
Dependence and Data Flow Models
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Why Data Flow Models?

• Models discussed earlier emphasized control
• Control flow graph, call graph, finite state machines

• We also need to reason about dependence
• Where does this value of x come from?
• What would be affected by changing this? 
• ... 

• Many program analyses and test design 
techniques use data flow information
– Often in combination with control flow

• Example:  “Taint” analysis to prevent SQL injection attacks
• Example:  Dataflow test criteria
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Def-Use Pairs (1)
• A def-use (du) pair associates a point in a program 

where a value is produced with a point where it is used
• Definition: where a variable gets a value

– Variable declaration  (often the special value “uninitialized”)
– Variable initialization
– Assignment
– Values received by a parameter 

• Use: extraction of a value from a variable
– Expressions
– Conditional statements
– Parameter passing
– Returns
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Def-Use Pairs

...
if (...) {

x = ... ; 
... 
}
y = ... + x + ... ; 

x = ... 

if (...) {

... 

y = ... + x + ...

... 

... 

Definition: 
x gets a 
value

Use: the value 
of x is 

extracted
Def-Use

path
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Def-Use Pairs (3)
/**  Euclid's algorithm */
public class GCD 
{ 
public int gcd(int x, int y) {

int tmp;               // A: def x, y, tmp
while (y != 0) {     // B: use y

tmp = x % y;     // C: def tmp; use x, y
x = y;               // D: def x; use y
y = tmp;           // E: def y; use tmp

}
return x;              // F: use x

}
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Def-Use Pairs (3)

• A definition-clear path is a path along the CFG 
from a definition to a use of the same variable 
without  another definition of the variable 
between
– If, instead, another definition is present on the 

path, then the latter definition kills the former

• A def-use pair is formed if and only if there is a 
definition-clear path between the definition 
and the use
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Definition-Clear or Killing

x = ...     // A: def x
q = ...  
x = y;     //  B: kill x, def x
z = ... 
y = f(x);  // C: use x

x = ... 

... 

... 
Definition: x 
gets a value

Use: the value 
of x is 

extracted

A

x = y 

Definition: x 
gets a new 

value, old value 
is killed

... 

y = f(x)

B

C

Path B..C is 
definition-clear

Path A..C is 
not definition-clear
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(Direct) Data Dependence Graph
• A direct data dependence graph is:

– Nodes: as in the control flow graph (CFG)
– Edges: def-use (du) pairs, labelled with the variable name

E.g., x is 
defined in D and 

used in F.

The two 
unlabeled 
edges from 
node E to 
nodes B 
and D 
should be 
labeled “y”. 
The edge 
from D to C 
should be 
labeled “x” 
and not 
“y”.
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Control dependence (1)
• Data dependence: Where did these values come from?
• Control dependence: Which statement controls 

whether this statement executes? 
– Nodes: as in the CFG
– Edges: unlabelled, from entry/branching points to controlled 

blocks
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Dominators
• Pre-dominators in a rooted, directed graph can be 

used to make this intuitive notion of “controlling 
decision” precise.

• Node M dominates node N if every path from the root 
to N passes through M. 
– A node will typically have many dominators, but except for the 

root, there is a unique immediate dominator of node N which 
is closest to N on any path from the root, and which is in turn 
dominated by all the other dominators of N. 

– Because each node (except the root) has a unique immediate 
dominator, the immediate dominator relation forms a tree.

• Post-dominators: Calculated in the reverse of the 
control flow graph, using a special “exit” node as the 
root.
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Dominators (example)

A

B

C

D

E

F

G

• A pre-dominates (i.e. is a pre-
dominator of) all nodes; G post-
dominates (i.e. is a post-dominator of) 
all nodes

• F and G post-dominate E
• G is the immediate post-dominator of B

– C does not post-dominate B

• B is the immediate pre-dominator of G
– F does not pre-dominate G

• B and all of its post-dominators form a 
tree
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Control dependence (2)
• We can use post-dominators to give a more precise 

definition of control dependence:
– Consider again a node N that is reached on some but not all 

execution paths.
– There must be some node C with the following conditions: 

• C has at least two successors in the control flow graph (i.e., it 
represents a control flow decision); 

• C is not post-dominated by N 
• there is NO successor of C in the control flow graph such that the 

above two conditions are true.

– We say node N is control-dependent on node C.
• Intuitively: C was the last decision that controlled whether N 

executed
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Control Dependence

A

B

C

D

E

F

G F is control-dependent on B,
the last point at which its

execution was not inevitable

Execution of F is 
not inevitable at B, i.e., F not post-dominated by B

Execution of F is 
inevitable at E

F is control 
dependent 
on B.



Data Flow Analysis

Computing data flow information
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Calculating def-use pairs
• Definition-use pairs can be defined in terms of paths in the program 

control flow graph:
– There is an association (d,u) between a definition of variable v at d and a 

use of variable v at u iff
• there is at least one control flow path from d to u which is also a definition-clear 

path.

– Definition of v at line d (i.e., vd) reaches u (vd is a reaching definition at u).  
– If a control flow path passes through another definition e of the same 

variable v, ve kills vd at that point.

• Even if we consider only loop-free paths, the number of paths in a 
graph can be exponentially larger than the number of nodes and 
edges. 

• Practical algorithms therefore do not search every individual path. 
Instead, they summarize the reaching definitions at a node over all 
the paths reaching that node.



