
CSCI426/CSCI926
Software Testing and Analysis

Symbolic Execution

Acknowledgement: Some slides are adapted from Omar Chowdhury, Jeff Foster, and Pezze & Young

Testing
 Fits well with developer intuitions
 In practice, most common form of bug-

detection
 But each test explores only one possible

execution of the system
 Depends on the quality of the test cases

or inputs
 Provides little in terms of coverage

Symbolic Execution
 Key idea: generalize testing by using unknown symbolic

variables in evaluation
 Symbolic executor executes program, tracking symbolic

state.
 Builds predicates that characterize

 Conditions for executing paths
 Effects of the execution on program state

 Bridges program behavior to logic
 Finds important applications in

 program analysis
 test data generation
 formal verification (proofs) of program correctness

Let’s work through this example
 What are the test

cases to cover all
the paths in this
function?

Void func(int x, int y){
int z = 2 * y;
if(z == x){

if (x > y + 10)
ERROR

}
}
int main(){

int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

Obvious Questions?

5

Can we do better in terms of test
generation? Can we some how make it

automatic?

Symbolic Execution
Void func(int x, int y){

int z = 2 * y;
if(z == x){

if (x > y + 10)
ERROR

}
}
int main(){

int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

Path constraint z = 2b

Note: Require inputs to be marked as symbolic

Generated
Test inputs
for this path

How does symbolic execution work?

Symbolic Execution

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

z = 2b

How does symbolic execution work?

x = a = 0
y = b = 1

x = a = 2
y = b = 3

x = a = 5
y = b = 4

…
…
…

…
…
…

x = a = 2
y = b = 1

x = a = 4
y = b = 2

x = a = -6
y = b = -3

x = a = 40
y = b = 20

x = a = 30
y = b = 15

x = a = 48
y = b = 24

……
…

Path constraints represent
equivalence classes of inputs

Dealing with branching statements
char *binarySearch(char *key, char *dictKeys[],

char *dictValues[], int dictSize) {

int low = 0;
int high = dictSize - 1;
int mid;
int comparison;

while (high >= low) {
mid = (high + low) / 2;
comparison = strcmp(dictKeys[mid], key);
if (comparison < 0) {

low = mid + 1;
} else if (comparison > 0) {

high = mid - 1;
} else {

return dictValues[mid];
}

}
return 0;

a sample
program:

Binary search for key
in sorted array
dictKeys, returning
corresponding value
from dictValues or null
if key does not appear
in dictKeys.

Standard binary search
algorithm as described
in any elementary text
on data structures and
algorithms.

Symbolic state

Execution with concrete
values
before

low 12
high 15
mid -

mid = (high+low)/2

after
low 12
high 15
mid 13

Execution with symbolic
values
before

low L
high H
mid -

mid = (high+low)/2

after
Low L
high H
mid (L+H)/2

Values are expressions over symbols
Executing statements computes new expressions

Dealing with branching statements

char *binarySearch(char *key, char *dictKeys[],
char *dictValues[], int dictSize) {

int low = 0;
int high = dictSize - 1;
int mid;
int comparison;

while (high >= low) {
mid = (high + low) / 2;
comparison = strcmp(dictKeys[mid], key);
if (comparison < 0) {

low = mid + 1;
} else if (comparison > 0) {

high = mid - 1;
} else {

return dictValues[mid];
}

}
return 0;

Branching stmt

Executing while (high >= low) {
before

low = 0
and high = (H-1)/2 -1
and mid = (H-1)/2

while (high >= low){

after

low = 0
and high = (H-1)/2 -1
and mid = (H-1)/2
and (H-1)/2 - 1 >= 0

Add an expression that
records the condition

for the execution of the
branch (PATH
CONDITION)

if the TRUE branch was taken

... and not((H-1)/2 - 1 >= 0) if the FALSE branch was taken

Symbolic Execution
Void func(int x, int y){

int z = 2 * y;
if(z == x){

if (x > y + 10)
ERROR

}
}
int main(){

int x = sym_input();
int y = sym_input();
func(x, y);
return 0;}

Symbolic
Execution

Engine

SMT solver

Path
constraint

Satisfying
Assignment

High coverage
test inputs

Symbolic Execution

Symbolic Execution

 Execute the program with symbolic valued inputs
(Goal: good path coverage)

