Dependence and Data Flow Models

Why Data Flow Models?

e Models discussed earlier emphasized control
e Control flow graph, call graph, finite state machines

e \We also need to reason about dependence

e Where does this value of x come from?
e What would be affected by changing this?

e Many program analyses and test design
techniques use data flow information

- Often in combination with control flow
e Example: “Taint” analysis to prevent SQL injection attacks
e Example: Dataflow test criteria

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 2

Def-Use Pairs (1)

e A def-use (du) pair associates a point in a program
where a value is produced with a point where it is used

e Definition: where a variable gets a value
- Variable declaration (often the special value “uninitialized™)
- Variable initialization
- Assignment
- Values received by a parameter

e Use: extraction of a value from a variable
- Expressions
- Conditional statements
- Parameter passing
- Returns

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 3

Def-Use Pairs

(...]
|f()_{ { if (){ 1 Definition:

X -, \ X gets a
- ‘ e value
} i
\§ i l J
y=...+tX+ ...] (J A
N ‘ Use: the value
of x Is
D([e)igtuhse f // extracted
[y = ...+ xﬁ%
...]
Based on slides by Mauro Pezzeé & Ch 6, slide 4

Michal Youna

public int gcd

Def-Use Pairs (3) ®
int tmp; derf={x v, tmp}
e use ={}
/** Euclid's algorithm */ l &
public class GCD (while (y 1= 0) 8
{ \E def = {}
public int gcd(int x, int y) { o Fae Tﬂue Em
int tmp; // A: def x, y, tmp |
while (y '=0){ //B:usey f’;mp:x”_ ()
tmp=x%y; //C:deftmp; usex,y . | PP
X=Y,; // D: def x; use y l i
y = tmp; // E: defy; use tmp ((o)
} __Y def = { x}
return Xx; // F: use x ‘ use = {y)
}
IIr"‘_--,"='EFI’IFZIZ @
. def =]
use = {Imp}
AN
_.|Eeturn X; @
e der =g
use = {x}
Based on slides by Mauro Pezze &

Michal Youna

Def-Use Pairs (3)

e A definition-clear path is a path along the CFG
from a definition to a use of the same variable
without another definition of the variable
between
- If, instead, another definition is present on the

path, then the latter definition Kills the former

e A def-use pair iIs formed If and only if there iIs a
definition-clear path between the definition
and the use

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 6

Definition-Clear or Killing

X=... [/A:defx)
q=... —
x=y; [/ Bikillx, defx 7 ") Definition: x
Z=... [X = ... gets a value
y = f(x); // C: use X) I g
Definition: x
Path A..C is - . gets a new
not definition—clear< B — ‘ value, old value
X7y) is killed
|
Path B..C is \) |
definition-clear | | : \ Use: the value
\@ y = f(x) of X is
N) extracted
Based on slides by Mauro Pezzeé & Ch 6, slide 7

Michal Youna

(Direct) Data Dependence Graph

e Adirect data dependence graph is:
- Nodes: as in the control flow graph (CFG)
- Edges: def-use (du) pairs, labelled with the variable name

The two
unlabeled
edges from
node E to
nodes B
and D
should be
labeled “y”.
The edge
from D to C
should be
labeled “x”
and not

uy" .

- ———————— ——
!

"public int ged(int x, int y) {

Q“t tn"||:=|;I

E.g., XIS

used in k.

[while (y 1= 0)
{

IVIEWI IRATL T il 1w

I
I
I
|
| defined in D and
i
I

(return X:

d

Ch 6, slide 8

Control dependence (1)

e Data dependence: Where did these values come from?
e Control dependence: Which statement controls
whether this statement executes?

