Dependence and Data Flow Models

Why Data Flow Models?

- Models discussed earlier emphasized control
 - · Control flow graph, call graph, finite state machines
- We also need to reason about dependence
 - Where does this value of x come from?
 - What would be affected by changing this?
 - •
- Many program analyses and test design techniques use data flow information
 - Often in combination with control flow
 - Example: "Taint" analysis to prevent SQL injection attacks
 - Example: Dataflow test criteria

Def-Use Pairs (1)

- A def-use (du) pair associates a point in a program where a value is produced with a point where it is used
- Definition: where a variable gets a value
 - Variable declaration (often the special value "uninitialized")
 - Variable initialization
 - Assignment
 - Values received by a parameter
- Use: extraction of a value from a variable
 - Expressions
 - Conditional statements
 - Parameter passing
 - Returns

Def-Use Pairs

Def-Use Pairs (3)

Def-Use Pairs (3)

- A definition-clear path is a path along the CFG from a definition to a use of the same variable without another definition of the variable between
 - If, instead, another definition is present on the path, then the latter definition kills the former
- A <u>def-use pair</u> is formed if and only if there is a definition-clear path between the definition and the use

Definition-Clear or Killing

x = ... // A: def x q = ... x = y; // B: kill x, def x z = ... y = f(x); // C: use x

Path A..C is not definition-clear

Path B..C is definition-clear

(Direct) Data Dependence Graph

- A direct data dependence graph is:
 - Nodes: as in the control flow graph (CFG)
 - Edges: def-use (du) pairs, labelled with the variable name

Control dependence (1)

- Data dependence: Where did these values come from?
- Control dependence: Which statement controls whether this statement executes?
 - Nodes: as in the CFG
 - Edges: unlabelled, from entry/branching points to controlled blocks

Dominators

- Pre-dominators in a rooted, directed graph can be used to make this intuitive notion of "controlling decision" precise.
- Node M dominates node N if <u>every</u> path from the root to N passes through M.
 - A node will typically have many dominators, but except for the root, there is a <u>unique</u> immediate dominator of node N which is closest to N on any path from the root, and which is in turn dominated by all the other dominators of N.
 - Because each node (except the root) has a unique immediate dominator, the immediate dominator relation forms a *tree*.
- Post-dominators: Calculated in the reverse of the control flow graph, using a special "exit" node as the root.

Dominators (example)

- A pre-dominates (i.e. is a predominator of) all nodes; G postdominates (i.e. is a post-dominator of) all nodes
- F and G post-dominate E
- G is the *immediate* post-dominator of B
 - C does not post-dominate B
- B is the *immediate* pre-dominator of G
 - F does not pre-dominate G
- B and all of its post-dominators form a tree

Control dependence (2)

- We can use post-dominators to give a more precise definition of control dependence:
 - Consider again a node N that is reached on some but not all execution paths.
 - There must be some node C with the following conditions:
 - C has at least two successors in the control flow graph (i.e., it represents a control flow decision);
 - C is not post-dominated by N
 - there is NO successor of C in the control flow graph such that the above two conditions are true.
 - We say node N is control-dependent on node C.
 - Intuitively: C was the last decision that controlled whether N executed

Control Dependence

Data Flow Analysis

Computing data flow information

Calculating def-use pairs

- Definition-use pairs can be defined in terms of paths in the program control flow graph:
 - There is an association (d,u) between a definition of variable v at d and a use of variable v at u iff
 - there is <u>at least one</u> control flow path from d to u which is also a definition-clear path.
- Definition of v at line d (i.e., v_d) reaches u (v_d is a reaching definition at u).
- If a control flow path passes through another definition e of the same variable v, v_e kills v_d at that point.
- Even if we consider only loop-free paths, the number of paths in a graph can be exponentially larger than the number of nodes and edges.
- Practical algorithms therefore do not search every individual path.
 Instead, they summarize the reaching definitions at a node over all the paths reaching that node.

