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Testing
 Fits well with developer intuitions
 In practice, most common form of bug-

detection
 But each test explores only one possible 

execution of the system
 Depends on the quality of the test cases 

or inputs 
 Provides little in terms of coverage 



Symbolic Execution
 Key idea: generalize testing by using unknown symbolic 

variables in evaluation
 Symbolic executor executes program, tracking symbolic 

state.
 Builds predicates that characterize 

 Conditions for executing paths 
 Effects of the execution on program state

 Bridges program behavior to logic
 Finds important applications in 

 program analysis
 test data generation
 formal verification (proofs) of program correctness



Let’s work through this example
 What are the test 

cases to cover all 
the paths in this 
function?

Void func(int x, int y){
int z = 2 * y;
if(z == x){

if (x > y + 10)
ERROR

}
}
int main(){

int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}



Obvious Questions?

5

Can we do better in terms of test 
generation? Can we some how make it 

automatic?  



Symbolic Execution
Void func(int x, int y){

int z = 2 * y;
if(z == x){

if (x > y + 10)
ERROR

}
}
int main(){

int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

x = a = 0
y = b = 1

2b != a 2b == a

2b == a && 
a <= b + 10

2b == a && 
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

Path constraint z = 2b

Note: Require inputs to be marked as symbolic

Generated
Test inputs
for this path

How does symbolic execution work?



Symbolic Execution

x = a = 0
y = b = 1

2b != a 2b == a

2b == a && 
a <= b + 10

2b == a && 
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

z = 2b

How does symbolic execution work?

x = a = 0
y = b = 1

x = a = 2
y = b = 3

x = a = 5
y = b = 4

…
…
…

…
…
…

x = a = 2
y = b = 1

x = a = 4
y = b = 2

x = a = -6
y = b = -3

x = a = 40
y = b = 20

x = a = 30
y = b = 15

x = a = 48
y = b = 24

……
…

Path constraints represent
equivalence classes of inputs



Dealing with branching statements
char *binarySearch( char *key, char *dictKeys[ ], 

char *dictValues[ ],  int dictSize) {

int low = 0; 
int high = dictSize - 1; 
int mid; 
int comparison; 

while (high >= low) {
mid = (high + low) / 2; 
comparison = strcmp( dictKeys[mid], key );
if (comparison < 0) {

low = mid + 1;
} else if ( comparison > 0 ) {

high = mid - 1;
} else {

return dictValues[mid];
}

}
return 0;

a sample 
program:

Binary search for key 
in sorted array 
dictKeys, returning 
corresponding value 
from dictValues or null 
if key does not appear 
in dictKeys.

Standard binary search 
algorithm as described 
in any elementary text 
on data structures and 
algorithms. 



Symbolic state

Execution with concrete 
values
before

low 12
high 15
mid -

mid = (high+low)/2

after
low 12
high 15
mid 13

Execution with symbolic 
values
before

low L
high H
mid -

mid = (high+low)/2

after
Low L
high H
mid (L+H)/2

Values are expressions over symbols
Executing statements computes new expressions



Dealing with branching statements

char *binarySearch( char *key, char *dictKeys[ ], 
char *dictValues[ ],  int dictSize) {

int low = 0; 
int high = dictSize - 1; 
int mid; 
int comparison; 

while (high >= low) {
mid = (high + low) / 2; 
comparison = strcmp( dictKeys[mid], key );
if (comparison < 0) {

low = mid + 1;
} else if ( comparison > 0 ) {

high = mid - 1;
} else {

return dictValues[mid];
}

}
return 0;

Branching stmt



Executing while (high >= low) {
before

low = 0
and high = (H-1)/2 -1
and mid = (H-1)/2

while (high >= low){

after

low = 0
and high = (H-1)/2 -1
and mid = (H-1)/2
and (H-1)/2 - 1 >= 0

Add an expression that 
records the condition 

for the execution of the 
branch (PATH 
CONDITION)

if the TRUE branch was taken

... and not((H-1)/2 - 1 >= 0) if the FALSE branch was taken



Symbolic Execution
Void func(int x, int y){

int z = 2 * y;
if(z == x){

if (x > y + 10)
ERROR

}
}
int main(){

int x = sym_input();
int y = sym_input();
func(x, y);
return 0;}

Symbolic 
Execution

Engine

SMT solver

Path
constraint

Satisfying
Assignment 

High coverage 
test inputs

Symbolic Execution



Symbolic Execution

 Execute the program with symbolic valued inputs 
(Goal: good path coverage)

 Represents equivalence class of inputs with first 
order logic formulas (path constraints) 

 One path constraint abstractly represents all 
inputs that induces the program execution to go 
down a specific path 

 Solve the path constraint to obtain one 
representative input that exercises the program 
to go down that specific path 

 Symbolic execution implementations: KLEE, 
Java PathFinder, etc.



Symbolic Execution (cont.)
 Instead of concrete state, the program 

maintains symbolic states, each of which 
maps variables to symbolic values

 Path condition is a quantifier-free 
formula over the symbolic inputs that 
encodes all branch decisions taken so far

 All paths in the program form its 
execution tree, in which some paths are 
feasible and some are infeasible



Symbolic Execution (cont.)
 During symbolic execution, we are trying to determine if certain 

formulas are satisfiable
 E.g., is a particular program point reachable (feasible vs. 

infeasible paths)?
 Figure out if the path condition is satisfiable

 E.g., is array access a[i] out of bounds?
 Figure out if conjunction of path condition and i<0 ∨ i > a.length

is satisfiable
 E.g., generate concrete inputs that execute the same paths

 This is enabled by powerful SMT/SAT solvers
 SAT = Satisfiability
 SMT = Satisfiability modulo theory = SAT++
 E.g. Z3, Yices, STP



Summary information
 Symbolic representation of paths may 

become extremely complex
 We can simplify the representation by 

replacing a complex condition P with a 
weaker condition W such that

P => W (P implies W)
 W describes the path with less precision
 W is a summary of P 



Example of summary information
(Referring to Binary search: Line 17 , mid = (high+low)/2 )
 If we are reasoning about the correctness of the binary search 

algorithm, the complete condition:
low = L

and high = H
and mid = M
and M = (L+H)/2

 Contains more information than needed and can be replaced with 
the weaker condition:

low = L
and high = H
and mid = M
and L <= M <= H

 The weaker condition contains less information, but still enough to 
reason about correctness. 