- Nodes: as in the CFG
- Edges: unlabelled, from entry/branching points to controlled

blocks
public int gediint x, int y) { @
Jnt tmp; i)
¢ p!
C.'.fhile (y 1= 0} (Eg |f?eturn X; @
; N .
A
f’ ™
\
{mp=x%y © | G=tme ®
Y
=y o)
Based on slides by Mauro Pezze & Ch 6, slide 9

Michal Youna

Dominators

e Pre-dominators in a rooted, directed graph can be
used to make this intuitive notion of “controlling
decision” precise.

e Node M dominates node N if every path from the root
to N passes through M.
- A node will typically have many dominators, but except for the
root, there is a unique immediate dominator of node N which

Is closest to N on any path from the root, and which is in turn
dominated by all the other dominators of N.

- Because each node (except the root) has a unique immediate
dominator, the immediate dominator relation forms a tree.

e Post-dominators: Calculated in the reverse of the

control flow graph, using a special “exit”” node as the
root.

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 10

Dominators (example)

— e A pre-dominates (i.e. Is a pre-
A dominator of) all nodes; G post-
5 dominates (i.e. iIs a post-dominator of)
A all nodes
c c e F and G post-dominate E
T [= Gisthe immediate post-dominator of B
(—D—\ (—F_\ - C does not post-dominate B

e B is the iImmediate pre-dominator of G
- F does not pre-dominate G
e B and all of its post-dominators form a
tree

Based on slides by Mauro Pezze & Ch 6, slide 11
Michal Youna

Control dependence (2)

e \We can use post-dominators to give a more precise
definition of control dependence:
- Consider again a node N that is reached on some but not all
execution paths.
- There must be some node C with the following conditions:

e C has at least two successors in the control flow graph (i.e., it
represents a control flow decision);

e C is not post-dominated by N

e there is NO successor of C in the control flow graph such that the
above two conditions are true.

- We say node N is control-dependent on node C.

e |ntuitively: C was the last decision that controlled whether N
executed

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 12

Control Dependence

F is control
dependent | A
on B. [Execution of Fis
(B not inevitable at B, i.e., F not post-dominated by B
A """"""""""""" Execution of F is
§ C) ;E_/ inevitable at E
D F
F is control-dependent on B,
the last point at which its
execution was not inevitable
Based on slides by Mauro Pezze & Ch 6, slide 13

Michal Youna

Data Flow Analysis

Computing data flow information

Calculating def-use pairs

e Definition-use pairs can be defined in terms of paths in the program
control flow graph:
- There is an association (d,u) between a definition of variable v at d and a
use of variable v at u iff

e there is at least one control flow path from d to u which is also a definition-clear
path.

- Definition of v at line d (i.e., v,) reaches u (v, is a reaching definition at u).
- If a control flow path passes through another definition e of the same
variable v, v, Kills v, at that point.
e Even if we consider only loop-free paths, the number of paths in a
graph can be exponentially larger than the number of nodes and
edges.

e Practical algorithms therefore do not search every individual path.
Instead, they summarize the reaching definitions at a node over all
the paths reaching that node.

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 15

Exponential paths
(even without loops)

2 paths from Ato B
4 fromAtoC

8 fromAto D

16 fromAto E

128 paths from Ato V

Based on slides by Mauro Pezze &
Michal Youna

Tracing each path is
not efficient, and
we can do much
better.

Ch 6, slide 16

DF Algorithm

e An efficient algorithm for computing reaching
definitions (and several other properties) is based on
the way that reaching definitions at one node are
related to reaching definitions at an adjacent node.

e Suppose we are calculating the reaching definitions of
node n, and there is an edge (p,n) from an immediate
predecessor node p.

- |If the predecessor node p can assign a value to variable v, then

the definition v, reaches n. We say the definition v, is
generated at p, I.e. gen(p) = {v,}

- If a definition v, of variable v (where q denotes any node)
reaches a predecessor node p, and if v is not redefined at p,
then v, is propagated on from p to n.

