Software Requirements,
Specifications and Formal
Methods

ey

Dr. Shixun Huang OF WOLLONC

AUSTRALIA

JONGONG

Petri net analysis

 Petri net reachability

 Petri net liveness

 Petri net soundness

* Petri net safeness

* Petri net conservation

* Petri net conflict

 Structural Analysis: P-invariants and T-invariants
* Petri Nets Modelling

Reachability

Marking M is reachable from marking Mo if there exists a
sequence of firings ¢ = t1 t2 ... (i.e., Mo t1 Mt T2 Mz... M) that

transforms Mo to M.

pl tl pd Mo = (1,0,1,0)
(o) l £3

/l/ Mi = (1,0,0,1)

t3
{ 2
p3
Mo = (1,0,1,0) M= (1,1,0,0)
M = (1,1,0,0)

reachable?

Reachability graph

Reachability graph is made up of vertices which correspond to
reachable markings and of arcs corresponding to firing of
transitions resulting in the passing from one marking to another.

T : 2] T 1}' [EJ
. . [EJ [AL] ENG

Firing sequence: T; T, My — M;

Reachability graph (cont.)

Spring T Summer > Possible firing sequences from the initial
o (e J marking My: Ty, TyT,, Ty TyTs, TiT,T5T,.
‘ Q I
P
: .. T1ToT3T,
» Firing sequence T, T,T5;T, makes My —— M,
Ty S T>
» The sequence causes a return to the initial
I3 state, and this is a repetitive sequence.
Ot
Winter avomn » A repetitive sequence which contains all

the transitions (each at least once) is a
complete repetitive sequence.

Deadlock

» A deadlock (or sink state) is a marking such that no
transition is enable.

> A Petri net is deadlock-free for an initial marking M,
if no reachable marking M; is deadlock.

Py

(a) (b)
(a) With deadlock (b) Deadlock free

Do we have deadlocks in these two petri nets?

Liveness

> Liveness: whether transitions can eventually fire with
different levels.

> Closely related to the complete absence of deadlocks in
operating systems.

> Liveness implies deadlock freedom, not vice versa
> A live Petri net guarantees deadlock-free operation

> Different levels of liveness are defined.

Liveness (cont.)

A transition t in a Petri net (N, M,) is said to be:
> Dead (LO-live) if t can never be fired in any firing sequence in L(M,)
> L1-live if t can be fired at least once in some firing sequence L(M,)

> L2-live if given any positive integer k, t can be fired at least k times
in some firing sequence in L(M,)

> L3-live if there is an infinite firing sequence in L(M,)
where tj occurs infinitely often.

> L4-live or live if t is immediately fireable from any reachable
marking from M,(strongest condition).

Boundedness

> A place P; is said to be bounded for an initial marking M, if
there is a natural integer k such that, for all markings
reachable from M,, the number of tokens in P; is not greater
than k (P; is said to be k-bounded).

> A Petri net is bounded for an initial marking M, if all the
places are bounded for M, (the Petri net is k-bounded if all
the places are k-bounded).

Boundedness (cont.)

Bounded or not?

@ﬂ»@<§<\©

O

Boundedness (cont.)

Boundedness: the number of tokens in any place cannot
grow indefinitely

/D\
O—1—® @
\|:< ‘U/nbounded

Boundedness (cont.)

Boundedness: the number of tokens in any place
cannot grow indefinitely

Unbounded
—

O—>D—>Q<Iéz®

Boundedness (cont.)

Boundedness: the number of tokens in any place cannot
grow indefinitely

/D\
O—1—® O
\D<

Unbounded
—

Boundedness (cont.)

Boundedness: the number of tokens in any place cannot
grow indefinitely

Unbounded
—

/D\
O—1—-0 >®
~K

Safeness

> A Petri net is said to be safe for an initial marking M, if for all
reachable markings, each place contains zero or one token.

> A safe Petri net is a particular case of bounded Petri net for
which all the places are 1-bounded.

Pl P! Pi Pl
Tl Tl ?1 Tl
P p . . Bounded or not?
2 2 2 2
Safe or not?
TZ Tz Tz TZ

mi my ms

Bounded or hot?

P () d0 g0 P2 (se) Safe or not?

my m mp m;

Safeness (cont.)

Safe or not?

18

mj my

Petri Net Analysis

Behavioural properties

1. Reachability

2. Liveness (Deadlock-free)
3. Boundedness

4. Safeness

« Why do we need to analyse Petri net properties
(e.g., reachability, deadlock-free, boundedness)?

« What do these properties mean to a system?

Conservation

* Petri nets can be used to model resource allocation systems.
For example, a Petri net can model the requests, allocations,
and releases of input/output devices in a computer system.
In these systems some tokens may represent the resources.

* For these systems, conservation is an important property.
We would like to show that tokens which represent
resources are created nor destroyed.

« Conservative Petri nets are that the total number of tokens
in the net remain constant.

Conflict

In the following Petri net, the two enabled transitions are
conflict. Only one transition can fire, since, in firing, it
removes the token in the sharing input and disables the
other transition.

(o])
@<

O

Good or bad?

