about what customers want

 Customers can change their mind

 They may have high expectations about what you know

and what you will provide.

Identifying the System Boundaries

 A necessary first step in identifying stakeholders is to

create a high-level systems model. This model will to

identify the set of people and entities involved with the

system and define the system boundary—the direct and

indirect interactions with other entities (Laplante et al.

2016).

 A context diagram can be used

Stakeholders
Stakeholders represent the set of individuals who have some interest (a

stake) in the success of the system in question. Typical stakeholders

may include

 Customers

 Sponsors

 All responsible engineering and technical persons

 Regulators

 Third parties who have an interest in the system but no direct

regulatory

 authority

 Society

 Environment

Identifying stakeholders

One way to help identify stakeholders is by answering the

following set of questions:

 Who is paying for the system?

 Who is going to use the system?

 Who is going to judge the fitness of the system for use?

 What agencies and entities regulate any aspect of the

system?

 What laws govern the construction, deployment, and

operation of the system?

 Who is involved in any aspect of the specification, design,

construction, testing, maintenance, and retirement of the

system?

Stakeholder/User Classes

 Once the stakeholder groups have been identified, it may

be necessary to divide these groups into classes to

adequately address their needs and desires.

 A stakeholder/user class subdivision is usually necessary

when the classes are large and/or heterogeneous.

 In many cases, class subdivision will be needed for the

collection of system users.

Stakeholder/User Classes

For example, for the pet store POS system user classes

would include:

 Cashiers

 Managers

 System maintenance personnel (to make upgrades and

fixes)

 Store customers

 Inventory/warehouse personnel (to enter inventory data)

 Accountants (to enter tax information)

 Sales department (to enter pricing and discounting

information)

Rich Pictures for Stakeholder Identification

Rich picture for pet store POS system

Customer Wants and Needs

What Do Customers Want?

 The requirements engineer seeks to satisfy customer

wants and needs, but it is not always easy to know what

these are. Why?

 Because customers’ wants and needs exist on many

levels

 Requirements engineers have to help customers to set

realistic goals for the system to be built

Customer Wants and Needs

Hierarchy of customer needs/wants

Customer Wants and Needs

For the pet store POS system, customers want

 Speed

 Accuracy

 Clarity (in the printed receipt)

 Efficiency

 Ease of use (especially if self-service provided)

 and more

Customer Wants and Needs

What Don’t Customers Want?

 Sometimes customers are very explicit in what they don’t

want the system to do.

 These specific undesirable features or “do not wants” or

“shall not” requirements are frequently overlooked by the

requirements engineer.

 Unwanted features can include

▪ Undesirable performance characteristics

▪ Aesthetic features

▪ Gold-plating (excessive and unnecessary features)

▪ Safety concerns (hazards)

Customer Wants and Needs

Here are some “shall not” requirements for the pet store

POS system:

 If the register tape runs out, the system shall not crash.

 If a product code is not found, the system shall not crash.

 If a problem is found in the inventory reconciliation code,

the current transaction shall not be aborted.

Customers Change their Minds

One of the greatest challenges in dealing with customers is

that they sometimes don’t know precisely what they want

the system to do. Why?

 A customer can’t see every possible desideratum

 Importance might change as these requirements change

during the system life cycle

 Sometimes the environment in which the system

functions and the customers operate changes

 Due to changes of the return on investment

 Sometimes the customer is simply inconsistent

 Customers will deliberately withhold information for a

variety of reasons

Stakeholder Prioritization
 Not all stakeholders are of equal importance.

 Ranking the stakeholders will lead to requirements

prioritization, which is the key to reconciliation and risk

mitigation

Partial Ranking of Stakeholders for the Pet Store POS System

Communicating with Stakeholders

 One of the most important activities of the requirements

engineer is to communicate with all stakeholders.

 It is essential that all communications be conducted clearly,

ethically, consistently, and in a timely fashion

 What is the best format for communication with stakeholders?

▪ Interview

▪ Group meeting

▪ Seminar

▪ Etc.

Interviews in practice

 Normally a mix of closed and open-ended interviewing.