Exponential paths (even without loops)

- 2 paths from A to B
- 4 from A to C
- 8 from A to D
- 16 from A to E

. . .

128 paths from A to V

Tracing each path is not efficient, and we can do much better.

DF Algorithm

- An efficient algorithm for computing reaching definitions (and several other properties) is based on the way that reaching definitions at one node are related to reaching definitions at an adjacent node.
- Suppose we are calculating the reaching definitions of node n, and there is an edge (p,n) from an immediate predecessor node p.
 - If the predecessor node p can assign a value to variable v, then the definition v_p reaches n. We say the definition v_p is generated at p, i.e. $gen(p) = \{v_p\}$
 - If a definition v_q of variable v (where q denotes any node) reaches a predecessor node p, and if v is not redefined at p, then v_q is propagated on from p to n.

Equations of node E(y = tmp)

```
Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ \{y_A\}) \cup \{y_F\}
```

Equations of node B (while (y != 0))

- Reach(B) = ReachOut(A) ∪ ReachOut(E)
- ReachOut(A) = gen(A) = $\{x_A, y_A, tmp_A\}$
- ReachOut(E) = (Reach(E) \ {y_A}) ∪ {y_E}

General equations for Reach analysis

Reach(n) =
$$\bigvee$$
 ReachOut(m) m \in pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) \cup gen(n)

gen(n) = { $v_n | v$ is defined or modified at n } kill(n) = { $v_x | v$ is defined or modified at x, x \neq n }

Avail equations*

```
AvailOut(n) = (Avail (n) \ kill (n)) \cup gen(n)
```

```
gen(n) = { exp | exp is computed at n }
kill(n) = { exp | exp has variables assigned at n }
```

Live variable equations*

Live(n) =
$$\bigcup$$
 LiveOut(m)
m \in succ(n)

LiveOut(n) = (Live(n) \ kill (n)) \cup gen(n)

```
gen(n) = { v | v is used at n }
kill(n) = { v | v is modified at n }
```

Classification of analyses*

- Forward/backward: a node's set depends on that of its predecessors/successors
- Any-path/all-path: a node's set contains a value iff it is coming from any/all of its inputs

	Any-path (∪)	All-paths (∩)
Forward (pred)	Reach	Avail
Backward (succ)	Live	"inevitable"

Iterative Solution of Dataflow Equations

- Initialize values (first estimate of answer)
 - For "any path" problems, first guess is "nothing" (empty set) at each node
 - For "all paths" problems, first guess is "everything" (set of all possible values = union of all "gen" sets)
- Repeat until nothing changes
 - Pick some node and recalculate (new estimate)

This will converge on a "fixed point" solution where every new calculation produces the same value as the previous guess.

Worklist Algorithm for Data Flow

An iterative worklist algorithm to compute reaching definitions by applying each flow equation until the solution stabilizes.

Algorithm Reaching definitions

```
Input: A control flow graph G=(\mathsf{nodes},\mathsf{edges}) \mathsf{pred}(n)=\{m\in\mathsf{nodes}\mid(m,n)\in\mathsf{edges}\} \mathsf{succ}(m)=\{n\in\mathsf{nodes}\mid(m,n)\in\mathsf{edges}\} \mathsf{gen}(n)=\{v_n\} if variable v is defined at n, otherwise \{\} \mathsf{kill}(n)=\mathsf{all} other definitions of v if v is defined at n, otherwise \{\} Output: Reach(n)=\mathsf{the} reaching definitions at node n
```

```
for n \in \text{nodes loop}
     ReachOut(n) = \{\};
end loop;
workList = nodes:
while (workList \neq {}) loop
     // Take a node from worklist (e.g., pop from stack or queue)
     n = any node in workList;
     workList = workList \setminus \{n\};
     oldVal = ReachOut(n);
     // Apply flow equations, propagating values from predecessars
     Reach(n) = \bigcup_{m \in pred(n)} ReachOut(m);
     ReachOut(n) = (Reach(n) \setminus kill(n)) \cup gen(n);
     if (ReachOut(n) \neq oldVal) then
          // Propagate changed value to successor nodes
           workList = workList \cup succ(n)
```