Petri Net properties (further comments)

1. Reachability

« Verify whether the system could reach some state from
some initial state

« Whether the system can be executed as planned
2. Deadlock
« Resource-sharing environment
« Improper resource distribution/allocation in the system
« Resources are run out of
3. Boundedness

 Checking overflow

Petri Nets: Structural Analysis

A class of techniques that can extract information
about the behaviour of the system

 Describe and analyse the dynamic behaviour of
concurrent systems modelled by Petri nets

* Place invariants and Transition invariants, i.e.,
through matrix equations

Place Invariant

Reachability Problem :

Marking M is reachable from marking Mo if there exists a
sequence of firings o = t1 t2 ... tm-1 that transforms Mo to

M.
pl tl \|\6 Mo = (1,0,1,0)
@ l 3

/'l/ M1 =(1,0,0,1)

\t2

Mo = (1,0,1,0) M = (1,1,0,0)
M = (1,1,0,0)

Place Invariant: Opening question

» How to solve the following question?

Verifying Reachability of M= (0 O 1)T fromMy=(1 O O)T

& @<§>6

Incidence Matrix (weighted petri

nets)
» Input incidence application: Pre: PxXT - {0,1,2,..}
* Pre(P;,T;) is the weight of the arc P; - T;
» Output incidence application: Post: P X T - {0,1,2, ...}

* Post(P;, T;) is the weight of the arc T; - P;
» Some relevant notations:
* °T; = {P; € P|Pre(P;, T;) > 0}: set of input places of T;;
* T;°={P; € P|Post(P;,T;) > 0}: set of output places of T;;
» °P, ={T; € T|Post(P;, T;) > 0}: set of input transitions of P;;
¢ P° = {Tj € T|Pre(P;, T;) > 0}: set of output transitions of P;;

Incidence Matrix

> Transition T; is enable for a marking M, if
My (P;) = Pre(P;, T;) for every P; € °T;.

» Input incidence matrix:

« W™ =[wy], where w;; = Pre(P;,T))
» Output incidence matrix:

« W* =[w], where w; = Post(P;, T})
» Incidence matrix:

¢ W=W+—W_=[Wij]

Exercise 3

Please calculate the input incidence matrix, output incidence
matrix and the incidence matrix of the following Petri net.

T1 T2 T3 T4

—1 o o 17P1

1 -1 0 o]|P2

W =1\ o 1 o0 -1|P3
1 0o -1 0|p4

o o 1 -1lpg

Fundamental equation

> The characteristic vector of sequence S, written as s, is the
m-component vector whose component number j corresponds
to the number of firings of transition T; in sequence S, e.g.,
s; = (0,1,0,0).

S
» If the firing sequence S is such that M; - M,,, thena
fundamental equation is obtained:
Mk = Mi +W-s

Fundamental equation (cont.)

example
s1 = (0,1,0,0)
—

M, 0] [-1 0 0 +1] 0] [0] [0 M,
L [+1 =1 0 o f | (1) -1 o
O+ 0 +1 0 —1f] 1=10f4|+1]= 1
o |#10 -1 o] ol |
of ([0 0 +1 -1 * - |0] [Of [O

Fundamental equation (cont.)

Another example:

T3TypTq T
We have M, ——5 and for S, = TxT,T,Ts, we have s, = (1,0,2,1)

« The carrying out of this firing sequence gives the marking M,
obtained by:

01 -1 0 O +17 [O01 107 T[O
0 +1 -1 0 O : 0 +1 1
l+0+10—1-0=1+~1-0
1 +1 0 -1 0 2 1 -1 0
0f |10 0 +1 -1 1 0 |+1] [

m, W S, m,

Fundamental equation (cont.)

« If we consider the carrying
out of the sequence S; - S,
from the marking M;, we
have

S1+ 82 = T 13T, T1T; @
and s1+s,=(1,1,2,1).

Then, we have the equation

My +W-(s1+sS;) =M,

(b)

©)

Incidence Matrix Example

Opening question:
reachability of M= (0 O 1)T fromMy=(1 O O)T

incidence matrix: —1 0 0 1p1

Incidence Matrix Example (cont.)

Reachability of M= (0 O 1)T fromMy=(1 O O)T

&l {3/“\@ 7

M=My+W-s

1]s
1 1 ~52=[1 1 2]

Incidence Matrix Example (cont.)

Reachability of M= (0 0 1)T fromMy=(1 O O)T

t2 3
0 0
1 -1

-1 1

P-invariants

> Let N be anetand W be its incidence matrix.

* A natural solution of the equation x” - W = 0 such that x > 0
is called a place invariant (or P-invariant) of N.

« A P-invariant indicates that the number of tokens in all
reachable markings (x”) satisfies some linear invariant.

» Let M be marking reachable with a transition sequence
whose firing count is expressed by s, i.e., M = My + W - s.

 Let x be a P-invariant. Then, the following holds:
xI - M=x"-(Mg+W-s)=x" - My+x" - W-s=x"-M,

P-invariants (cont.)

Example

Spring Summer > At all times, there will always be one

@ ,I _O and only one token for all places.

m1+m2+m3+m4=1
Ty—— Ty =t L |
T3 At all times, we are at one and only one season.

How to prove?

P-invariants (cont.)

> Let xT = (xq, x5, %3, x4)

-1 0 0 1
1 —1 0 _

xT W = (xl,XZ,X3,X4) 0 1 _01 0 =0 - xT _ (1' 1’ 1’ 1)
0 O 1 -1

» With the initial marking my = (1,0,0,0),

> The constant of marking invariant is
1 The marking invariant is:

x'-My=[1 1 1 1] =1

m1+m2+m3+m4=1

Rt

xI' M, =[1 1 1 11 |m; =my+my+ mg+ my=x" My +x" -W-s=x"-M, =1

o OO

| My 38

T-invariants

> Let N be a net and W be its incidence matrix.
* A natural solution of the equation W -y =0 (y # 0) is
known as a transition invariant (or T-invariant) of N.