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 17

Equations of node E (y = tmp)

public class GCD {
public int gcd(int x, inty) {
. int tmp; // A: def x, y, tmp
Calculate reachin .
definitions at E ing while (y1=0){ //B: usey
terms of its tmp=x%y; //C:deftmp; usex,y
immediate — X=Y,; // D: def x; use y
oredecessor D = y =tmp; // E: defy; use tmp
)
return x; // F: use X
}

Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ {y.}) U {y¢}

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 18

Equations of node B (while (y '= 0))

public class GCD {
public int gcd(int x, inty) {
This line has two K int_tmp; // A: def x, y, tmp
oredecessors: = while(y'=0){ //B:usey
Before the loop tmp=x%y; //C:deftmp;usex,y
end of the loop X=Y; // D: def x; use y
y = tmp; // E: defy; use tmp

}

return x; // F: use X

}

e Reach(B) = ReachOut(A) U ReachOut(E)
e ReachOut(A) = gen(A) = {Xa, Ya, tMp,}
= ReachOut(E) = (Reach(E) \ {y.}) U {y}

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 19

General equations for Reach analysis

Reach(n) = Y ReachOut(m)
mepred(n)

ReachOut(n) = (Reach(n) \ kill (n)) U gen(n)

gen(n) ={ v, | v is defined or modified at n }
kill(n) = { v, | v Is defined or modified at x, x=n }

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 20

Avall equations™

Avail (n) = () Availout(m)
mepred(n)

AvailOut(n) = (Avail (n) \ kill (n)) U gen(n)

gen(n) ={ exp | exp Is computed at n }
Kill(n) = { exp | exp has variables assigned at n }

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 21

Live variable equations™

Live(n) = W, LiveOut(m)

mesucc(n)
LiveOut(n) = (Live(n) \ kill (n)) v gen(n)

gen(n) ={v] visusedatn}
Kill(n) ={v | vis modified at n }

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 22

Classification of analyses™

e Forward/backward: a node’s set depends on that of its
predecessors/successors

e Any-path/all-path: a node’s set contains a value iff it is

coming from any/all of its inputs

Any-path (V) All-paths (M)
Forward (pred) Reach Avall
Backward (succ) Live “Inevitable”

Based on slides by Mauro Pezzeé &

Michal Youna

Ch 6, slide 23

Iterative Solution of Dataflow Equations

e Initialize values (first estimate of answer)

- For “any path” problems, first guess iIs “nothing”
(empty set) at each node

- For “all paths” problems, first guess Is “everything”
(set of all possible values = union of all “gen” sets)

e Repeat until nothing changes
- Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution
where every new calculation produces the
same value as the previous guess.

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 24

Worklist
Algorithm for
Data Flow

An iterative work-
list algorithm to
compute reaching
definitions by
applying each flow
equation until the
solution stabilizes.

Algorithm Reaching definitions

Input: A control flow graph G = (nodes, edges)
pred(n) = {m € nodes | (m,n) € edges}
succ(m) = {n € nodes | (m,n) € edges}
gen(n) = {v, } if variable v is defined at n, otherwise {}
kill(n) = all other definitions of v if v is defined at n, otherwise {}

Output: Reach(n) = the reaching definitions at node n

for n € nodes loop
ReachOut(n) = {} ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList \ {n} ;

oldVal = ReachOut(n) ;

// Apply flow equations, propagating values from predecessars
Reach(n) = U nepred(n) R€aChOUL(m);
ReachOut(n) = (Reach(n) \ kill(n)) Ugen(n) ;
if (ReachOut(n) # oldVal) then
// Propagate changed value to successor nodes

workList = workList U succ(n)
if;

_ . _ end _
Based on slides by Mauro Pezze & Michal Y8Llln8 Ch 6, slide 25
end loop;

Algorithm Available expressions

Input: A control flow graph G = (nodes, edges), with a distinguished root node start.
pred(n) = {m € nodes | (m,n) € edges}
: succ(m) = {n € nodes | (m,n) € edges}
Workl Ist gen(n) = all expressions e computed at node n
Algonthm for kill(n) = expressions e computed anywhere, whose value is changed at n;
kill(szart) is the set of all e.
Data Flow | | |
* Output: Avail(n) = the available expressions at node n
(cont.)
for n € nodes loop
AvailOut(n) = set of all e defined anywhere ;
end loop;
_ _ workList = nodes ;
An Ite(atlve while (workList # {}) loop
work-list // Take a node from worklist (e.g., pop from stack or queue)
algorithm for n = any node in workList ;
computing workList = workList\ {n} ;
available oldVal = AvailOut(n) ;
expressions. // Apply flow equations, propagating values from predecessors