 Represents equivalence class of inputs with first
order logic formulas (path constraints)

 One path constraint abstractly represents all
inputs that induces the program execution to go
down a specific path

 Solve the path constraint to obtain one
representative input that exercises the program
to go down that specific path

 Symbolic execution implementations: KLEE,
Java PathFinder, etc.

Symbolic Execution (cont.)
 Instead of concrete state, the program

maintains symbolic states, each of which
maps variables to symbolic values

 Path condition is a quantifier-free
formula over the symbolic inputs that
encodes all branch decisions taken so far

 All paths in the program form its
execution tree, in which some paths are
feasible and some are infeasible

Symbolic Execution (cont.)
 During symbolic execution, we are trying to determine if certain

formulas are satisfiable
 E.g., is a particular program point reachable (feasible vs.

infeasible paths)?
 Figure out if the path condition is satisfiable

 E.g., is array access a[i] out of bounds?
 Figure out if conjunction of path condition and i<0 ∨ i > a.length

is satisfiable
 E.g., generate concrete inputs that execute the same paths

 This is enabled by powerful SMT/SAT solvers
 SAT = Satisfiability
 SMT = Satisfiability modulo theory = SAT++
 E.g. Z3, Yices, STP

Summary information
 Symbolic representation of paths may

become extremely complex
 We can simplify the representation by

replacing a complex condition P with a
weaker condition W such that

P => W (P implies W)
 W describes the path with less precision
 W is a summary of P

Example of summary information
(Referring to Binary search: Line 17 , mid = (high+low)/2)
 If we are reasoning about the correctness of the binary search

algorithm, the complete condition:
low = L

and high = H
and mid = M
and M = (L+H)/2

 Contains more information than needed and can be replaced with
the weaker condition:

low = L
and high = H
and mid = M
and L <= M <= H

 The weaker condition contains less information, but still enough to
reason about correctness.

Loops and assertions
 A predicate stating what should be true at a given

point can be expressed in the form of an assertion
 The number of execution paths through a program

with loops is potentially infinite
 To reason about program behavior in a loop, we

can place within the loop an invariant:
 assertion that states a predicate that is expected to be

true each time execution reaches that point.
 Each time program execution reaches the invariant

assertion, we can weaken the description of
program state:
 If predicate P represents the program state
 and the assertion is W
 we must first ascertain P => W
 and then we can substitute W for P

Pre- and post-conditions
 Suppose:

 every loop contains an assertion
 there is an assertion at the beginning of the

program
 a final assertion at the end

 Then:
 every possible execution path would be a

sequence of segments from one assertion to the
next.

 Terminology:
 Precondition: The assertion at the beginning of a

segment,
 Postcondition: The assertion at the end of the

segment

Verifying program correctness
 If for each program segment we can verify

that
 Starting from the precondition
 Executing the program segment
 The postcondition holds at the end of the

segment
 Then

 We verify the correctness of an infinite number
of program paths

Example

Forall{i,j} 0 <= i < j < size
: dictKeys[i] <= dictKeys[j]

Precondition: is sorted:

Forall{i} 0 <= i < size :
dictKeys[i] = key =>
low <= i <= high

Invariant: in range

char *binarySearch(char *key, char *dictKeys[],
char *dictValues[], int dictSize) {

int low = 0;
int high = dictSize - 1;
int mid;
int comparison;

while (high >= low) {
mid = (high + low) / 2;
comparison = strcmp(dictKeys[mid], key);
if (comparison < 0) {

low = mid + 1;
} else if (comparison > 0) {

high = mid - 1;
} else {

return dictValues[mid];
}

}
return 0;

Executing the loop once…
low = L
and high = H

Forall{i,j} 0 <= i < j < size :
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size :
dictKeys[k] = key => L <= k <= H

Initial values:

Instantiated invariant:

low = L
and high = H
and mid = M
and Forall{i,j} 0 <= i < j < size :
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size :
dictKeys[k] = key => L <= k <= H
and H >= M >= L

After executing: mid = (high + low)/2

….