State space method

Verification of PN models and system properties is
supported by the state space method.

The basic idea of state spaces is to compute all reachable
states and state changes of the PN model and represent
these as a directed graph, where:

« nodes represent states,
e arcs represent
occurring events.
State spaces can ‘/e
be constructed
fully automatically.

Behavioural questions

« From a state space it is possible to answer a large set of
guestions concerning the behaviour of the system such as:

« Are there any deadlocks?
« Is it always possible to reach a specified state?
« Is the system guaranteed to provide a given service?

y Cycle (no
guarantee for

termination)

: &Deadlock
8,

State spaces - pros

« State spaces are relatively easy to use, and they
have a high degree of automation.

« It is possible to hide a large portion of the
underlying mathematics from the user.

« Often the user only needs to formulate the
property which is to be verified and then apply a
computer tool.

« State spaces can provide counterexamples (error-
traces) giving detailed debugging information
specifying why an expected property does not hold.

State spaces - cons

« The main disadvantage of state spaces is the state
explosion problem.

« Even relatively small systems may have an
astronomical or even infinite number of reachable
states.

« A wide range of state space reduction methods
have been developed to alleviate the state
explosion problem.

Modelling with Petri Nets

Petri nets were designed for and are used mainly for
modelling. Many systems, especially those with independent
components, can be modelled by a Petri net.

The simple Petri net view of a system concentrates on two
primitive concepts: events (transitions) and conditions
(places). Events are actions which take place in the system.
The occurrence of these events is controlled by the state
of the system. The state of the system can be described as
a set of conditions. A condition is a predicate or logical
description of the state of the system.

Example: In a Restaurant (A Petri Net)

Waiter

Customer 1 @ free G O Customer 2

Take Take
order

order

wait Order wait
taken

eating ! ! ! eating

() Tell ;Q
Kkitchen

Serve food Serve food

Example: In a Restaurant
(Two Scenarios)

e Scenario 1:

 Waiter takes order from customer 1; serves customer 1; takes
order from customer 2: serves customer 2.

* Scenario 2:

 Waiter takes order from customer 1; takes order from customer 2;
serves customer 2; serves customer 1.

Example: In a Restaurant (Scenario 1)

Waiter

Customer 1 Q free G ' Customer 2

Take Take
order

order

wait Order wait
taken

eatlng A 4 A 4 A 4

() Tell ;®
Kkitchen

Serve food Serve food

Example: In a Restaurant (Scenario 2)

Waiter

Customer 1 Q free Q ' Customer 2

Take Take
order

order

wait Order wait
taken

eating ! ! ! eating

()) Tell ;Q
Kkitchen

Serve food Serve food

A Restaurant: CPN Tool Simulation

1" "Customer 1"

Custimer M 1" “Customer 1"

Take
Order

wWait

STRIN

Restaurant |
RING
a
a
Come
Again
A
a
, a
STRING
None |

Sarya
Food

1" "Waiter 1"++

LT

1" "Customer 2"

1" "Waiter 2"
Waitar g s - Customer Y 7 a T
Frea 1B 1 "Waiter 1 5 ‘1 1" "Customer 2"|
RIN STRING
b
Take
Order C
b
c
Order Wait Coma
Takan Again
STRING STRI A
b c c
Y Y
Tell Sarve .
Kitchen Food @
STRING

Binder 0

A Restaurant: State Space Analysis

Restaljrant'w aiter_Free 1

nt'Custamer_1 1:

ustomer_2 1:

1:emp
Restaurant' 1: empty
|Restaurant'e empty

'&IQI%I%H

Create

1’ "Customer 1*
11 "Waiter 17
1’ "Customer 2"

Regteurant'Wait_11:1° Customer 1
pestaurant'Order_Taken 1: 1 "Waiter 1"
Restaurant'Wait_2Z 1: empty
Restaurant'eating_2 1: empty
Restaurant'eating_1 1: empty

Fs

é -

estaurant'Customer_1 1: 1" "Customer 1°
Restaurant'Waiter_Free 1: empty
Restsurant'Customer_2 1: empty
Restaurant'Wait_1 1: empty

rant'Order_Talten 1:/1" "Waiter1”

" "Customer 2"

Restaurant'Order_Taken 17e
Restaurant'Wait_2 1: empty
Restaurant'eating_2 1: empty
Restaurant'eating_1 1: empty

Restaurant'Waiter_Free 1: 1" "W aite

12!
Restaurant'Customer_1 1: empty
Restaurant'Waiter_Free 1: 1 "Waiter 1°
Restaurant'Customer_2 1! empty
Restaurant'Wait_1 1: empty
Restaurant'Order_Taken 1: empty
Restaurant'Wait_2 1: 1" "Customer 2"
Restaurant'eating_2 1: empty
Restaurant'sating_1 1: 1 "Customer1”

Restaurant'Customer_1 1: empty
Restzurant'Waiter_Free 1: empty
Restaurant'Customer_2 1: ampty
Restaurant'Wait_1 1: empty
Restaurant'Order_Taken 1:1° “"Waiter 1"
Restaurant'Wait_2 1: 1" "Customer 2"
Restzurant'eating_2 1: empty
Restaurant'eating_1 1: 1 "Customaril”