 Interviews are good for getting an overall understanding
of what stakeholders do and how they might interact with
the system.

 Interviewers need to be open-minded without pre-
conceived ideas of what the system should do

 You need to prompt the use to talk about the system by
suggesting requirements rather than simply asking them
what they want.

29

Problems with interviews

 Application specialists may use language to describe
their work that isn’t easy for the requirements engineer to
understand.

 Interviews are not good for understanding domain
requirements

▪ Requirements engineers cannot understand specific domain
terminology;

▪ Some domain knowledge is so familiar that people find it hard to
articulate or think that it isn’t worth articulating.

30

Stories and scenarios

 Scenarios and user stories are real-life examples of how

a system can be used.

 Stories and scenarios are a description of how a system

may be used for a particular task.

 Because they are based on a practical situation,

stakeholders can relate to them and can comment on

their situation with respect to the story.

31

Scenarios

 A structured form of user story

 Scenarios should include

▪ A description of the starting situation;

▪ A description of the normal flow of events;

▪ A description of what can go wrong;

▪ Information about other concurrent activities;

▪ A description of the state when the scenario finishes.

32

Stakeholder Negotiations
 Requirements engineer must negotiate with customers and

other stakeholders.

 The negotiations deal with convincing the customer that some

desired functionality is impossible or too costly

 Expectation setting and management throughout the life cycle

of any system project is an exercise in negotiation

 Make sure that the scope and duration of the discussions are

agreed

 Trying to eliminate unwanted surprises for both sides

 Understand people’s expectations.

 Look for early successes

 Conclude negotiating only when all parties are satisfied
33

Uncovering Stakeholder Goals

 Successful communications and negotiations will help to

uncover and clarify all stakeholders’ goals.

 Goals further detail the intentions of the system summarized in

the product mission statement

 For example, some goals for the pet store POS:

▪ Provide “hassle free” shopping for all customers

▪ Support all coupon and discount processing

▪ Support all customer loyalty programs

▪ Fully automate inventory entry and maintenance

▪ Support all local, state, and federal tax processing

Uncovering Stakeholder Goals

 Goals provide further articulation of the intent contained

in the product mission statement

 Goals are operationally described and detailed through the

requirements, which must be verified through measurements.

 Goal-oriented requirements engineering involves the analysis

of stakeholder goals in order to obtain new functional

requirements to meet these goals

 These approaches aim at modelling the “who, what, why,

where, when, and how” of requirements

Goal-based Requirements Engineering

Requirements specification

 The process of writing down the user and system

requirements in a requirements document.

 User requirements have to be understandable by end-

users and customers who do not have a technical

background.

 System requirements are more detailed requirements and

may include more technical information.

 The requirements may be part of a contract for the

system development

▪ It is therefore important that these are as complete as possible.

37

Ways of writing a system requirements

specification

38

Notation Description

Natural language The requirements are written using numbered sentences in natural language.

Each sentence should express one requirement.

Structured natural

language

The requirements are written in natural language on a standard form or

template. Each field provides information about an aspect of the

requirement.

Design description

languages

This approach uses a language like a programming language, but with more

abstract features to specify the requirements by defining an operational

model of the system. This approach is now rarely used although it can be

useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define the

functional requirements for the system; UML use case and sequence

diagrams are commonly used.

Mathematical

specifications

These notations are based on mathematical concepts such as finite-state

machines or sets. Although these unambiguous specifications can reduce

the ambiguity in a requirements document, most customers don’t understand

a formal specification. They cannot check that it represents what they want

and are reluctant to accept it as a system contract

Natural language specification

 Requirements are written as natural language sentences

supplemented by diagrams and tables.

 Used for writing requirements because it is expressive,

intuitive and universal. This means that the requirements

can be understood by users and customers.

39

Guidelines for writing requirements

 Invent a standard format and use it for all requirements.

 Use language in a consistent way. Use shall for

mandatory requirements, should for desirable

requirements.

 Use text highlighting to identify key parts of the

requirement.

 Avoid the use of computer jargon.

 Include an explanation (rationale) of why a requirement is

necessary.