Invariant
Forall{i} 0 <= i < size :
dictKeys[i] = key =>
low <= i <= high

Precondition
Forall{i,j} 0 <= i < j < size
dictKeys[i] <= dictKeys[j]

Note.
M = (L+H)/2
(possibly
rounded to
closest
smallest
integer)

…executing the loop once
low = M+1
and high = H
and mid = M
and Forall{i,j} 0 <= i < j < size :
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size :
dictKeys[k] = key => L <= k <= H
and H >= M >= L
and dictkeys[M]<key

After executing the loop

The new instance of the invariant:

Forall{i,j} 0 <= i < j < size :
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size :
dictKeys[k] = key => M+1 <= k <= H

If the invariant is satisfied, the loop is correct wrt the preconditions and the
invariant

Note. low = mid + 1

is executed after
the “if”
condition is true

Note. low = mid + 1

is executed after
the “if”
condition is true

and the “if” condition is
true

Invariant
Forall{i} 0 <= i < size
:
dictKeys[i] = key =>
low <= i <= high

From the loop to the end
If the invariant is satisfied, but the condition is

false:
low = L
and high = H
and Forall{i,j} 0 <= i < j <
size :
dictKeys[i] <= dictKeys[j]
and Forall{k} 0 <= k < size :
dictKeys[k] = key => L <= k <= H
and L > H

If the condition satisfies the post-condition, the
program is correct wrt the pre- and post-condition.

Invariant
Forall{i} 0 <= i <
size :
dictKeys[i] = key
=>
low <= i <= high

What does the above statement mean?
It means that no such k exists.

 It is possible to extend symbolic execution to
help us catch bugs

 How: Dedicated checkers
 Divide by zero example --- y = x / z where x and z

are symbolic variables and assume current path
condition is f

 Even though we only fork in branches, we will now fork
in the division operator

 One branch in which z = 0 and another where z !=0
 We will get two paths with the following constraints:

z = 0 && f, z != 0 && f
 Solving the constraint z = 0 && f will give us concrete

input values that will trigger the divide by zero error.

How does Symbolic Execution Find bugs?

Write a dedicated checker for each kind of bug
(e.g., buffer overflow, integer overflow, integer
underflow)

How does Symbolic Execution Find bugs?
Example

int foo(int i) {
int j = 2 * i;
i = i+1;
i = i * j;
if (i < 1)

i = -i;
i = j/i;
return i;

}

Use symbolic execution to find a test case which
reveal a division by zero bug for the following
program:

Pen and paper exercise
 Apply symbolic execution on the following program. Identify

feasible paths and infeasible paths.

void hello(int x, int y) {
int t = 0;
if (x > y) {

t = x;
} else {

t = y;
}

if (t < x) {
print(“Hello World”);

}
}

	CSCI426/CSCI926 �Software Testing and Analysis
	Testing
	Symbolic Execution
	Let’s work through this example
	Obvious Questions?
	Symbolic Execution
	Symbolic Execution
	Dealing with branching statements
	Symbolic state
	Dealing with branching statements
	Executing while (high >= low) {
	Symbolic Execution
	Symbolic Execution
	Symbolic Execution (cont.)
	Symbolic Execution (cont.)
	Summary information
	Example of summary information
	Loops and assertions
	Pre- and post-conditions
	Verifying program correctness
	Example
	Executing the loop once…
	…executing the loop once
	From the loop to the end
	How does Symbolic Execution Find bugs?
	How does Symbolic Execution Find bugs?�Example
	Pen and paper exercise