Restaurant’
Restaurant'w

Restaurant'Wait_2
Restaurant'eating_2
\Restaurant'eating_1 1:

er_11: 1.' "Customer 1°

"Waiter 17 1:
i Restzurant'Customer_1 1: empty
mpty Restaurant'Waiter_Free 1: empty
1: empty Restaurant'Customer_2 1: empty

Resteurant'Wait_1 1: 1" "Customer 17
Restzurant'Order_Taken 1: 1 "Waiter 1"
Restaurant'Wait_2 1: empty

Restaurant'wait_2"%;
Restaurant’eating_2 1
Restaurant'eating_1 1: emp

Restzurant'Customer_1 1: empty
Restaurant'Waiter_Free 1: 1" "Waiter 1°
Restaurant'Customer_Z 1! empty
Restsurant'Wait_1 1: 1" "Customer 1"
Restaurant'Order_Taken 1! empty
Restaurant'Wait_2 1: 1" "Customer 2"
Restzurant'eating_2 1. empty
Restaurant'sating_1 1: empty

Resteurant'eating_2 1: 1" "Customer 2"
Restaurant'sating_1 1: empty

Rcstaumnl Customer_1 1: empty
Restaurant'Waiter_Free 1: 17 "W aiter 1"
Restzurant'Customer_2 1: empty

Restaurant'Customer_1 1: empty
Restaurant'Waiter_Frae 1: 17 "W aiter 1°

Restaurant'Customer_2 1: empty
Resteurant'Wait_1 1: 1" "Customer 1"
Restaurant'Order_Taken 1: empty
Restaurant'Wait_2 1: empty

Restaurant'eating_2 1: 1" "Customer2”

Restaurant'eating_1 1: empty

Restaurant'Wait_1 1: empty
Restaurant'Order_Taken 1: empty
Resteurant'Wait_2 1: empty
Restaurant'eating_2 1: 1" "Customer 2"

Restaurant'eating_1 1: 1" "Customer1”

Example: Vending Machine (A Petri net)

&

Oc@

)

Take 15¢ bar

Deposit 10c

15¢
3¢
Deposit 5¢
| /[Deposit ‘ Deposit
5¢c Deposit 5¢c
\ \ S¢
Deposit 10c
P 10¢ > 20c

Deposit 10c

Take 20c bar

P

al

Example: Vending Machine (3 Scenarios)

e Scenario 1:

* Deposit bc, deposit bc, deposit B¢, deposit B¢, take 20c
shack bar.

* Scenario 2:
* Deposit 10c, deposit bc, take 15¢ snack bar.

 Scenario 3:

* Deposit 5c, deposit 10c, deposit 5c, take 20c¢ snack bar.

Example: Vending Machine (Token Games)

&

Oc@

Take 15¢ bar

Deposit 5¢

5¢

/ Deposit

Deposit 10c

5¢

10c

Take 20c bar

P

Deposit 10c

Deposit

15¢

Deposit

» @) 20c

Deposit 10c

al

CPN Tool Simulation

Vending Machine: State Space Analysis

hine'zero_cent 1: empty
Vending_Machirg'five_cents 1: 1°5
Vending_Machine _cents 1 empty
Vending_Machine'twehty_cents 1. empty
Vending_Machine'fifteen_tents 1: empty

5
_2:2

gending_Machine'zerD_cent 1. empty
ending_Machine'five_cents 1. empty
Vending_Machine'ten_cents 1: empty
Vending_Machine'twenty_cents 1: empty
Vending_Machine'fifteen_cents 1: 1" 15

4

4.
Vending_Machine'zero_cent 1: empty
Vending_Machine'five_cents 1: empty
Vending_Machine'ten_cents 1: empty
Vending_Machine'twenty_cents 1: 1720
Vending_Machine'fifteen_cents 1. empty

Vending_Machine'zero_cent 1: empty
Vending_Machine'five_cents 1: empty
Vending_Machine'ten_cents 1: 1710
Vending_Machine'twenty_cents 1: empty
Vending_Machine'fifteen_cents 1. empty

Concurrent modelling example
Dining Philosophers Problem

* The dining philosophers problem is summarized as five
philosophers sitting at a table doing one of two things:
eating or thinking. While eating, they are not thinking, and
while thinking, they are not eating. The five philosophers
sit at a circular table with a large bowl of noodle in the
centre. A fork is placed in between each pair of adjacent
philosophers, and as such, each philosopher has one fork to
his left and one fork to his right. As noodle is difficult to
serve and eat with a single fork, it is assumed that a
philosopher must eat with two forks. Each philosopher can
only use the forks on his immediate left and immediate
right.

