
Software Requirements,

Specifications and Formal

Methods

Dr. Shixun Huang

Requirements Elicitation

2

Requirements Elicitation

• Requirements are not like fallen fruit to be simply retrieved and

placed in a bushel.

The techniques include:

• Brainstorming, Card sorting, Designer as apprentice, Domain

analysis, Ethnographic observation, Goal-based approaches, Group

work, Interviews, Joint application development (JAD), Laddering,

Prototyping, Quality function deployment (QFD), Questionnaires,

Repertory grids, Scenarios, Task analysis, Use cases, User stories,

Viewpoints, Workshops and etc.

Prepare for the Elicitation

• Identify all customers and stakeholders.

• Partition customers and other stakeholders groups into classes

according to interests, scope, authorization, or other discriminating

factors (some classes may need multiple levels of partitioning).

• Select a champion or representative group for each user class and

stakeholder group.

• Select the appropriate technique(s) to solicit initial inputs from each

class or stakeholder group.

Brainstorming

Brainstorming

• Brainstorming consists of informal sessions with stakeholders to

generate overarching goals for the systems

• These kinds of meetings probably should be informal, even

spontaneous, with the only structure embodying some recording of

any major discoveries.

• During brainstorming sessions, some preliminary requirements may

be generated

• Brainstorming is also useful for general objective setting, such as

mission or vision statement generation

Card Sorting

Card Sorting

• Stakeholders complete a set of cards that includes key information

about functionality for the system/software product

• The requirements engineer organizes these cards in some manner,

generally clustering the functionalities logically.

• The sorted cards can also be used as an input to the process to

develop CRC (class, responsibility, collaboration) cards to

determine program classes in the eventual code

Card Sorting
Unsorted cards for the pet store POS system

Sorted cards for the pet store POS system

Designer as Apprentice
• Requirements engineer “looks over the shoulder” of the customer in

order to learn enough about the customer’s work to understand their

needs

• Customers explain what they’re doing which can help to reveal what

matters in their work

• The requirements engineer must understand the structure and

implication of the work, including:

– The strategy to get work done

– Constraints that get in the way

– The structure of the physical environment as it supports work

– The way work is divided

– Recurring patterns of activity

– The implications these have on any potential system

• Both customer and designer learn during this process

Domain Analysis
• Domain analysis involves any general approach to assess the

“landscape” of related and competing applications to the system

being designed

• The Quality Function Deployment (QFD) approach explicitly

incorporates domain analysis

• QFD provides a structure for ensuring that customers’ needs and

desires

• The basic idea of QFD is to construct relationship matrices between

customer needs, technical requirements, and priorities

• Because these relationship matrices are often represented as the roof,

ceiling, and sides of a house, QFD is sometimes referred to as the

“house of quality”.

Domain Analysis

House of Quality

House of Quality Example

Source: https://www.lucidchart.com/blog/qfd-house-of-quality

Domain Analysis

• QFD ensure that products are not developed from only the ‘voice of

of the engineer’, but also the ‘voice of customer’.

• The following requirements engineering process is prescribed by

QFD:

– Identify stakeholder’s attributes or requirements.

– Identify technical features of the requirements.

– Relate the requirements to the technical features.

– Conduct an evaluation of competing products.

– Evaluate technical features and specify a target value, for each

feature.

– Prioritize technical features for development effort.

Domain Analysis

• Advantages of QFD

– improves the involvement of users and managers

– shortens the development lifecycle and improves overall project

development

– supports team involvement by structuring communication

processes

– provides a preventive tool that avoids the loss of information

• Drawbacks of QFD

– Complex and resource-intensive

– Limited flexibility

– Subjectivity in customer input

Ethnographic Observation

• Ethnographic observation refers to any technique in which

observation of indirect and direct factors inform the work of the

requirements engineer

• Ethnographic observation is a technique borrowed from social

science in which observations of human activity and the

environment are collected

• Engineers are also in a position to collect evidence of customer

needs derived from the surroundings that may not be communicated

directly

• Ethnographic observation can be very time-consuming and requires

substantial training of the observer

Ethnographic Observation

To illustrate this technique in practice, consider this situation in which

ethnographic observation occurs:

• You are gathering requirements for a smart home for a customer.

• You spend long periods of time passively observing the customer

“in action” in the current home to get nonverbal clues about wants

and desires.

• You gain other information from the home itself—the books on the

bookshelf, paintings on the wall, furniture styles, evidence of

hobbies, signs of wear and tear on various appliances, etc.

Goal-based Approaches

• Goal-based approaches comprise any elicitation techniques in which

requirements are recognized to emanate from the mission statement,

i.e., from a set of goals lead to requirements

• These goals may be subdivided one or more times to obtain lower-

level goals.