Loops and assertions
 A predicate stating what should be true at a given 

point can be expressed in the form of an assertion
 The number of execution paths through a program 

with loops is potentially infinite
 To reason about program behavior in a loop, we 

can place within the loop an invariant:
 assertion  that states a predicate that is expected to be 

true each time execution reaches that point.
 Each time program execution reaches the invariant 

assertion, we can weaken the description of 
program state:
 If predicate P represents the program state 
 and the assertion is W
 we must first ascertain P => W 
 and then we can substitute W for P



Pre- and post-conditions
 Suppose: 

 every loop contains an assertion
 there is an assertion at the beginning of the 

program
 a final assertion at the end

 Then:
 every possible execution path would be a 

sequence of segments from one assertion to the 
next. 

 Terminology:
 Precondition: The assertion at the beginning of a 

segment,
 Postcondition: The assertion at the end of the 

segment



Verifying program correctness
 If for each program segment we can verify 

that 
 Starting from the precondition
 Executing the program segment
 The postcondition holds at the end of the 

segment
 Then

 We verify the correctness of an infinite number 
of program paths



Example

Forall{i,j} 0 <= i < j < size 
: dictKeys[i] <= dictKeys[j]

Precondition: is sorted:

Forall{i} 0 <= i < size : 
dictKeys[i] = key => 
low <= i <= high

Invariant: in range

char *binarySearch( char *key, char *dictKeys[ ], 
char *dictValues[ ],  int dictSize) {

int low = 0; 
int high = dictSize - 1; 
int mid; 
int comparison; 

while (high >= low) {
mid = (high + low) / 2; 
comparison = strcmp( dictKeys[mid], key );
if (comparison < 0) {

low = mid + 1;
} else if ( comparison > 0 ) {

high = mid - 1;
} else {

return dictValues[mid];
}

}
return 0;



Executing the loop once…
low = L
and high = H

Forall{i,j} 0 <= i < j < size : 
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size : 
dictKeys[k] = key => L <= k <= H

Initial values:

Instantiated invariant:

low = L
and high = H 
and mid = M
and Forall{i,j} 0 <= i < j < size : 
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size : 
dictKeys[k] = key => L <= k <= H
and H >= M >= L

After executing: mid = (high + low)/2

….

Invariant
Forall{i} 0 <= i < size : 
dictKeys[i] = key => 
low <= i <= high

Precondition
Forall{i,j} 0 <= i < j < size
dictKeys[i] <= dictKeys[j]

Note.
M = (L+H)/2
(possibly 
rounded to 
closest 
smallest 
integer)



…executing the loop once
low = M+1
and high = H 
and mid = M
and Forall{i,j} 0 <= i < j < size : 
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size : 
dictKeys[k] = key => L <= k <= H
and H >= M >= L
and dictkeys[M]<key

After executing the loop

The new instance of the invariant:

Forall{i,j} 0 <= i < j < size : 
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size : 
dictKeys[k] = key => M+1 <= k <= H

If the invariant is satisfied, the loop is correct wrt the preconditions and the 
invariant 

Note. low = mid + 1

is executed after 
the “if” 
condition is true

Note. low = mid + 1

is executed after 
the “if” 
condition is true

and the “if” condition is 
true

Invariant
Forall{i} 0 <= i < size 
:
dictKeys[i] = key =>
low <= i <= high



From the loop to the end
If the invariant is satisfied, but the condition is 

false:
low = L
and high = H 
and Forall{i,j} 0 <= i < j < 
size : 
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size : 
dictKeys[k] = key => L <= k <= H
and L > H

If the condition satisfies the post-condition, the 
program is correct wrt the pre- and post-condition.

Invariant
Forall{i} 0 <= i < 
size :
dictKeys[i] = key 
=>
low <= i <= high

What does the above statement mean? 
It means that no such k exists.



 It is possible to extend symbolic execution to 
help us catch bugs 

 How: Dedicated checkers 
 Divide by zero example --- y = x / z where x and z 

are symbolic variables and assume current path 
condition is f

 Even though we only fork in branches, we will now fork 
in the division operator 

 One branch in which z = 0 and another where z !=0 
 We will get two paths with the following constraints: 

z = 0 && f,       z != 0 && f
 Solving the constraint z = 0 && f will give us concrete 

input values that will trigger the divide by zero error.  

How does Symbolic Execution Find bugs? 

Write a dedicated checker for each kind of bug 
(e.g., buffer overflow, integer overflow, integer 
underflow)



How does Symbolic Execution Find bugs?
Example 

int foo(int i) { 
int j = 2 * i;
i = i+1;
i = i * j;
if (i < 1)

i = -i;
i = j/i;
return i;

}

Use symbolic execution to find a test case which 
reveal a division by zero bug for the following 
program:



Pen and paper exercise
 Apply symbolic execution on the following program. Identify 

feasible paths and infeasible paths. 

void hello(int x, int y) { 
int t = 0; 
if (x > y) {

t = x;  
} else {

t = y;  
}

if (t < x) {
print(“Hello World”); 

}
}
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