Petri Net examples
(Dining Philosophers)

[LEGEND |

J

* Five philosophers
alternatively think and eating
* forks:
Po: P2 Pa: Ps: Pg
* Philosophers eating:
P10 P11, P12: P13 P14
* Philosophers
thinking/meditating:
P1, Ps, Ps: P7, Pg

The Petri net structure

Suppose eater 4 picks up forks first so the transition
hun4 fires. The state of Petri net as follows:

il o il
IS A
N
1] ‘a"_i_’!fﬂm m{ﬁxﬁwmmﬁ
v\m

After finishing eating, transition fin4 fires.
The state of Petri net is:

il O il
EVAYA
N
oa,-f-’!JﬂM L——ﬁa
g\@ fin
eatzﬁ Tl\xea‘[-ﬂr \|
f\l | o
o eat3 0
h?/

Suppose that eater 3 and eater 5 pick up the forks in the
same time so the transition hun3 and hunb fire in the same
time. The state of Petri net became as:

fark

\Qeaﬂ\g / \ \

1 “’"/__—J fn k5
w\ ,f""l?
Ke atd \]

m fin4

J?il f?\\v/“\“

fork3 Tork4

R

Suppose that eater 3 finished his eating first, so
fin3 fires. The state of the Petri net becomes:

Tork [:hun

/ \QEE'“\ / \

O ﬁ T
. B
et
L

Eater 2 has two forks available. Transition hun2
fires. The state of the Petri net changed to the
follows:

Tark

/ N / \ \

([u] rl-:E fn:u PG

"~ o
i T \ﬁﬁj

Tfark3 aat3

\J/

i

CPN Tools Simulation

Philosophers: State Space Analysis

hilesephers'Fark_1 1: L™ "Fork 1°

Philesophers'Eater_1 1: empty

Philesophers'Fork_5 1: empty

Philesophers'Eater_2 1: 1 "Eater 2 eats with Fork 5 & Fork 4"
Philesophers'Fork_4 1: empty

Philesephers'Eater_3 1t empty

Philesophers'Fark_3 1: empty

Philesophers'Eater_4 1: 1 "Eater 4 eats with Fork 2 & Fork 2"
Philesephers'Fark_2 1: 1 "Fo Philesophers'Fark_2 1: empty

Philesophers'Eater_5 L: empty Philosophers'Eater_5 1: empty

s'Fark_1 1: empty \ k_11: 1 "Fork 1"

| PhilesophersBgter_1 1: 1" "Eater 1 eats with Fork 1 & Fark 5"
Philosophers'Fork.S 1: empty

Philosophers'Eater_"B.1: empry

|Philosophers'Fork_4 1: "% "Fork 4"

Philosophers'Eater_3 1: e
Philesephers'Fark_3 1: 1" "For
|Philesephers'Eater_4 1! empty
Philosephers'Fark_2 1: 1" "Fork 2"
|Philosophers'Eater_5 1! empty

‘Eater_1 1: 1 "Eater 1 eats with Fork 1 & Fork 5"

Y

Philosophers'Eater_3™4; 1 "Eater 3 eats with Fork 4 & Fork 3"
Philosophers'Fark_3 1: empty
Philosophers'Eater_4 1: em

'Philnsnphers'Fnrk_S L
Philesophers'Eater_2 1: 1
|Philosophers'Fork_4 1: empty
Philosophers'Eater_3 1: empry
Philesophers'Fork_3 1: 1" "Fork 3"
|Philosophers'Eater_4 1t &

Philosophers'Fork-2-11 1 " "Fork 2" Philosophers'Fork_1 1: empty

ater_5 1: empty Philosophers'Eater_1 1: empry

Philesephers'Fork_5 1: empty

Philesephers'Eater_2 1: 1 "Eater 2 eats with Fork 5 & Fark 4"
|Philesephers'Fork_4 1: empty

Philesephers'Eater_2 1: empty

Philesephers'Fork_32 1: 1" "Fork 3"

| Philesephers'Eater_4 1: empry

Philesephers'Fark_2 1t empty

|Philosephers'Eater_5 11 1" "Eater 5 eats with Fork 1 & Fark 2"

| Philesopher®Eork_1 1: empty
Philesephers'Ea 11: 1""Eater | eats with Fork 1 & Fark 5"

| Philesephers'Eater_2 1: & 55
Philesephers'Fork_4 1: 1" "For
| PhilospphersEater_3 1: empty

1:
Philesephers'Fork_1 1: 1 "Fork 1"

S

Philosophers'Fork_3 1: empty
Philesophers'Eater_4 1: 1" "Eater 4 pats w
|Philosephers'Ferk_2 1! empty
Philesephers'Eater_5 1: em

A ~.

|Philesephers'Ferk_1 1: empty

Philesophers'Eater_1 1: empty N
|Philssophers'Fork_5 1: 1" "Fork 5" _3.. —-__________-_-__‘—
FPhilesophers'Eater_2 1: empry Philosophers'Fark_1 1 17 "Fork 1

Philosophers'Fork_4 1: 1" "Fork 4"

Philesephers'Eater_1 1: empty
Philesephers'Fork_5 1: 1" "Fork 5"
Philesephers'Eater_2 1: empty
Philesephers'Fork_4 1: 1" "Fork 4"
Philesephers'Eater_2 1: empty
Philesephers'Fark_3 1: 1 "Fork 3"
Philesephers'Eater_4 1: empty
Philesephers'Fork_2 1: 1 "Fork 2"
Philesephers'Eater_5 1: empty

ilesophers'Fork_1 1: L™ "Fork 1"

ilesophers'Eater_1 1: empty

ilesophers'Fork_5 1: L™ "Fork 5"

lesophers'Eater_2 Lt empty

lesophers'Fork_4 11 empry

ilesophers'’Eater_2 1t 1 "Earter 3 earts with Fork 4 & Fork 3"
ilesophers'Fark_3 1! empty

ilesophers'Eater_4 1: empty

ephers'Fork_2 1: L "Fork 2"