• Then, the lower-level goals are branched out into specific high-level

requirements using a structured approach such goal-question-metric

(GQM).

• Finally, the high-level requirements are used to generate lower-level

ones

Goal-based Approaches

For example, consider the baggage handling system mission statement:

• To automate all aspects of baggage handling from passenger origin

to destination.

The following goals might be considered to fulfill this mission:

• Goal 1: To completely automate the tracking of baggage from

check-in to pick-up.

• Goal 2: To completely automate the routing of baggage from check-

in counter to plane.

• Goal 3: To reduce the amount of lost luggage to 1%.

• Goal 4: The system shall be user friendly.

Goal-based Approaches
Goal:

• The system shall be user friendly

Questions:

• How easy is the system to learn to use?

• How much help does a new user need?

• How many errors does a user get?

Metrics for questions:

• The time it takes a user to learn how to perform certain functions

• The number of times a user has to use the help feature over some

period of time

• The number of times a user sees an error message during certain

operations over a period of time.

Group Work
• Group work is a general term for any kind of group meetings that are

used during the requirements discovery, analysis, and follow-up

processes.

• The most important things to remember about group works:

– research all aspects of the organization, problems, politics,

environment, and so on.

– Publish an agenda several days and stay on it

– Allow all to have their voices heard.

– Look for consensus at the earliest opportunity.

– Do not leave until all items on the agenda have received sufficient

discussion.

– Publish the minutes of the meeting within a couple of days of

meeting close and allow attendees to suggest changes.

The most celebrated of group-oriented work for requirements

elicitation is joint application design (JAD)

Joint Application Design
• JAD involves highly structured group meetings with stakeholders,

and analysts focused on a specific set of problems.

• Planning for a JAD review or audit session involves three steps:

– 1. Selecting participants

– 2. Preparing the agenda

– 3. Selecting a location

• Reviews and audits may include some or all of the following

participants:

– Sponsors (e.g., senior management)

– A team leader (facilitator, independent)

– Users and managers who have ownership of requirements and

business rules

– Scribes (i.e., meeting minutes and note takers)

– Engineering staff

Joint Application Design
• The analyst and sponsor must determine the scope of the project and

set the high-level requirements and expectations of each session.

• The session leader must also ensure that the sponsor is willing to

commit people, time, and other resources to the effort.

• The agenda depends greatly on the type of review to be conducted

and should be constructed to allow for sufficient time.

• The agenda, code, and documentation must also be sent to all

participants well in advance of the meeting so that they have

sufficient time to review them, make comments, and prepare to ask

questions.

• The end product of any review session is typically a formal written

document providing a summary of the items (specifications, design

changes, code changes, and action items) agreed upon during the

session

• The main artifact could be a first draft of the software requirement

specification (SRS).

Laddering
• In laddering, the requirements engineer asks the customer short

prompting questions (probes) to elicit requirements.

• Follow-up questions are then posed to dig deeper below the surface.

• The resultant information from the responses is then organized into a

tree-like structure.

• For example:

– RE: Name a key feature of the system.

– Customer: Customer identification.

– RE: How do you identify a customer?

– Customer: They can swipe their loyalty card.

– RE: What if a customer forgets their card?

– Customer: They can be looked up by phone number.

– RE: When do you get the customer’s phone number?

– Customer: When customers complete the application for the loyalty card.

– RE: How do customers complete the applications? …

Laddering

Laddering diagram for the pet store POS system

Prototyping
• Prototyping involves construction of models of the system in order

to discover new features, particularly usability requirements.

• Prototyping is a particularly important technique for requirements

elicitation.

• It is used extensively, for example, in the spiral software

development model, and agile methodologies consist essentially of a

series of increasingly functional non-throwaway prototypes.

• Prototypes can involve working models and non-working models.

Working models can include executable code in the case of software

systems and simulations, or temporary or to-scale prototypes for

non-software systems.

• Non-working models can include storyboards and mock-ups of user

interfaces.

Benefits of prototyping

• Improved system usability.

• A closer match to users’ real needs.

• Improved design quality.

• Improved maintainability.

• Reduced development effort.

27

The process of prototype development

28

Prototype development

• May be based on rapid prototyping languages or tools

• May involve leaving out functionality

– Prototype should focus on areas of the product that are not

well-understood;

– Error checking and recovery may not be included in the

prototype;

– Focus on functional rather than non-functional

requirements such as reliability and security

29

Case Study of a Prototype: Hotel system

Task list
Book guest

Checkin

Checkout

Change room

Record services

Breakfast list

Breakfasts 23/9
Room Buffet In room

11 1

12 2

13 1 1

15

. . .

