
Testing and Analysis Principles

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 2

Learning objectives

• Understand the basic principles undelying A&T
techniques

• Grasp the motivations and applicability of the
main principles

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 3

Main A&T Principles

• General engineering principles:
– Partition: divide and conquer
– Visibility: making information accessible
– Feedback: tuning the development process

• Specific A&T principles:
– Sensitivity: better to fail every time than sometimes
– Redundancy: making intentions explicit
– Restriction: making the problem easier

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 4

Sensitivity: better to fail every time
than sometimes

• Consistency helps:
– a test selection criterion works better if every

selected test provides the same result, i.e., if the
program fails with one of the selected tests, it fails
with all of them (reliable criteria)

– run time deadlock analysis works better if it is
machine independent, i.e., if the program deadlocks
when analyzed on one machine, it deadlocks on
every machine

Sensitivity example

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 5

• The procedure stringCopy is
sensitive: It is guaranteed to
fail in an observable way if
the source string is too long

• Run-time array bounds
checking in many
programming languages
(including Java) is an
example of the sensitivity
principle applied at the
language level.

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 6

Redundancy: making intentions explicit

• Redundant checks can increase the capabilities
of catching specific faults early or more
efficiently.
– Static type checking is redundant with respect to

dynamic type checking, but it can reveal many type
mismatches earlier and more efficiently.

– Validation of requirement specifications is
redundant with respect to validation of the final
software, but can reveal errors earlier and more
efficiently.

– Testing and proof of properties are redundant, but
are often used together to increase confidence

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 7

Restriction: making the problem easier

• Suitable restrictions can reduce hard
(unsolvable) problems to simpler (solvable)
problems
– It is impossible (in general) to show that pointers are

used correctly, but the simple Java requirement that
pointers are initialized before use is simple to
enforce.

– it is impossible (in general) to show that type errors
do not occur at run-time in a dynamically typed
language, but statically typed languages impose
stronger restrictions that are easily checkable.

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 8

Partition: divide and conquer

• Hard testing and verification problems can be
handled by suitably partitioning the input
space:
– both structural and functional test selection criteria

identify suitable partitions of code or specifications
(partitions drive the sampling of the input space)

– verification techniques fold the input space
according to specific characteristics, grouping
homogeneous data together and determining
partitions

9

Failure (valuable test case)
No failure

Failures are sparse
in the space of
possible inputs ...

... but dense in some
parts of the space

If we systematically test some
cases from each part, we will
include the dense parts

Th
e

sp
ac

e
of

 p
os

si
bl

e
in

pu
t v

al
ue

s

Partitioning (ideal situation)

Based on slides by Mauro Pezzè &
Michal Young

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 10

Visibility: Judging status

• The ability to measure progress or status
against goals

• X visibility = ability to judge how we are doing on X, e.g.,
schedule visibility = “Are we ahead or behind schedule,”
quality visibility = “Does quality meet our objectives?”

– Involves setting goals that can be assessed at each
stage of development

• The biggest challenge is early assessment, e.g., assessing
specifications and design with respect to product quality

• Related to observability
– Example: Choosing a simple or standard internal

data format to facilitate unit testing

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 11

Feedback: tuning the development
process

• Learning from experience: Each project
provides information to improve the next

• Examples
– Checklists are built on the basis of errors revealed in

the past
– Error taxonomies can help in building better test

selection criteria
– Design guidelines can avoid common pitfalls

⇒Software Analytics https://seanalytics.github.io/

https://seanalytics.github.io/

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 12

Summary
• The discipline of test and analysis is

characterized by 6 main principles:
– Sensitivity: better to fail every time than sometimes
– Redundancy: making intentions explicit
– Restriction: making the problem easier
– Partition: divide and conquer
– Visibility: making information accessible
– Feedback: tuning the development process

• They can be used to understand advantages and
limits of different approaches and compare
different techniques

Exit Quiz
Indicate which principles guided the following choices:
1. Use an externally readable format also for internal files, when
possible.
2. Collect and analyze data about faults revealed and removed from
the code.
3. Separate test and debugging activities; that is, separate the design
and execution of test cases to reveal failures (test) from the
localization and removal of the corresponding faults (debugging).
4. Distinguish test case design from execution.
5. Produce complete fault reports.
6. Use information from test case design to improve requirements and
design
specifications.
7. Provide interfaces for fully inspecting the internal state of a class.

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 13

Test and Analysis Activities
within a Software Process

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 15

Learning objectives

• Understand the role of quality is the
development process

• Build an overall picture of the quality process
• Identify the main characteristics of a quality

process
– visibility
– anticipation of activities
– feedback

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 16

Software Qualities and Process
• Qualities cannot be added after development

– Quality results from a set of inter-dependent activities
– Analysis and testing are crucial but far from sufficient.

