
Finite Models

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 2

Learning objectives

• Understand goals and implications of finite
state abstraction

• Learn how to model program control flow with
graphs

• Learn how to model the software system
structure with call graphs

• Learn how to model finite state behavior with
finite state machines

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 3

Properties of Models
• Compact: representable and manipulable in a reasonably compact

form
– What is reasonably compact depends largely on how the model will be

used

• Predictive: must represent some salient characteristics of the
modeled artifact well enough to distinguish between good and bad
outcomes of analysis
– no single model represents all characteristics well enough to be useful for all

kinds of analysis

• Semantically meaningful: it is usually necessary to interpret
analysis results in a way that permits diagnosis of the causes of
failure

• Sufficiently general: models intended for analysis of some
important characteristic must be general enough for practical use
in the intended domain of application

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 4

Graph Representations: directed graphs

• Directed graph:
– N (set of nodes)
– E (relation on the set of nodes) edges

Nodes: {a, b, c}
Edges: {(a,b), (a, c), (c, a)}

a

b c

b a c

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 5

Graph Representations: labels and code
• We can label nodes with the names or descriptions of

the entities they represent.
– If nodes a and b represent program regions containing

assignment statements, we might draw the two nodes and an
edge (a,b) connecting them in this way:

x = y + z;

a = f(x);

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 6

Multidimensional Graph Representations
• Sometimes we draw a single diagram to

represent more than one directed graph,
drawing the shared nodes only once
– class B extends (is a subclass of) class A
– class B has a field that is an object of type C

extends relation
 NODES = {A, B, C}
 EDGES = {(A,B)}

includes relation
 NODES = {A, B, C}
 EDGES = {(B,C)}

a

b c

Based on slides by Mauro Pezzè &
Michal Young

Ch 5, slide 7

Finite Abstraction of Behavior
An abstraction function suppresses some details of program
execution. it lumps together execution states that differ with respect
to the suppressed details but are otherwise identical.

Program execution states with different successor states can
been merge:

Based on slides by Mauro Pezzè &
Michal Young

Ch 5, slide 8

(Intraprocedural) Control Flow Graph
(CFG)

• nodes = regions of source code (basic blocks)
– Basic block = maximal program region with a single entry and

single exit point
– Often statements are grouped in single regions to get a

compact model
– Sometime single statements are broken into more than one

node to model control flow within the statement

• directed edges = possibility that program execution
proceeds from the end of one region directly to the
beginning of another

Building blocks for CFG

Based on slides by Mauro Pezzè &
Michal Young

Ch 5, slide 9

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 10

Example of
Control Flow

Graph
public static String collapseNewlines(String argStr)

{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

b1

jX

jT

jE

jL

Based on slides by Mauro Pezzè &
Michal Young

Ch 5, slide 11

Linear Code Sequence and Jump (LCSJ)

From Sequence of basic
blocs

To

Entry b1 b2 b3 jX

Entry b1 b2 b3 b4 jT

Entry b1 b2 b3 b4 b5 jE

Entry b1 b2 b3 b4 b5 b6 b7 jL

jX b8 ret

jL b3 b4 jT

jL b3 b4 b5 jE

jL b3 b4 b5 b6 b7 jL

Essentially subpaths of
the control flow graph

from one branch to
another

Pen and paper exercise

Based on slides by Mauro Pezzè &
Michal Young

Ch 5, slide 12

Draw the control flow graph for the following code.

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 13

Interprocedural control flow graph

• Call graphs
– Nodes represent procedures

• Methods
• C functions
• ...

– Edges represent calls relation

Based on slides by Mauro Pezzè &
Michal Young

Ch 5, slide 14

Overestimating the calls relation
public class C {
 public static C cFactory(String kind) {
 if (kind == "C") return new C();
 if (kind == "S") return new S();
 return null;
 }
 void foo() {
 System.out.println("You called the parent's method");
 }
 public static void main(String args[]) {
 (new A()).check();
 }
}
class S extends C {
 void foo() {
 System.out.println("You called the child's method");
 }
}
class A {
 void check() {
 C myC = C.cFactory("S");
 myC.foo();
 }
}

The static call
graph includes
calls through
dynamic
bindings that
never occur in
execution.

A.check()

C.foo() S.foo() C.cFactory(string)

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 15

Contex Insensitive Call graphs
public class Context {

public static void main(String args[]) {
Context c = new Context();
c.foo(3);
c.bar(17);

}
void foo(int n) {
int[] myArray = new int[n];
depends(myArray, 2) ;
}
void bar(int n) {
int[] myArray = new int[n];
depends(myArray, 16) ;
}
void depends(int[] a, int n) {
a[n] = 42;
}

}

main

C.foo C.bar

C.depends

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 16

Contex Sensitive Call graphs

public class Context {
public static void main(String args[]) {
Context c = new Context();
c.foo(3);
c.bar(17);

}
void foo(int n) {
int[] myArray = new int[n];
depends(myArray, 2) ;

}
void bar(int n) {
int[] myArray = new int[n];
depends(myArray, 16) ;

}
void depends(int[] a, int n) {
a[n] = 42;

}
}

main

C.foo(3) C.bar(17)

C.depends(int(3),a,2) C.depends (int(17),a,16)

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 17

Context Sensitive CFG
exponential growth

A

B

D

F

H

C

E

G

I

J

1 context A

2 contexts AB AC

4 contexts ABD ABE ACD ACE

8 contexts …

16 calling contexts …

Based on slides by Mauro Pezzè &
Michal Young

Ch 5, slide 18

Finite state machines
• finite set of states (nodes) with transitions among states (edges)
• Event

Respond
 means “event, respond” (e.g., LF

emit
 means “receiving LF, responding emit”.)

Example of graph representation Tabular representation

LF: line feed
CR: carriage return
EOF: end-of-fine
other: everything else
(e.g., d / emit means “emit and
then proceed to state d”)

Note. In this FSM a transition from
state I on a CR event is omitted.

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 19

Using Models to Reason about System
Properties

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 20

Model Abstraction
is used building an FSM from a
program

Note. An FSM is generated immediately
from a tabular representation.

Based on slides by Mauro Pezzè & Michal Young Ch 5, slide 21

Summary

• Models must be much simpler than the artifact
they describe to be understandable and
analyzable

• Must also be sufficiently detailed to be useful
• CFG are built from software
• FSM can be built before software to

documentintended behavior

	Finite Models
	Learning objectives
	Properties of Models
	Graph Representations: directed graphs
	Graph Representations: labels and code
	Multidimensional Graph Representations
	Finite Abstraction of Behavior
	(Intraprocedural) Control Flow Graph (CFG)
	Building blocks for CFG
	Example of Control Flow Graph
	Linear Code Sequence and Jump (LCSJ)
	Pen and paper exercise
	Interprocedural control flow graph
	Overestimating the calls relation
	Contex Insensitive Call graphs
	Contex Sensitive Call graphs
	Context Sensitive CFG�exponential growth
	Finite state machines
	Using Models to Reason about System Properties
	Model Abstraction�is used building an FSM from a program
	Summary