ophers'Eater S L: empty

el - - - - - - B

f ! 2:2
. . Philosephers'Eater_1 1. empty et 1
thlnsnpherleater_B g P:prf N Philesephers'Fork_5 1: 1" "Fork 5" ?:_ .
E:!:nsnp:erslzn;k_{‘l:l.l Fork 3 Philosophers'Eater_2 L empty Fl:!:nsnp::arlenrk_l 1 empty
| !nsnp arsI ater_4 1: empty Philosephers'Fork_4 1: 1*"Fork 4" =} !nsnp ers'’Eater_1 L: fmpty
Philesophers'Fark_2 1: empty y q Philosophers'Fork_5 10 L™ "Fork 5"
Philosophers'Eater_5 1: 1" "Eater 5 eats with Fork 1 & Fark 2" Philosophers Eater_3 L empty hilsophers'Eater
ilosophersEater_ H ater D gats w] ar| Philosephers'Fork_3 1: empty =] !nsnp erleater_2 L: empty
Philosophers'Eater_4 1! 1 "Eater 4 gats with Fork 3 & Fork 2" Ph!lnsnpherleorI-c_'t 1 Y . i
Philosophers'Fork_2 1: empty Philesophers'Eater_2 1: 1 "Eater 2 eats with Fork 4 & Fork 2
Philosephers'Eater_5 1: empty Ph!lnsnpherlenrk_S B Coapin
Philosophers'Eater_4 1: empty
Philosophers'Fork_2 1: empty
Philosophers'Eater_5 1: 1" "Earer S eats with Fork 1 & Fork 2"

Two people waking up

adock (@)—>mmmm ringing bathroom

T
wo people waking up

wakeupl
goeatl

@@l@ﬂ@

awakel
eatingl

T
wo people waking up

wakeupl
goeatl

@Oi@ﬂ@

awakel
eatingl

T
wo people waking up

wakeupl
goeatl

@Oi@ﬂ@

awakel
eatingl

Two people waking up

wakeupl goeatl
et O »O—l—@®
avnakel eatingl
noisel
adock ()——>— I ringing
émiseZ
avnake2 eating2

Two people waking up

wakeupl goeatl
et O »O—l—@®
avnakel eatingl
noisel
adock ()——>— I ringing
émiseZ
avnake2 eating2

Two people waking up

Two people waking up

wakeupl goeatl
et O »O—l—@®
avnakel eatingl
noisel
adock ()——>— I ringing
émiseZ
avnake2 eating2

Two people waking up

wakeupl goeatl
slept. () O—{—0
avnakel eatingl
noisel
adock ()——>— I ringing
émiseZ
avnake2 eating2

Two people waking up

wakeupl goeatl
slept. () O—{—0
avnakel eatingl
noisel
adock ()——>— I ringing
émiseZ
avnake2 eating2

Two people waking up

wakeupl goeatl
slept. () O—{—0
avnakel eatingl
noisel
adock ()——>— I ringing
émiseZ
avnake2 eating2

Two People Wait Up CPN Simulation

State Space Analysis

M
o
I *l 212 |
TyaPeopleWw akelp'Sleep_1 1: 1'"Sleap 1" 1 -
TyaoPeopleWw akellp's Clack 1: empry T oPeople elp'Sleep_1 1: empty
| TpaPeopleW akelp'naise_1 1: 17 "Time Up" T oPeopleW ake
aPeoplew akeUp naoise_2 1: empty T oPeopleW akelp'n tempry
aPeoplew akeUp 'Sleep_2 1 empty To oPeopleW akeUp'noise™2 1: empty TwoPeople® akéldp'noise_2 1: empty TwoPeoplew akeUp'noise 2 1: em
aPeoplei akelp'aw ake _1 1: empty To oPeoplew akeUp'Sleep_2 17 | TwoPeopleW akelUp'Sleep_2 1: empt TwoP nplewakeup'slee 2 1', Emp:‘t
aPeople akelp'sating_1 1: empty TeoPeopleW akeUp'awake_1 11 1™45leap 1 TwoPeopleW akelp'a Tw oD IJI W ak Up. E_ 1 1 s
waoPeopleW akelp'w ashing_1 1: empty TwoPeopleW akeUp'aating_1 1: empty L ,a N p.a.? e_1 L empty
waPeopleW akeUp'ready_1 1 empty Tu oPeople akelp'w ashing_1 1: empty 06k ple.ﬁ,ak!Up.eatm?_l L emp‘t"y .
waPeopleW akeUp'gane_1 1: empty To oPeopleW akeUp'ready_1 1: empty TwoPeo :i::::ﬂp:tisdhmf‘; :ml S 4
woPeopleW akeUp'bathroom 1: 1" "bathraom"} |TWoPeoplew akeUp'gone_1 1! empty Tw oPen el\.‘akeup' ?_1 1,' iy
waPeopleW akeUp'aw ake_2 1: empty To oPeopleW akeUp'bathraom 1: 1 "hathroam") [ty Ry
waoPeopleW akelp'eating_2 1: 17 "Sleep 2" TwoPeopleW akelUp'awake_2 11 empty 1000 'I\.IallcEUplhathmnm L E:‘I:':p(',' =
| TwaPeoplew akeUp 'w ashing_2 11 empry Tw oPeople akelUp'eating_2 1: 1" "Sleep 2" TCERe 'n.lal-ceUplan.?ke_E o 8™l
waPeopleW akeUp'ready_2 1 empty T oPeopleW akelp'w ashing_2 L: empty ;::g::p:i .:::Ep-::tsmh?n_z 12: lelrrelpn:y
waoPeopleW akelp'gane_2 1: empty T oPeopleW akeUp'ready 2 1 empty TunPeane akeup'read g_l e;'n t:w
T oPeopleW akeUp'gene_2 1) ampty \TQDPEB:Ie'I\akEU:'gnn:E l:lemppt'{