40

Problems with natural language

 Lack of clarity

▪ Precision is difficult without making the document difficult to read.

 Requirements confusion

▪ Functional and non-functional requirements tend to be mixed-up.

 Requirements amalgamation

▪ Several different requirements may be expressed together.

41

Structured specifications

 An approach to writing requirements where the freedom

of the requirements writer is limited and requirements are

written in a standard way.

 This works well for some types of requirements e.g.

requirements for embedded control system but is

sometimes too rigid for writing business system

requirements.

42

Form-based specifications

 Definition of the function or entity.

 Description of inputs and where they come from.

 Description of outputs and where they go to.

 Information needed for the computation and other

entities used.

 Description of the action to be taken.

 Pre and post conditions (if appropriate).

 The side effects (if any) of the function.

43

Tabular specification

 Used to supplement natural language.

 Particularly useful when you have to define a number of

possible alternative courses of action.

 For example, the insulin pump systems bases its

computations on the rate of change of blood sugar level

and the tabular specification explains how to calculate the

insulin requirement for different scenarios.

44

Model-based Specification

 FSM

 DFD

 UML

 PN, CPN

 Formal specification

 Mathematical system model

 Z specification language

45

Use cases (graph based)

 Use-cases are a kind of scenario that are included in the

UML.

 Use cases identify the actors in an interaction.

 A set of use cases should describe all possible

interactions with the system.

 High-level graphical model supplemented by more

detailed tabular description

 UML sequence diagrams may be used to add detail to

use-cases by showing the sequence of event processing

in the system.

46

Use cases for the Mentcare system

47

The software requirements document

 The software requirements document is the official

statement of what is required of the system developers.

 Should include both a definition of user requirements

and a specification of the system requirements.

 It is NOT a design document. As far as possible, it

should set of WHAT the system should do rather than

HOW it should do it.

48

Requirements document variability

 Information in requirements document depends on type

of system and the approach to development used.

 Systems developed incrementally will, typically, have less

detail in the requirements document.

 Requirements documents standards have been designed

e.g. IEEE standard. These are mostly applicable to the

requirements for large systems engineering projects.

49

The structure of a requirements

document

50

Chapter Description

Preface This should define the expected readership of the document and describe

its version history, including a rationale for the creation of a new version

and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the

system’s functions and explain how it will work with other systems. It

should also describe how the system fits into the overall business or

strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should

not make assumptions about the experience or expertise of the reader.

User requirements

definition

Here, you describe the services provided for the user. The nonfunctional

system requirements should also be described in this section. This

description may use natural language, diagrams, or other notations that are

understandable to customers. Product and process standards that must be

followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated system

architecture, showing the distribution of functions across system modules.

Architectural components that are reused should be highlighted.

The structure of a requirements document

Chapter Description

System

requirements

specification

This should describe the functional and nonfunctional requirements in more detail.

If necessary, further detail may also be added to the nonfunctional requirements.

Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between

the system components and the system and its environment. Examples of

possible models are object models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is based,

and any anticipated changes due to hardware evolution, changing user needs,

and so on. This section is useful for system designers as it may help them avoid

design decisions that would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the

application being developed; for example, hardware and database descriptions.

Hardware requirements define the minimal and optimal configurations for the

system. Database requirements define the logical organization of the data used

by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic

index, there may be an index of diagrams, an index of functions, and so on.

51

Requirements validation

 Concerned with whether the requirements satifisfy

customers’ needs.

 Requirements error costs are high so validation is very

important

▪ Fixing a requirements error after delivery may cost up to 100

times the cost of fixing an implementation error.

52

Requirements checking

 Validity. Does the system provide the functions which

best support the customer’s needs?

 Consistency. Are there any requirements conflicts?

 Completeness. Are all functions required by the

customer included?

 Realism. Can the requirements be implemented given

available budget and technology

 Verifiability. Can the requirements be checked?

53

Requirements validation techniques

 Requirements reviews

▪ Systematic manual analysis of the requirements.

 Prototyping

▪ Using an executable model of the system to check requirements.