Based on slides by Mauro Pezzè & 
Michal Young

Ch 6, slide 16

Exponential paths 
(even without loops)

A B C D E F G V

2 paths from A to B

4 from A to C

8 from A to D

16 from A to E

...

128 paths from A to V

Tracing each path is 
not efficient, and 
we can do much 
better.
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DF Algorithm
• An efficient algorithm for computing reaching 

definitions (and several other properties) is based on 
the way that reaching definitions at one node are 
related to reaching definitions at an adjacent node.  

• Suppose we are calculating the reaching definitions of 
node n, and there is an edge (p,n) from an immediate 
predecessor node p.  
– If the predecessor node p can assign a value to variable v, then  

the definition vp reaches n.  We say the definition vp is 
generated at p, i.e. gen(p) = {vp}

– If a definition vq of variable v (where q denotes any node) 
reaches a predecessor node p, and if v is not redefined at p, 
then vq is propagated on from p to n.
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Equations of node E (y = tmp)

Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD  { 
public int gcd(int x, int y) {

int tmp;               // A: def x, y, tmp
while (y != 0) {     // B: use y

tmp = x % y;     // C: def tmp; use x, y
x = y;               // D: def x; use y
y = tmp;           // E: def y; use tmp

}
return x;              // F: use x

}

Calculate reaching 
definitions at E in 
terms of its 
immediate 
predecessor D
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Equations of node B (while (y != 0))

• Reach(B) = ReachOut(A) ∪ ReachOut(E)
• ReachOut(A) = gen(A) = {xA, yA, tmpA}
• ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD  { 
public int gcd(int x, int y) {

int tmp;               // A: def x, y, tmp              
while (y != 0) {     // B: use y

tmp = x % y;     // C: def tmp; use x, y
x = y;               // D: def x; use y
y = tmp;           // E: def y; use tmp

}
return x;              // F: use x

}

This line has two 
predecessors: 
Before the loop,
end of the loop
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General equations for Reach analysis

Reach(n) =  ∪ ReachOut(m)
m∈pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) ∪ gen(n)

gen(n) = { vn | v is defined or modified at n }
kill(n) = { vx | v is defined or modified at x, x≠n }
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Avail equations*

Avail (n) =  ∩ AvailOut(m) 
m∈pred(n)

AvailOut(n) = (Avail (n) \ kill (n)) ∪ gen(n)

gen(n) = { exp | exp is computed at n }
kill(n) = { exp | exp has variables assigned at n }
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Live variable equations*

Live(n) = ∪ LiveOut(m) 

m∈succ(n)

LiveOut(n) = (Live(n) \ kill (n)) ∪ gen(n)

gen(n) = { v | v is used at n }
kill(n) = { v | v is modified at n }
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Classification of analyses*
• Forward/backward: a node’s set depends on that of its 

predecessors/successors
• Any-path/all-path: a node’s set contains a value iff it is 

coming from any/all of its inputs

Any-path (∪) All-paths (∩)

Forward (pred) Reach Avail

Backward (succ) Live “inevitable”
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Iterative Solution of Dataflow Equations
• Initialize values (first estimate of answer)

– For “any path” problems, first guess is “nothing” 
(empty set) at each node

– For “all paths” problems, first guess is “everything” 
(set of all possible values = union of all “gen” sets)

• Repeat until nothing changes
– Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution 
where every new calculation produces the 
same value as the previous guess.
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Worklist 
Algorithm for 

Data Flow

An iterative work-
list algorithm to 
compute reaching 
definitions by 
applying each flow 
equation until the 
solution stabilizes.

Based on slides by Mauro Pezzè & Michal Young
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Worklist 
Algorithm for 

Data Flow 
(cont.)*

An iterative 
work-list 
algorithm for 
computing 
available 
expressions.

Based on slides by Mauro Pezzè & Michal Young
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Worklist Algorithm for Data Flow 
(cont.)*

Refer to the Figures in the previous two slides.
One way to iterate to a fixed point solution.
General idea: 
• Initially all nodes are on the work list, and have default values 

– Default for “any-path” problem is the empty set, default for “all-
path” problem is the set of all possibilities (union of all gen sets)

• While the work list is not empty
– Pick any node n on work list; remove it from the list
– Apply the data flow equations for that node to get new values
– If the new value is changed (from the old value at that node), then 

• Add successors (for forward analysis) or predecessors (for backward 
analysis) on the work list

• Eventually the work list will be empty (because new computed 
values = old values for each node) and the algorithm stops. 



Based on slides by Mauro Pezzè & Michal Young Ch 6, slide 28

Cooking your own: From Execution to 
Conservative Flow Analysis

• We can use the same data flow algorithms to 
approximate other dynamic properties
– Gen set will be “facts that become true here”
– Kill set will be “facts that are no longer true here”
– Flow equations will describe propagation

• Example:  Taintedness (in web form processing)
– “Taint”:  a user-supplied value (e.g., from web 

form) that has not been validated
– Gen: we get this value from an untrusted source 

here
– Kill:  we validated to make sure the value is proper



Program dependency in vulnerability prediction

Hong Quy Nguyen, Thong Hoang, Hoa Khanh Dam, and Aditya Ghose. 2025. Graph-based 
explainable vulnerability prediction. Information and Software Technology 177, C (Jan 
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