woPeopleW akelp'Sleap_1 1: empty
TwaoPeopleW akelp's Clack 1: empty
TwaPeopleW akelp'naise_1 1: empry
TwaPeepleW akelp'noise_2 1: empty
TwaPeopleW akelp'Sleap_2 1: empty
TwoPappleW akelp'aw ake_1 1: 17 "Sleep 1"
TwaoPeopleW akellp'eating_1 1: empty
TwaPeopleW akelp'w ashing_1 1: empry
TwaPeopleW akeUp'ready_1 L: empty
TwaPeppleW akelp'gene_1 1: empty
TwaPeopleW akelp'bathraem 1: 1'"bathraom]
TwaoPeopleW akelp'aw ake_2 1: 17 "Sleep 2"
TwaPeopleW akelUp'eating_2 1 empty
TwaPeopleW akelp'w ashing_2 1: empty
TwaPeppleW akelUp'ready_2 1: empty

aPeopleW akeUp'Sleep_1 1t 17"Sleep 1"
waPeopleW akeUp'A Clack 1: empry
waPeopleW akeUp'naise_1 1: 1" "Time Up"
waPeopleW akeUp'naise_2 1: empty
waPeopleW akeUp'Sleep_2 1: empty
TwaPeopleW akelp'awake_1 1t empty
TwaPeopleW akelp'eating_1 1: empty
TwaPeopleW akelp'w ashing_1 1: empry

| TwoPeopleW akeUp'ready_1 1: empty
TwaPeopleW akelp'gane_1 1: empty
TwaPeopleW akeUp'bathraom 1: 1" "bathraom"
| TwoPeopleW akeUp'aw ake_2 1: 1" "Sleep 2"
TwaPeopleW akelp'eating_2 1! empty
TwaoPeopleW akelp'w ashing_2 1: empry

| TwoPeopleW akeUp'ready_2 1: empty
TwaPeopleW akelp'gane_2 1: empty

oPeople akelp'Sleap_1 1: empty
oPeopleW akelp'A Clock 1: empty

Tw oPeoplei Fid
TwoPeopleW ake|
TwoPeopleW ake
TwsPeopleW akeUp'noise_2 1! empty
TwoPeopleWw akelp'Sleap_2 1: empty
TwoPeopleW akellp'awake _1 1: empty
TwoPeopleW akellp'eating_1 1: 17 "Sleep 1"
Tw oPeopleW akellp'w ashing_1 L: empty
TwoPeopleWw akelp'ready_1 1t empty
TwoPeopleWw akelp'gone_1 1: empty

Tw oPeopleW akellp'bathroom 1: 1" *bathroom"
TwoPeopleW akellp'awake _2 1) empty
TwoPeopleW akellp'eating_2 1: 1™ "Sleep 2"

woPeopleW akeUp'awake 1 1: empty
TwoPeopleW akeUp'eating_1 1: 17 "Sleep 1"
TwoPeopleW akeUp'w ashing_1 1t empty
TwoPeopleWw akeUp'ready 1 1: empty
TwoPeoplew akeUp'gene_1 1) empty
TwoPaopleW akeUp'bathroem 1: 17 "bathroom"
TwoPaopleW akeUp'awaka_2 1 17"Sleep 2"
TwoPeopleW akeUp'eating_2 1: empty
TwoPeopleW akeUp'w ashing_2 1: empty
TwoPaopleW akeUp'ready 2 1: empty

2 = [8 TwoPeopleW akeUp'gone_2 1t em
L_1:2 — . :] r 132] TwaPeopleW akelp'gone_2 1: empty e] _ Py Tw bPeoplei akelp'w ashing_2 L empty
| 2 il I 1 1 I i . TwoPeopleWw akelp'ready_2 1: empty
1:2 =
TwaPeopleW akeUp'Sleep_1 1: 17 "Sleep 1" e e Tw oPeopleW akelp'gone_2 1: empty

1 5:

TwoPeopleW akelp'Slesp_1 1: 1" "Sleep 1"
TwoPeopleW akelp'A Clock 1: 1 ""Time Up"
TwoPeopleW akelp'noise_1 1: empty
TwoPeopleW akelp'noise_2 1: empry
TweoPeopleW akelp'Sleep_21: 1" "Sleep 2"

TwoPeopleWw akelp'Sleep_1 1: empty
TwoPeopleW akellp'a Clock 1: empty
TwoPeopleW akellp'npise_1 1: empty
TwoPeoplew akelp'neise_2 1: 1" "Time LUp"
TwoPeopleW akellp'Sleep_2 1: 1" "Sleep 2"

TwaoPeopleW akeUp'A Clack 1: empty

TweoPeopleW akeUp'naise_1 1: 1" "Time Up"
TwoPeopleW akeUp'noise_2 1: 1" "Time Up®
TwaoPeopleW akeUp'Sleep_2 1: 1'"Sleep 2"

TwaPeopleW akeUp'Sleep_1 1: empty
| TwaPeopleW akeUp'A_Clack 1! empty
TwaPeopleW akeUp'naise_1 1: empty
TwoPeopleW akeUp'noise_2 1: 1" "Time Up"

