
(c) 2007 Mauro Pezzè & Michal Young

Structural Testing

slide 1

(c) 2007 Mauro Pezzè & Michal Young

Learning objectives

• Understand rationale for structural testing

– How structural (code-based or glass-box) testing

complements functional (black-box) testing

• Recognize and distinguish basic terms

– Adequacy, coverage

• Recognize and distinguish characteristics of

common structural criteria

• Understand practical uses and limitations of

structural testing

slide 2

(c) 2007 Mauro Pezzè & Michal Young

Structural Testing

• Judging test suite thoroughness based on the

structure of the program itself

– Also known as “white-box”, “glass-box”, or “code-

based” testing

– To distinguish from functional (requirements-based,

“black-box” testing)
– “Structural” testing can still test product functionality against

its specification.

– But include test cases that may not be identified from

specifications alone.

– The measure of thoroughness (i.e., adequacy criteria) has

changed.

slide 3

(c) 2007 Mauro Pezzè & Michal Young

Why structural (code-based) testing?

• One way of answering the question “What is
missing in our test suite?”

– If part of a program is not executed by any test case
in the suite, faults in that part cannot be exposed

– But what’s a “part”?
• Typically, a control flow element or combination:

• Statements (or CFG nodes), Branches (or CFG edges)

• Fragments and combinations: Conditions, paths

• Complements functional testing: Another way
to recognize cases that are treated differently
❖ Recall fundamental rationale: Prefer test cases that are treated

differently over cases treated the same

slide 4

(c) 2007 Mauro Pezzè & Michal Young

No guarantees

• Executing all control flow elements does not

guarantee finding all faults

– Execution of a faulty statement may not always

result in a failure

• The state may not be corrupted when the statement is

executed with some data values

• Corrupt state may not propagate through execution to

eventually lead to failure (e.g., protection mechanism)

• What is the value of structural coverage?

– Increases confidence in thoroughness of testing

• Removes some obvious inadequacies

slide 5

(c) 2007 Mauro Pezzè & Michal Young

Structural testing complements
functional testing

• Control flow testing includes cases that may not

be identified from specifications alone

– Typical case: implementation of a single item of the

specification by multiple parts of the program

• Test suites that satisfy control flow adequacy

criteria could fail in revealing faults that can be

caught with functional criteria

– Typical case: missing path faults

slide 6

(c) 2007 Mauro Pezzè & Michal Young

Structural testing in practice

• Create functional test suite first, then measure
structural coverage to identify see what is missing

• Interpret unexecuted elements
– may be due to natural differences between specification and

implementation

– or may reveal flaws of the software or its development process
• inadequacy of specifications that do not include cases present in

the implementation

• coding practice that radically diverges from the specification
• inadequate functional test suites

• Attractive because
– coverage measurements are convenient progress indicators

– sometimes used as a criterion of completion
• use with caution: does not ensure effective test suites

slide 7

(c) 2007 Mauro Pezzè & Michal Young

Statement testing

• Adequacy criterion: each statement (or node in

the CFG) must be executed at least once

• Coverage:

 # executed statements

 # statements

• Rationale: a fault in a statement can only be

revealed by executing the faulty statement

slide 8

(c) 2007 Mauro Pezzè & Michal Young

Statements or blocks?

• Nodes in a control flow graph often represent

basic blocks of multiple statements

– Some standards refer to basic block coverage or

node coverage

– Difference in granularity, not in concept

– A block has a single entry and a single exit

• Correspondence

– 100% node coverage <-> 100% statement coverage

slide 9

Example

(c) 2007 Mauro Pezzè & Michal Young slide 10

(c) 2007 Mauro Pezzè & Michal Young

Example
 {char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high +

digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

T0 =

{“”, “test”,

“test+case%1Dadequacy”}

17/18 = 94% Stmt Cov.

T1 =

{“adequate+test%0Dexecuti
on%7U”}

18/18 = 100% Stmt Cov.