 Test-case generation

▪ Developing tests for requirements to check testability.

54

Requirements management

 Requirements management is the process of managing

changing requirements during the requirements

engineering process and system development.

 New requirements emerge as a system is being

developed and after it has gone into use.

 You need to keep track of individual requirements and

maintain links between dependent requirements so that

you can assess the impact of requirements changes.

 You need to establish a formal process for making

change proposals and linking these to system

requirements.

55

Requirements management planning

 Establishes the level of requirements management detail that

is required.

 Requirements management decisions:

▪ Requirements identification Each requirement must be uniquely

identified so that it can be cross-referenced with other requirements.

▪ A change management process This is the set of activities that

assess the impact and cost of changes.

▪ Traceability policies These policies define the relationships between

each requirement and between the requirements and the system

design that should be recorded.

▪ Tool support Tools that may be used range from specialist

requirements management systems to spreadsheets and simple

database systems.

56

Requirements change management

 Deciding if a requirements change should be accepted

▪ Problem analysis and change specification

• During this stage, the problem or the change proposal is analyzed to

check that it is valid. This analysis is fed back to the change

requestor who may respond with a more specific requirements

change proposal, or decide to withdraw the request.

▪ Change analysis and costing

• The effect of the proposed change is assessed using traceability

information and general knowledge of the system requirements.

Once this analysis is completed, a decision is made whether or not to

proceed with the requirements change.

▪ Change implementation

• The requirements document and, where necessary, the system

design and implementation, are modified. Ideally, the document

should be organized so that changes can be easily implemented.

57

Requirements change management

58

	Slide 1
	Slide 2: Requirements Engineering Process
	Slide 3: Requirements engineering processes
	Slide 4: A spiral view of the requirements engineering process
	Slide 5: Requirements Elicitation/Discovery
	Slide 6: Requirements Analysis and Agreement
	Slide 7: Requirements Representation
	Slide 8: Requirements Validation
	Slide 9: Requirements Management
	Slide 10: Requirements Engineer Roles
	Slide 11: Role of the Customer
	Slide 12: Problems with Traditional Requirements Engineering
	Slide 13: Preparing for Requirements Elicitation
	Slide 14: Preparing for Requirements Elicitation
	Slide 15: Identifying the System Boundaries
	Slide 16: Stakeholders
	Slide 17: Identifying stakeholders
	Slide 18: Stakeholder/User Classes
	Slide 19: Stakeholder/User Classes
	Slide 20: Rich Pictures for Stakeholder Identification
	Slide 21: Customer Wants and Needs
	Slide 22: Customer Wants and Needs
	Slide 23: Customer Wants and Needs
	Slide 24: Customer Wants and Needs
	Slide 25: Customer Wants and Needs
	Slide 26: Customers Change their Minds
	Slide 27: Stakeholder Prioritization
	Slide 28: Communicating with Stakeholders
	Slide 29: Interviews in practice
	Slide 30: Problems with interviews
	Slide 31: Stories and scenarios
	Slide 32: Scenarios
	Slide 33: Stakeholder Negotiations
	Slide 34: Uncovering Stakeholder Goals
	Slide 35: Uncovering Stakeholder Goals
	Slide 36: Goal-based Requirements Engineering
	Slide 37: Requirements specification
	Slide 38: Ways of writing a system requirements specification
	Slide 39: Natural language specification
	Slide 40: Guidelines for writing requirements
	Slide 41: Problems with natural language
	Slide 42: Structured specifications
	Slide 43: Form-based specifications
	Slide 44: Tabular specification
	Slide 45: Model-based Specification
	Slide 46: Use cases (graph based)
	Slide 47: Use cases for the Mentcare system
	Slide 48: The software requirements document
	Slide 49: Requirements document variability
	Slide 50: The structure of a requirements document
	Slide 51: The structure of a requirements document
	Slide 52: Requirements validation
	Slide 53: Requirements checking
	Slide 54: Requirements validation techniques
	Slide 55: Requirements management
	Slide 56: Requirements management planning
	Slide 57: Requirements change management
	Slide 58: Requirements change management