• Testing is not a phase, but a lifecycle
– Testing and analysis activities occur from early in requirements

engineering through delivery and subsequent evolution.
– Quality depends on every part of the software process

• An essential feature of software processes is that
software test and analysis is thoroughly integrated and
not an afterthought

17

Cost of defects …

• Cost of correcting an error in requirement specifications increases
as we move through lifecycle phases

Based on slides by Mauro Pezzè &
Michal Young

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 18

The Quality Process

• Quality process: set of activities and
responsibilities
– focused primarily on ensuring adequate

dependability
– In contrast to other processes concerned with, e.g.,

project schedule or product usability

• The quality process provides a framework for
– selecting and arranging activities
– considering interactions and trade-offs with other

important goals.

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 19

Interactions and tradeoffs
example

high dependability vs. time to market
• Mass market products:

– better to achieve a reasonably high degree of dependability on
a tight schedule than to achieve ultra-high dependability on a
much longer schedule

• Critical medical devices:
– better to achieve ultra-high dependability on a much longer

schedule than a reasonably high degree of dependability on a
tight schedule

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 20

Properties of the Quality Process

• Completeness: Appropriate activities are
planned to detect each important class of
faults.

• Timeliness: Faults are detected at a point of
high leverage (as early as possible)

• Cost-effectiveness: Activities are chosen
depending on cost and effectiveness
– cost must be considered over the whole

development cycle and product life
– the dominant factor is usually the cost of repeating

an activity through many change cycles.

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 21

Planning and Monitoring

• The quality process
– Balances several activities across the whole

development process
– Selects and arranges them to be as cost-effective as

possible
– Improves early visibility

• Quality goals can be achieved only through
careful planning

• Planning is integral to the quality process

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 22

Process Visibility
• A process is visible to the extent that one can answer

the question
– How does our progress compare to our plan?
– Example: Are we on schedule? How far ahead or behind?

• The quality process has not achieved adequate visibility
if one cannot gain strong confidence in the quality of
the software system before it reaches final testing
– quality activities are usually placed as early as possible

• design test cases at the earliest opportunity (not ``just in time'')
• uses analysis techniques on software artifacts produced before

actual code.
– motivates the use of “proxy” measures

• Ex: the number of faults in design or code is not a true measure
of reliability, but we may count faults discovered in design
inspections as an early indicator of potential quality problems

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 23

A&T Strategy

• Planning involves the development of
both strategies and (detailed) plans

• A&T Strategies: Company- or project-wide
standards that must be satisfied
– procedures required, e.g., for obtaining quality

certificates
– techniques and tools that must be used
– documents that must be produced

Details in Ch. 21
of textbook

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 24

A&T Plan
• A comprehensive description of the quality process that

includes:
– objectives and scope of A&T activities
– documents and other items that must be available
– items to be tested
– features to be tested and not to be tested
– analysis and test activities
– staff involved in A&T
– constraints
– pass and fail criteria
– schedule
– deliverables
– hardware and software requirements
– risks and contingencies

Details in Ch. 24
of textbook

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 25

Quality Goals

• Process qualities (visibility,....)
• Product qualities

– internal qualities (maintainability,
reusability, traceability....)

– external qualities
• usefulness qualities:

– usability, performance, security, portability,
interoperability

• dependability
– correctness, reliability, safety, robustness

Characteristics of software quality

McCall’s Quality
Factor TreeBased on slides by Mauro Pezzè &

Michal Young
Ch 3, slide 26

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 27

Dependability Qualities
• Correctness:

– A program is correct if it is consistent with its specification
• seldom practical for non-trivial systems

• Reliability:
– likelihood of correct function for some ``unit'' of behavior

• relative to a specification and usage profile
• statistical approximation to correctness (100% reliable = correct)

• Safety:
– preventing hazards

• Robustness
– acceptable (degraded) behavior under extreme conditions

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 28

Example of Dependability Qualities

7 56

1211
10

8 4

2
1

9 3 • Correctness, reliability:
let traffic pass according
to correct pattern and
central scheduling

• Robustness, safety:
Provide degraded
function when possible;
never signal conflicting
greens.

• Blinking red / blinking
yellow is better than no
lights; no lights is better
than conflicting greens

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 29

Relation among Dependability Qualites

Correct

Reliable

Safe

Robust

robust but not
safe: catastrophic
failures can occur

safe but not
correct:

annoying
failures can

occur

reliable but
not correct:

failures
occur rarely

correct but
not safe or
robust: the

specification
is inadequate

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 30

Analysis

• analysis includes
– manual inspection techniques
– automated analyses

• can be applied at any development stage
• particularly well suited at the early stages of

specifications a design

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 31

Inspection
• can be applied to essentially any document

– requirements statements
– architectural and detailed design documents
– test plans and test cases
– program source code

• may also have secondary benefits
– spreading good practices
– instilling shared standards of quality.