T2 =

{“%3D”, “%A”, “a+b”,

“test”}

18/18 = 100% Stmt Cov.

slide 11

(c) 2007 Mauro Pezzè & Michal Young

Coverage is not size

• Coverage does not depend on the number of

test cases

– T1 >coverage T0 although T1 contains more test cases

than T0

– T2 =coverage T1 although T2 contains more test cases

than T1

slide 12

(c) 2007 Mauro Pezzè & Michal Young

“All statements” can miss some cases

 {char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high +

digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else {

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

• Complete statement

coverage may not imply

executing all branches in

a program

• Example:

– Suppose block F were

taken out from the

source code

– Statement adequacy

would not require false

branch from D to L

T3 =

{“”, “+%0D+%4J”}

100% Stmt Cov.

No false branch from D

slide 13

(c) 2007 Mauro Pezzè & Michal Young

Branch testing

• Adequacy criterion: each branch (edge in the
CFG) must be executed at least once

• Coverage:

 # executed branches

 # branches

T3 = {“”, “+%0D+%4J”}

100% Stmt Cov. 88% Branch Cov. (7/8 branches)

T2 = {“%3D”, “%A”, “a+b”, “test”}

100% Stmt Cov. 100% Branch Cov. (8/8 branches)

slide 14

(c) 2007 Mauro Pezzè & Michal Young

Statements vs branches

• Traversing all edges of a graph causes all nodes

to be visited

– So test suites that satisfy the branch adequacy

criterion for a program P also satisfy the statement

adequacy criterion for the same program

• The converse is not true (see T3)

– A statement-adequate (or node-adequate) test suite

may not be branch-adequate (edge-adequate)

slide 15

(c) 2007 Mauro Pezzè & Michal Young

“All branches” can still miss conditions

• Sample fault: if line 27 was replaced by the

following faulty statement (missing negation):

 digit_high == 1 || digit_low == -1

• Branch adequacy criterion could still be

satisfied by varying only digit_low

– The faulty sub-expression might never determine the

result

– We might never really test the faulty condition, even

though we tested both outcomes of the branch

slide 16

(c) 2007 Mauro Pezzè & Michal Young

Condition testing

• Branch coverage exposes faults in how a

computation has been decomposed into cases
– intuitively attractive: check the programmer’s case analysis;

but only roughly: groups cases with the same outcome

• Condition coverage considers case analysis in

more detail

– also individual conditions in a compound Boolean

expression

• e.g., in “digit_high == 1 || digit_low == -1”

• consider ”digit_high == 1 “, “digit_high != 1”, ”digit_low ==

-1 “, “digit_low != 1”

slide 17

(c) 2007 Mauro Pezzè & Michal Young

Basic condition testing

• Adequacy criterion: each basic condition must be

executed at least once

• Coverage:

truth values taken by all basic conditions

 2 * # basic conditions

slide 18

(c) 2007 Mauro Pezzè & Michal Young

Basic conditions vs branches

• Basic condition adequacy criterion can be

satisfied without satisfying branch coverage

T4 = {“first+test%9Ktest%K9”}

 satisfies basic condition adequacy

 does not satisfy branch condition adequacy
– “digit_high == -1 || digit_low == -1” is always true

Branch and basic condition are not comparable

 (neither implies the other)

slide 19

(c) 2007 Mauro Pezzè & Michal Young

Covering branches and conditions

• Branch and condition adequacy:
– cover all conditions and all decisions

• Compound condition adequacy:
– Cover all possible evaluations of compound conditions

– Cover all branches of a decision tree

Ch 12, slide 20

(c) 2007 Mauro Pezzè & Michal Young

Compound conditions:
Exponential complexity

(((a || b) && c) || d) && e

 Test a b c d e
 Case

 (1) T — T — T
 (2) F T T — T
 (3) T — F T T

 (4) F T F T T
 (5) F F — T T

 (6) T — T — F
 (7) F T T — F
 (8) T — F T F

 (9) F T F T F
 (10) F F — T F

 (11) T — F F —
 (12) F T F F —
 (13) F F — F —

•short-circuit evaluation often reduces this to a more manageable
number, but not always

slide 21

(c) 2007 Mauro Pezzè & Michal Young

Path adequacy

• Decision and condition adequacy criteria

consider individual program decisions

• Path testing focuses consider combinations of

decisions along paths

• Adequacy criterion: each path must be

executed at least once

• Coverage:

 # executed paths

 # paths

slide 22

(c) 2007 Mauro Pezzè & Michal Young

Practical path coverage criteria

• The number of paths in a program with loops is

unbounded

– the simple criterion is usually impossible to satisfy

• For a feasible criterion: Partition infinite set of

paths into a finite number of classes

• Useful criteria can be obtained by limiting

– the number of traversals of loops

– the length of the paths to be traversed

– the dependencies among selected paths

slide 23

(c) 2007 Mauro Pezzè & Michal Young

Boundary interior path testing

• Group together paths that differ only in the

subpath they follow when repeating the body of

a loop

– Follow each path in the control flow graph up to the

first repeated node

– The set of paths from the root of the tree to each

leaf is the required set of subpaths for

boundary/interior coverage

slide 24

(c) 2007 Mauro Pezzè & Michal Young

Boundary interior adequacy for cgi-decode

slide 25

(c) 2007 Mauro Pezzè & Michal Young

Limitations of boundary interior adequacy

• The number of paths can still grow exponentially

if (a) {

 S1;

}

if (b) {

 S2;

}

if (c) {

 S3;

}

...

if (x) {

 Sn;

}

• The subpaths through this control

flow can include or exclude each of

the statements Si, so that in total N

branches result in 2N paths that

must be traversed

• Choosing input data to force

execution of one particular path

may be very difficult, or even

impossible if the conditions are not

independent

slide 26

(c) 2007 Mauro Pezzè & Michal Young

Loop boundary adequacy

• Variant of the boundary/interior criterion that treats

loop boundaries similarly but is less stringent with

respect to other differences among paths

• Criterion: A test suite satisfies the loop boundary

adequacy criterion iff for every loop:

– In at least one test case, the loop body is iterated zero times

– In at least one test case, the loop body is iterated once

– In at least one test case, the loop body is iterated more than

once

• Corresponds to the cases that would be considered in a

formal correctness proof for the loop

slide 27

(c) 2007 Mauro Pezzè & Michal Young

Satisfying structural criteria

• Sometimes criteria may not be satisfiable

– The criterion requires execution of

• statements that cannot be executed as a result of

– defensive programming

– code reuse (reusing code that is more general than strictly

required for the application)

• conditions that cannot be satisfied as a result of

– interdependent conditions

• paths that cannot be executed as a result of

– interdependent decisions

slide 28

	Slide 1: Structural Testing
	Slide 2: Learning objectives
	Slide 3: Structural Testing
	Slide 4: Why structural (code-based) testing?
	Slide 5: No guarantees
	Slide 6: Structural testing complements functional testing
	Slide 7: Structural testing in practice
	Slide 8: Statement testing
	Slide 9: Statements or blocks?
	Slide 10: Example
	Slide 11: Example
	Slide 12: Coverage is not size
	Slide 13: “All statements” can miss some cases
	Slide 14: Branch testing
	Slide 15: Statements vs branches
	Slide 16: “All branches” can still miss conditions
	Slide 17: Condition testing
	Slide 18: Basic condition testing
	Slide 19: Basic conditions vs branches
	Slide 20: Covering branches and conditions
	Slide 21: Compound conditions: Exponential complexity
	Slide 22: Path adequacy
	Slide 23: Practical path coverage criteria
	Slide 24: Boundary interior path testing
	Slide 25: Boundary interior adequacy for cgi-decode
	Slide 26: Limitations of boundary interior adequacy
	Slide 27: Loop boundary adequacy
	Slide 28: Satisfying structural criteria

