
Dependence and Data Flow Models

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 2

Why Data Flow Models?

• Models discussed earlier emphasized control
• Control flow graph, call graph, finite state machines

• We also need to reason about dependence
• Where does this value of x come from?
• What would be affected by changing this?
• ...

• Many program analyses and test design
techniques use data flow information
– Often in combination with control flow

• Example: “Taint” analysis to prevent SQL injection attacks
• Example: Dataflow test criteria

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 3

Def-Use Pairs (1)
• A def-use (du) pair associates a point in a program

where a value is produced with a point where it is used
• Definition: where a variable gets a value

– Variable declaration (often the special value “uninitialized”)
– Variable initialization
– Assignment
– Values received by a parameter

• Use: extraction of a value from a variable
– Expressions
– Conditional statements
– Parameter passing
– Returns

Based on slides by Mauro Pezzè &
Michal Young

Ch 6, slide 4

Def-Use Pairs

...
if (...) {

x = ... ;
...
}
y = ... + x + ... ;

x = ...

if (...) {

...

y = ... + x + ...

...

...

Definition:
x gets a
value

Use: the value
of x is

extracted
Def-Use

path

Based on slides by Mauro Pezzè &
Michal Young

Ch 6, slide 5

Def-Use Pairs (3)
/** Euclid's algorithm */
public class GCD
{
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 6

Def-Use Pairs (3)

• A definition-clear path is a path along the CFG
from a definition to a use of the same variable
without another definition of the variable
between
– If, instead, another definition is present on the

path, then the latter definition kills the former

• A def-use pair is formed if and only if there is a
definition-clear path between the definition
and the use

Based on slides by Mauro Pezzè &
Michal Young

Ch 6, slide 7

Definition-Clear or Killing

x = ... // A: def x
q = ...
x = y; // B: kill x, def x
z = ...
y = f(x); // C: use x

x = ...

...

...
Definition: x
gets a value

Use: the value
of x is

extracted

A

x = y

Definition: x
gets a new

value, old value
is killed

...

y = f(x)

B

C

Path B..C is
definition-clear

Path A..C is
not definition-clear

Based on slides by Mauro Pezzè &
Michal Young

Ch 6, slide 8

(Direct) Data Dependence Graph
• A direct data dependence graph is:

– Nodes: as in the control flow graph (CFG)
– Edges: def-use (du) pairs, labelled with the variable name

E.g., x is
defined in D and

used in F.

The two
unlabeled
edges from
node E to
nodes B
and D
should be
labeled “y”.
The edge
from D to C
should be
labeled “x”
and not
“y”.

Based on slides by Mauro Pezzè &
Michal Young

Ch 6, slide 9

Control dependence (1)
• Data dependence: Where did these values come from?
• Control dependence: Which statement controls

whether this statement executes?
– Nodes: as in the CFG
– Edges: unlabelled, from entry/branching points to controlled

blocks

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 10

Dominators
• Pre-dominators in a rooted, directed graph can be

used to make this intuitive notion of “controlling
decision” precise.

• Node M dominates node N if every path from the root
to N passes through M.
– A node will typically have many dominators, but except for the

root, there is a unique immediate dominator of node N which
is closest to N on any path from the root, and which is in turn
dominated by all the other dominators of N.

– Because each node (except the root) has a unique immediate
dominator, the immediate dominator relation forms a tree.

• Post-dominators: Calculated in the reverse of the
control flow graph, using a special “exit” node as the
root.

Based on slides by Mauro Pezzè &
Michal Young

Ch 6, slide 11

Dominators (example)

A

B

C

D

E

F

G

• A pre-dominates (i.e. is a pre-
dominator of) all nodes; G post-
dominates (i.e. is a post-dominator of)
all nodes

• F and G post-dominate E
• G is the immediate post-dominator of B

– C does not post-dominate B

• B is the immediate pre-dominator of G
– F does not pre-dominate G

• B and all of its post-dominators form a
tree

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 12

Control dependence (2)
• We can use post-dominators to give a more precise

definition of control dependence:
– Consider again a node N that is reached on some but not all

execution paths.
– There must be some node C with the following conditions:

• C has at least two successors in the control flow graph (i.e., it
represents a control flow decision);

• C is not post-dominated by N
• there is NO successor of C in the control flow graph such that the

above two conditions are true.

– We say node N is control-dependent on node C.
• Intuitively: C was the last decision that controlled whether N

executed

Based on slides by Mauro Pezzè &
Michal Young

Ch 6, slide 13

Control Dependence

A

B

C

D

E

F

G F is control-dependent on B,
the last point at which its

execution was not inevitable

Execution of F is
not inevitable at B, i.e., F not post-dominated by B

Execution of F is
inevitable at E

F is control
dependent
on B.

Data Flow Analysis

Computing data flow information

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 15

Calculating def-use pairs
• Definition-use pairs can be defined in terms of paths in the program

control flow graph:
– There is an association (d,u) between a definition of variable v at d and a

use of variable v at u iff
• there is at least one control flow path from d to u which is also a definition-clear

path.

– Definition of v at line d (i.e., vd) reaches u (vd is a reaching definition at u).
– If a control flow path passes through another definition e of the same

variable v, ve kills vd at that point.

• Even if we consider only loop-free paths, the number of paths in a
graph can be exponentially larger than the number of nodes and
edges.

• Practical algorithms therefore do not search every individual path.
Instead, they summarize the reaching definitions at a node over all
the paths reaching that node.

Based on slides by Mauro Pezzè &
Michal Young

Ch 6, slide 16

Exponential paths
(even without loops)

A B C D E F G V

2 paths from A to B

4 from A to C

8 from A to D

16 from A to E

...

128 paths from A to V

Tracing each path is
not efficient, and
we can do much
better.