• takes a considerable amount of time
• re-inspecting a changed component can be expensive
• used primarily

– where other techniques are inapplicable
– where other techniques do not provide sufficient coverage

Inspection examples

• Modern code review tools such as Gerrit

• https://www.youtube.com/watch?v=DyAX8ws5
OIc

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 32

https://www.youtube.com/watch?v=DyAX8ws5OIc
https://www.youtube.com/watch?v=DyAX8ws5OIc

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 33

Automatic Static Analysis

• More limited in applicability
– can be applied to some formal representations of

requirements models
– not to natural language documents

• are selected when available
– substituting machine cycles for human effort makes

them particularly cost-effective.

Automatic Static Analysis examples

• See the demo of this tool
https://www.youtube.com/watch?v=CAbyd3sLL
CQ

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 34

https://www.youtube.com/watch?v=CAbyd3sLLCQ
https://www.youtube.com/watch?v=CAbyd3sLLCQ

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 35

Testing

• Executed late in development
• Start as early as possible
• Early test generation has several advantages

– Tests generated independently from code, when the
specifications are fresh in the mind of analysts

– The generation of test cases may highlight
inconsistencies and incompleteness of the
corresponding specifications

– tests may be used as compendium of the
specifications by the programmers

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 36

Improving the Process

• Long lasting errors are common
• It is important to structure the process for

– Identifying the most critical persistent faults
– tracking them to frequent errors
– adjusting the development and quality processes to

eliminate errors

• Feedback mechanisms are the main ingredient
of the quality process for identifying and
removing errors

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 37

Organizational factors

• Different teams for development and quality?
– separate development and quality teams is common

in large organizations
– indistinguishable roles is postulated by some

methodologies (extreme programming)

• Different roles for development and quality?
– test designer is a specific role in many organizations
– mobility of people and roles by rotating engineers

over development and testing tasks among different
projects is a possible option

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 38

Example of Allocation of
Responsibilities

• Allocating tasks and responsibilites is a complex job:
we can allocate
– Unit testing

• to the development team (requires detailed knowledge of the
code)

• but the quality team may control the results (structural coverage)
– Integration, system and acceptance testing

• to the quality team
• but the development team may produce scaffolding and oracles

– Inspection and walk-through
• to mixed teams

– Regression testing
• to quality and maintenance teams

– Process improvement related activities
• to external specialists interacting with all teams

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 39

Allocation of Responsibilities and rewarding
mechanisms: case A

• allocation of responsibilities
– Development team responsible development

measured with LOC (lines of code) per person month
– Quality team responsible for quality

• possible effect
– Development team tries to maximize productivity,

without considering quality
– Quality team will not have enough resources for bad

quality products
• result

– product of bad quality and overall project failure

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 40

Allocation of Responsibilities and rewarding
mechanisms: case B

• allocation of responsibilities
– Development team responsible for both

development and quality control

• possible effect
– the problem of case A is solved
– but the team may delay testing for development

without leaving enough resources for testing

• result
– delivery of a not fully tested product and overall

project failure

Based on slides by Mauro Pezzè &
Michal Young

Ch 4, slide 41

Summary
• Test and Analysis are complex activties that

must be sutiably planned and monitored
• A good quality process obeys some basic

principles:
– visibility
– early activities
– feedback

• aims at
– reducing occurrences of faults
– assessing the product dependability before delivery
– improving the process

Brainstorming

Identify some correctness, robustness and safety
properties of automatic car parking system.

https://youtu.be/cBctth36jik

Based on slides by Mauro Pezzè &
Michal Young

Ch 3, slide 42

https://youtu.be/cBctth36jik

	Testing and Analysis Principles
	Learning objectives
	Main A&T Principles
	Sensitivity: better to fail every time than sometimes
	Sensitivity example
	Redundancy: making intentions explicit
	Restriction: making the problem easier
	Partition: divide and conquer
	Slide Number 9
	Visibility: Judging status
	Feedback: tuning the development process
	Summary
	Exit Quiz
	Test and Analysis Activities �within a Software Process
	Learning objectives
	Software Qualities and Process
	Cost of defects …
	The Quality Process
	Interactions and tradeoffs
	Properties of the Quality Process
	Planning and Monitoring
	Process Visibility
	A&T Strategy
	A&T Plan
	Quality Goals
	Characteristics of software quality
	Dependability Qualities
	Example of Dependability Qualities
	Relation among Dependability Qualites
	Analysis
	Inspection
	Inspection examples
	Automatic Static Analysis
	Automatic Static Analysis examples
	Testing
	Improving the Process
	Organizational factors
	Example of Allocation of Responsibilities
	Allocation of Responsibilities and rewarding mechanisms: case A
	Allocation of Responsibilities and rewarding mechanisms: case B
	Summary
	Brainstorming