User tasks

When a guest phones to book a room. The receptionist
must record the name, address, for the guest, the dates
he is going to stay at the hotel and the room he will stay
in. We call this is the booking task.

When a guest arrives at the hotel, the receptionist must
allocate a free room to him, give him the key and record
that he now stays in this room and has to pay for it. The
guest may or may not have booked the room in advance.
This is the check-in task.

It may happen that the guest wants to change to another
room. The system must also support this change-room
task.

The first Hotel System Prototype

We will look at the first prototype of the hotel system and how

it was suability tested and what usability problems we found.

In this stage, we can prototype four screens of prototype and

three menus.

Screens

• Find Guest Screen: the receptionist will use the first screen to

find guests, i.e. enter search criteria such as part of guest’s

name or address System will show a list of guests that match

the searching criteria.

• Stay and New Stay Screens: The New stay and Stay screens

are used to record a stay for a guest, for instance when he

books.

• Rooms Screen: Use to find free rooms

Case study: Hotel system prototype

Types of Prototypes

• Hand-draw mock-up. The designer draws the

screens by hand using paper and pencil.

• Tool-draw mock-up. The designer draws the

screens on the computer using the same tool that

will be used in the final product.

• Screen prototype. The screens are shown on

the real computer screen, but they have little

functionality.

• Functional prototype. It is similar to a screen

prototype, but with more buttons, menus points,

etc. Actually do something.

Various prototypes

Hand-drawn

mockup:

Functional

prototype:

Tool-drawn

mockup:

Screen

prototype:

15-30 min
30-60 min

1-4 hours 2-8 hours

Which prototype

is the best?

What is the best prototype?

The purpose of prototype in requirement

engineering are to help developers to elicit and

validate the system requirements.

Surprisingly, all four kinds of prototypes can detest

usability problems with much same hit-rate. They

are equally good for defining what to program, and

for discussing with users and customers. The main

difference between the prototypes is the time they

take to make.

Questionnaires/Surveys
• Requirements engineers often use questionnaires and other survey

instruments to reach large groups of stakeholders.

• Surveys are generally used at early stages of the elicitation process

to quickly define the scope boundaries.

• Questions can be closed (e.g., multiple choice, true-false) or open-

ended—involving free-form responses.

• Survey elicitation techniques are most useful when the domain is

very well understood by both stakeholders and requirements

engineer.

• For example, some possible survey questions for the pet store POS

system are:

– How many unique products (SKUs) do you carry in your

inventory? (a) 0–1000; (b) 1001–10,000; (c) 10,001–100,000;

– How many different store locations do you have? ____

– How many unique customers do you currently have? ____

Repertory Grids
• Repertory grids incorporate a structured ranking system for various

features of the different entities in the system, and are typically used

when the customers are domain experts.

• Repertory grids are particularly useful for identification of

agreement and disagreement within stakeholder groups.

• The grids look like a feature or quality matrix in which rows

represent system entities and desirable qualities, and columns

represent rankings based on each of the stakeholders.

• In essence, these ratings reflect the agendas or differing viewpoints

of the stakeholders.

Partial repertory grid for the baggage handling system

User Story

• User stories are short conversational texts that are used for initial

requirements discovery and project planning.

• User stories are widely employed in conjunction with agile

methodologies.

• User stories are written by the customers in terms of what the system

needs to do for them and in their own “voice.” – Who can do What.

• An example of a user story for the pet store POS system is as

follows:

– Each customer should be able to easily check out at a register.

– Self-service shall be supported.

– All coupons, discounts, and refunds should be handled this way.

Use Case
• Use cases depict the interactions between the system and the

environment around the system, human users and other systems.

• Use cases describe scenarios of operation of the system from the

designer’s perspective

Use case diagram of baggage inspection system

Scenarios
• Scenarios are informal descriptions of the system in use that provide

a high-level description of system operation, classes of users, and

exceptional situations.

• Scenarios are quite useful when the domain is novel

• Here is a sample scenario for the pet store POS system.

A customer walks into the pet store and fills the cart with a variety of items.

When checking out, the cashier asks if the customer has a loyalty card. If so,

the cashier swipes the card, authenticating the customer. If not, then the cashier

offers to complete one on the spot. After the loyalty card activity, the cashier

scans products using a bar code reader. As each item is scanned, the sale is

totaled and the inventory is appropriately updated. Upon completion of product

scanning a subtotal is computed. Then any coupons and discounts are entered.

A new subtotal is computed and applicable taxes are added. A receipt is

printed and the customer pays using cash, credit card, debit card, or check. All

appropriate totals (sales, tax, discounts, rebates, etc.) are computed and

recorded.

Task Analysis
• Task analysis involves a functional decomposition of tasks to be

performed by the system

• Starting at the highest level of abstraction, the designer and

customers elicit further levels of detail.