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 17

DF Algorithm
• An efficient algorithm for computing reaching

definitions (and several other properties) is based on
the way that reaching definitions at one node are
related to reaching definitions at an adjacent node.

• Suppose we are calculating the reaching definitions of
node n, and there is an edge (p,n) from an immediate
predecessor node p.
– If the predecessor node p can assign a value to variable v, then

the definition vp reaches n. We say the definition vp is
generated at p, i.e. gen(p) = {vp}

– If a definition vq of variable v (where q denotes any node)
reaches a predecessor node p, and if v is not redefined at p,
then vq is propagated on from p to n.

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 18

Equations of node E (y = tmp)

Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD {
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

Calculate reaching
definitions at E in
terms of its
immediate
predecessor D

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 19

Equations of node B (while (y != 0))

• Reach(B) = ReachOut(A) ∪ ReachOut(E)
• ReachOut(A) = gen(A) = {xA, yA, tmpA}
• ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD {
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

This line has two
predecessors:
Before the loop,
end of the loop

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 20

General equations for Reach analysis

Reach(n) = ∪ ReachOut(m)
m∈pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) ∪ gen(n)

gen(n) = { vn | v is defined or modified at n }
kill(n) = { vx | v is defined or modified at x, x≠n }

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 21

Avail equations*

Avail (n) = ∩ AvailOut(m)
m∈pred(n)

AvailOut(n) = (Avail (n) \ kill (n)) ∪ gen(n)

gen(n) = { exp | exp is computed at n }
kill(n) = { exp | exp has variables assigned at n }

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 22

Live variable equations*

Live(n) = ∪ LiveOut(m)

m∈succ(n)

LiveOut(n) = (Live(n) \ kill (n)) ∪ gen(n)

gen(n) = { v | v is used at n }
kill(n) = { v | v is modified at n }

Based on slides by Mauro Pezzè &
Michal Young

Ch 6, slide 23

Classification of analyses*
• Forward/backward: a node’s set depends on that of its

predecessors/successors
• Any-path/all-path: a node’s set contains a value iff it is

coming from any/all of its inputs

Any-path (∪) All-paths (∩)

Forward (pred) Reach Avail

Backward (succ) Live “inevitable”

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 24

Iterative Solution of Dataflow Equations
• Initialize values (first estimate of answer)

– For “any path” problems, first guess is “nothing”
(empty set) at each node

– For “all paths” problems, first guess is “everything”
(set of all possible values = union of all “gen” sets)

• Repeat until nothing changes
– Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution
where every new calculation produces the
same value as the previous guess.

Ch 6, slide 25

Worklist
Algorithm for

Data Flow

An iterative work-
list algorithm to
compute reaching
definitions by
applying each flow
equation until the
solution stabilizes.

Based on slides by Mauro Pezzè & Michal Young

Ch 6, slide 26

Worklist
Algorithm for

Data Flow
(cont.)*

An iterative
work-list
algorithm for
computing
available
expressions.

Based on slides by Mauro Pezzè & Michal Young

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 27

Worklist Algorithm for Data Flow
(cont.)*

Refer to the Figures in the previous two slides.
One way to iterate to a fixed point solution.
General idea:
• Initially all nodes are on the work list, and have default values

– Default for “any-path” problem is the empty set, default for “all-
path” problem is the set of all possibilities (union of all gen sets)

• While the work list is not empty
– Pick any node n on work list; remove it from the list
– Apply the data flow equations for that node to get new values
– If the new value is changed (from the old value at that node), then

• Add successors (for forward analysis) or predecessors (for backward
analysis) on the work list

• Eventually the work list will be empty (because new computed
values = old values for each node) and the algorithm stops.

Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 28

Cooking your own: From Execution to
Conservative Flow Analysis

• We can use the same data flow algorithms to
approximate other dynamic properties
– Gen set will be “facts that become true here”
– Kill set will be “facts that are no longer true here”
– Flow equations will describe propagation

• Example: Taintedness (in web form processing)
– “Taint”: a user-supplied value (e.g., from web

form) that has not been validated
– Gen: we get this value from an untrusted source

here
– Kill: we validated to make sure the value is proper

Program dependency in vulnerability prediction

Hong Quy Nguyen, Thong Hoang, Hoa Khanh Dam, and Aditya Ghose. 2025. Graph-based
explainable vulnerability prediction. Information and Software Technology 177, C (Jan
2025). https://doi.org/10.1016/j.infsof.2024.107566

Program dependency in vulnerability prediction (cont.)

Hong Quy Nguyen, Thong Hoang, Hoa Khanh Dam, and Aditya Ghose. 2025. Graph-based
explainable vulnerability prediction. Information and Software Technology 177, C (Jan
2025). https://doi.org/10.1016/j.infsof.2024.107566

	Dependence and Data Flow Models
	Why Data Flow Models?
	Def-Use Pairs (1)
	Def-Use Pairs
	Def-Use Pairs (3)
	Def-Use Pairs (3)
	Definition-Clear or Killing
	(Direct) Data Dependence Graph
	Control dependence (1)
	Dominators
	Dominators (example)
	Control dependence (2)
	Control Dependence
	Data Flow Analysis
	Calculating def-use pairs
	Exponential paths �(even without loops)
	DF Algorithm
	Equations of node E (y = tmp)
	Equations of node B (while (y != 0))
	General equations for Reach analysis
	Avail equations*
	Live variable equations*
	Classification of analyses*
	Iterative Solution of Dataflow Equations
	Worklist Algorithm for Data Flow
	Worklist Algorithm for Data Flow (cont.)*
	Worklist Algorithm for Data Flow (cont.)*
	Cooking your own: From Execution to �Conservative Flow Analysis
	Program dependency in vulnerability prediction
	Program dependency in vulnerability prediction (cont.)