Avail(n) = (e pred(n)AvailOut(m);
AvailOut(n) = (Avail(n) \ kill(n)) Ugen(n) ;
if (AvailOut(n) # oldVal) then
// Propagate changes to successors
workList = workList U succ(n)
end if;
Based on slides by Mauro eagrdodpiichal Young Ch 6, slide 26

Worklist Algorithm for Data Flow
(cont.)*

Refer to the Figures in the previous two slides.
One way to iterate to a fixed point solution.
General idea:

e Initially all nodes are on the work list, and have default values

- Default for “any-path” problem is the empty set, default for “all-
path” problem is the set of all possibilities (union of all gen sets)

e While the work list is not empty
- Pick any node n on work list; remove it from the list
- Apply the data flow equations for that node to get new values

- If the new value is changed (from the old value at that node), then

e Add successors (for forward analysis) or predecessors (for backward
analysis) on the work list

e Eventually the work list will be empty (because new computed
values = old values for each node) and the algorithm stops.

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 27

Cooking your own. From Execution to
Conservative Flow Analysis

e \We can use the same data flow algorithms to
approximate other dynamic properties

- Gen set will be “facts that become true here”
- Kill set will be “facts that are no longer true here”
- Flow equations will describe propagation

e Example: Taintedness (in web form processing)

- “Taint”: a user-supplied value (e.g., from web
form) that has not been validated

- Gen: we get this value from an untrusted source
here

- Kill: we validated to make sure the value Is proper

Based on slides by Mauro Pezzé & Michal Young Ch 6, slide 28

Program dependency in vulnerability prediction

Graph-based vulnerability prediction

Source code Representation Vulneral:?ility Graph-based Explanation
Learmng Prediction explanation

1. void action(char * data) const {

2 /* FLAW: We are incrementing the pointer in the loop - this will
3 * cause us to free the memory block not at the start of the buffer */
4 for (; *data I="()'; datat++) {

5. if (*data = SEARCH_CHAR) {

6 printLine()

7 break;

s

9. }

10. free(data);

1.}

Hong Quy Nguyen, Thong Hoang, Hoa Khanh Dam, and Aditya Ghose. 2025. Graph-based
explainable vulnerability prediction. Information and Software Technology 177, C (Jan
2025). https.//doi.org/10. 1016/j.infsof.2024. 107566

Program dependency in vulnerability prediction (cont.)

3: printLine ("We have a match!")

5: free (data)

Hong Quy Nguyen, Thong Hoang, Hoa Khanh Dam, and Aditya Ghose. 2025. Graph-based
explainable vulnerability prediction. Information and Software Technology 177, C (Jan
2025). https.//doi.org/10. 1016/j.infsof.2024. 107566

	Dependence and Data Flow Models
	Why Data Flow Models?
	Def-Use Pairs (1)
	Def-Use Pairs
	Def-Use Pairs (3)
	Def-Use Pairs (3)
	Definition-Clear or Killing
	(Direct) Data Dependence Graph
	Control dependence (1)
	Dominators
	Dominators (example)
	Control dependence (2)
	Control Dependence
	Data Flow Analysis
	Calculating def-use pairs
	Exponential paths �(even without loops)
	DF Algorithm
	Equations of node E (y = tmp)
	Equations of node B (while (y != 0))
	General equations for Reach analysis
	Avail equations*
	Live variable equations*
	Classification of analyses*
	Iterative Solution of Dataflow Equations
	Worklist Algorithm for Data Flow
	Worklist Algorithm for Data Flow (cont.)*
	Worklist Algorithm for Data Flow (cont.)*
	Cooking your own: From Execution to �Conservative Flow Analysis
	Program dependency in vulnerability prediction
	Program dependency in vulnerability prediction (cont.)