TwoPeopleW akelp'awake_1 1: ampty
TwoPeopleW akelp'eating_1 1: empty
TwoPeopleW akelp'w ashing_1 1: empty
TwoPeopleW akeUp'ready_1 1: empty
TwoPeopleW akelp'gone_1 1: empty
TwoPeopleW akeUp'bathraem 1: 1" "bathroom"
TwoPeopleW akelp'awake_ 2 1: empty
TwoPeopleW akelp'sating_2 1: empty
TwoPeoplei akelp'w ashing_2 1 empty
TwoPeopleW akeUp'ready_2 1: empty
TwoPeopleW akelp'gone_2 1: empty

TwaoPeopleW akeUp'aw ake_1 L empty
TwaoPeopleW akeUp'eating_1 1: empty
TwePeopleW akeUp'w ashing_1 1: empry
TwoPeopleW akeUp'ready_1 1: empty
TwaoPeopleW akeUp'gane_1 1} empty
TwaPeopleW akeUp'bathraom 10 1" "bathraem"|
TwoPeopleW akeUp'aw ake_2 1) empty
TwaoPeopleW akeUp'eating_2 1: empty
TwoPeopleW akeUp'w ashing_2 1: empry
TwaPeopleW akeUp'ready_2 1t empty

TwaoPeopleW akeUp'gane_2 1: empty

TwoPaopleW akellp'awake_1 1 17 "Sleep 1"
TwoPeopleWw akellp'eating_1 1: empty
TwoPeopleW akellp'w ashing_1 1: empty
TwoPeopleW akelp'ready 1 1: empty
TwoPeoplew akelp'gene_1 1) empty
TwoPaoplew akelp'bathraem 1: 1" "bathroom"
TwoPeopleW akellp'awake _2 1: empty
TwoPeopleW akellp'eating_2 1: empty
TwoPeoplew akelp'w ashing_2 1 empry
TwoPeopleW akelp'ready 2 1: empty

TwoPaopleW akelp'gene_2 1) ampty

| TwaPeopleW akeUp'Sleep_2 1: 17 "Sleep 2"

TwoPeopleW akeUp'aw aka_1 1: empty
TwaPeopleW akeUp'eating_1 1: 17 "Sleep 1"
TwaoPeopleW akeUp'w ashing_1 1: empry
TwaoPeopleW akeUp'ready_1 1: empty

|TwaPeopleW akelUp'gane_1 1: empty

TwaPeopleW akeUp'bathraom 1: 17 "hathraom"
TwaoPeopleW akeUp'aw ake _2 i empty

| TwaPeopleW akeUp'eating_2 1: empty

TwoPeopleW akeUp'w ashing_2 1: empry
TwoPeopleW akeUp'ready_2 1: empty

| TwoPeopleW akeUp'gane_2 1: empty

Modelling examples

You can find more examples about Petri Net applications by
searching Internet

Slide 79

	Slide Number 1
	Petri net analysis
	Reachability
	Reachability graph
	Reachability graph (cont.)
	Deadlock
	Liveness
	Liveness (cont.)
	Boundedness
	Boundedness (cont.)
	Boundedness (cont.)
	Boundedness (cont.)
	Boundedness (cont.)
	Boundedness (cont.)
	Safeness
	Safeness (cont.)
	Petri Net Analysis
	Conservation
	Conflict
	Petri Net properties (further comments)
	Petri Nets: Structural Analysis
	Place Invariant
	Place Invariant: Opening question
	Incidence Matrix (weighted petri nets)
	Incidence Matrix
	Exercise 3
	Fundamental equation
	Fundamental equation (cont.)
	Fundamental equation (cont.)
	Fundamental equation (cont.)
	Incidence Matrix Example
	Incidence Matrix Example (cont.)
	Incidence Matrix Example (cont.)
	P-invariants
	P-invariants (cont.)
	P-invariants (cont.)
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Modelling with Petri Nets
	Example: In a Restaurant (A Petri Net)
	Example: In a Restaurant �(Two Scenarios)
	Example: In a Restaurant (Scenario 1)
	Example: In a Restaurant (Scenario 2)
	A Restaurant: CPN Tool Simulation
	A Restaurant: State Space Analysis
	Example: Vending Machine (A Petri net)
	Example: Vending Machine (3 Scenarios)
	Example: Vending Machine (Token Games)
	CPN Tool Simulation
	Vending Machine: State Space Analysis
	Concurrent modelling example�Dining Philosophers Problem
	Petri Net examples �(Dining Philosophers)
	The Petri net structure
	Suppose eater 4 picks up forks first so the transition hun4 fires. The state of Petri net as follows:
	After finishing eating, transition fin4 fires. The state of Petri net is:
	Suppose that eater 3 and eater 5 pick up the forks in the same time so the transition hun3 and hun5 fire in the same time. The state of Petri net became as:�
	Suppose that eater 3 finished his eating first, so fin3 fires. The state of the Petri net becomes:
	Eater 2 has two forks available. Transition hun2 fires. The state of the Petri net changed to the follows:
	CPN Tools Simulation
	Philosophers: State Space Analysis
	Two people waking up
	Two people waking up
	Two people waking up
	Two people waking up
	Two people waking up
	Two people waking up
	Two people waking up
	Two people waking up
	Two people waking up
	Two people waking up
	Two people waking up
	Two People Wait Up CPN Simulation
	State Space Analysis
	Modelling examples