Algorithm Available expressions

for $n \in \text{nodes loop}$

Worklist
Algorithm for
Data Flow
(cont.)*

```
Input: A control flow graph G=(\mathsf{nodes},\mathsf{edges}), with a distinguished root node start. \mathsf{pred}(n) = \{m \in \mathsf{nodes} \mid (m,n) \in \mathsf{edges}\} \mathsf{succ}(m) = \{n \in \mathsf{nodes} \mid (m,n) \in \mathsf{edges}\} \mathsf{gen}(n) = \mathsf{all} \ \mathsf{expressions} \ e \ \mathsf{computed} \ \mathsf{at} \ \mathsf{node} \ n \mathsf{kill}(n) = \mathsf{expressions} \ e \ \mathsf{computed} \ \mathsf{anywhere}, \ \mathsf{whose} \ \mathsf{value} \ \mathsf{is} \ \mathsf{changed} \ \mathsf{at} \ n; \mathsf{kill}(start) \ \mathsf{is} \ \mathsf{the} \ \mathsf{set} \ \mathsf{of} \ \mathsf{all} \ e.
```

Output: Avail(n) = the available expressions at node n

AvailOut(n) = set of all e defined anywhere ;

```
end loop;
                            workList = nodes;
An iterative
                            while (workList \neq \{\}) loop
work-list
                                 // Take a node from worklist (e.g., pop from stack or queue)
algorithm for
                                 n = any node in workList;
                                 workList = workList \setminus \{n\};
computing
                                 oldVal = AvailOut(n);
available
                                 // Apply flow equations, propagating values from predecessors
expressions.
                                 Avail(n) = \bigcap_{m \in \operatorname{pred}(n)} \operatorname{AvailOut}(m);
                                 AvailOut(n) = (Avail(n) \setminus kill(n)) \cup gen(n);
                                 if (AvailOut(n) \neq \text{oldVal}) then
                                       // Propagate changes to successors
                                       workList = workList \cup succ(n)
                                 end if:
```

Worklist Algorithm for Data Flow (cont.)*

Refer to the Figures in the previous two slides.

One way to iterate to a fixed point solution.

General idea:

- Initially all nodes are on the work list, and have default values
 - Default for "any-path" problem is the empty set, default for "all-path" problem is the set of all possibilities (union of all gen sets)
- While the work list is not empty
 - Pick any node n on work list; remove it from the list
 - Apply the data flow equations for that node to get new values
 - If the new value is changed (from the old value at that node), then
 - Add successors (for forward analysis) or predecessors (for backward analysis) on the work list
- Eventually the work list will be empty (because new computed values = old values for each node) and the algorithm stops.

Cooking your own: From Execution to Conservative Flow Analysis

- We can use the same data flow algorithms to approximate other dynamic properties
 - Gen set will be "facts that become true here"
 - Kill set will be "facts that are no longer true here"
 - Flow equations will describe propagation
- Example: Taintedness (in web form processing)
 - "Taint": a user-supplied value (e.g., from web form) that has not been validated
 - Gen: we get this value from an untrusted source here
 - Kill: we validated to make sure the value is proper

Program dependency in vulnerability prediction

Hong Quy Nguyen, Thong Hoang, Hoa Khanh Dam, and Aditya Ghose. 2025. **Graph-based explainable vulnerability prediction**. Information and Software Technology 177, C (Jan 2025). https://doi.org/10.1016/j.infsof.2024.107566

Program dependency in vulnerability prediction (cont.)

Hong Quy Nguyen, Thong Hoang, Hoa Khanh Dam, and Aditya Ghose. 2025. **Graph-based explainable vulnerability prediction**. Information and Software Technology 177, C (Jan 2025). https://doi.org/10.1016/j.infsof.2024.107566