• This detailed decomposition continues until the lowest level of

functionality (single task) is achieved.

Partial task analysis for the
pet store POS system

Viewpoints
• Viewpoints are a way to organize information from the (point of

view of) different parties.

• By recognizing the needs of each of these stakeholders and the

contradictions raised by these viewpoints, conflicts can be

reconciled using various approaches.

• Sommerville and Sawyer (1997) suggested the following

components should be in each viewpoint:

– A representation style, which defines the notation used in the specification

– A domain, which is defined as “the area of concern addressed by the

viewpoint”

– A specification, which is a model of a system expressed in the defined style

– A work plan, with a process model, which defines how to build and check the

specification

– A work record, which is a trace of the actions taken in building, checking, and

modifying the specification

Elicitation Techniques Summary

Prevalence of Requirements Elicitation Techniques

Which elicitation techniques are more popular in industry?

Eliciting Hazards

• Hazards are a function of input anomalies that are either naturally

occurring or artificially occurring

• These anomalous input events need to be identified and their

resultant failure modes and criticality need to be determined during

the requirements elicitation phase in order to develop an appropriate

set of “shall not” requirements for the system.

• “shall not” behaviors are the set of output behaviors that are

undesired and that hazards were a subset of those behaviors that

tended to cause serious or catastrophic failures.

• Typical techniques for hazard determination:

– Misuse cases

– Antimodeling

– Formal methods

Misuse Case

• Misuse cases (or abuse cases) describe undesired behaviors.

• Typical misuses for most systems include security breaches and

other malicious behaviors as well as abuse by untrained, disoriented,

or incapable users.

• An easy way to create misuse cases is to assume the role of a

persona non grata, that is, an unwanted user of the system, and then

model the behaviors of such a person

• For example, in the pet store POS system, it would be appropriate to

consider how a hacker would infiltrate this system, and then create

requirements that would thwart the hacker’s intentions.

Antimodels

• Another way of deriving unwanted behaviour is to create antimodels

for the system.

• Antimodels are related to fault trees which are derived by creating a

cause and effect hierarchy for unwanted behaviours leading to

system failure.

• Then, the causes of the system failure are used to create the “shall

not” requirements.

Antimodels

• The fault tree leads us to write the following raw requirements:

– If a baggage jam is sensed, then the conveyor shall not move.

– If the baggage feeder is stuck, then the conveyor shall not move.

– If the baggage door is stuck, then the conveyor shall not move.

– If the conveyor is stuck, then the baggage feeder should not

move.

Formal Methods

• Mathematical formalisms can be used to create a model of the

system and its environment as related to their goals, operations,

requirements, and constraints.

• These formalisms can then be used in conjunction with automated

model checkers to examine various properties of the system and

ensure that unwanted ones are not present.

• The uniquely identified hazards can be listed in a special section in

the requirements document, or be designated by a flag beside the

requirement, or be tagged within a requirements management tool.

	Slide 1
	Slide 2: Requirements Elicitation
	Slide 3: Requirements Elicitation
	Slide 4: Prepare for the Elicitation
	Slide 5: Brainstorming
	Slide 6: Card Sorting
	Slide 7: Card Sorting
	Slide 8: Designer as Apprentice
	Slide 9: Domain Analysis
	Slide 10: Domain Analysis
	Slide 11: House of Quality Example
	Slide 12: Domain Analysis
	Slide 13: Domain Analysis
	Slide 15: Ethnographic Observation
	Slide 16: Ethnographic Observation
	Slide 17: Goal-based Approaches
	Slide 18: Goal-based Approaches
	Slide 20: Goal-based Approaches
	Slide 21: Group Work
	Slide 22: Joint Application Design
	Slide 23: Joint Application Design
	Slide 24: Laddering
	Slide 25: Laddering
	Slide 26: Prototyping
	Slide 27: Benefits of prototyping
	Slide 28: The process of prototype development
	Slide 29: Prototype development
	Slide 30
	Slide 31: User tasks
	Slide 32: The first Hotel System Prototype
	Slide 33: Screens
	Slide 34
	Slide 35
	Slide 36: Types of Prototypes
	Slide 37
	Slide 38: What is the best prototype?
	Slide 39: Questionnaires/Surveys
	Slide 40: Repertory Grids
	Slide 41: User Story
	Slide 42: Use Case
	Slide 43: Scenarios
	Slide 44: Task Analysis
	Slide 45: Viewpoints
	Slide 47: Elicitation Techniques Summary
	Slide 49: Prevalence of Requirements Elicitation Techniques
	Slide 50: Eliciting Hazards
	Slide 51: Misuse Case
	Slide 52: Antimodels
	Slide 53: Antimodels
	Slide 54: Formal Methods

