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Symbolic Execution
Limitations
 Loops and recursions --- infinite execution tree 
 Path explosion --- exponentially many paths 
 Heap modeling --- symbolic data structures and 

pointers
 SMT solver limitations --- dealing with complex 

path constraints 
 Environment modeling --- dealing with 

native/system/library calls/file 
operations/network events 

 Coverage Problem --- may not reach deep into 
the execution tree, specially when encountering 
loops. 



Symbolic Execution
Limitations
1 void testme inf () {
2 int sum = 0;
3 int N = sym_input();
4 while (N > 0) {
5 sum = sum + N;
6 N = sym_input();
7 }
8 return;
9 }
Apply symbolic execution to the above code. How 
many execution paths are there? 
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Example of Execution Tree
void test_me(int x, int y) {
if(2*x==y){

if(x != y+10){
printf(“I am fine here”);

} else {
printf(“I should not reach 

here”);
ERROR;

}
}

}

2*x==y

x!=y+10

N Y

N
Y

ERROR
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Existing Approach I
 Random testing

 generate random 
inputs

 execute the program 
on generated inputs

 Probability of 
reaching an error can 
be astronomically 
less
 What is the probability 

of hitting the ERROR 
path? 

test_me(int x){
if(x==94389){

ERROR;
}

}

Probability of hitting 
ERROR = 1/232
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Existing Approach II
 Symbolic Execution

 use symbolic values 
for input variables

 execute the program 
symbolically on 
symbolic input values

 collect symbolic path 
constraints

 use theorem prover 
to check if a branch 
can be taken

 Does not scale for 
large programs

test_me(int x){
if(bbox(x)!=17){

ERROR;
} else {

// OK
} 

}
Symbolic execution 
may not be able to 
determine whether 
the error is 
reachable.



Solution: Concolic Execution
Concolic = Concrete + Symbolic

Also called dynamic symbolic execution 
 The intention is to visit deep into the 

program execution tree 
 Program is simultaneously executed with 

concrete and symbolic inputs 
 Start off the execution with a random input 
 Specially useful in cases of remote procedure 

call 
 Concolic execution implementations: 

SAGE (Microsoft), CREST 

Combining Classical Testing with 
Automatic Program Analysis



Concolic Execution Steps 
1. Generate a random seed input to start 

execution
2. Concretely execute the program with the 

random seed input and collect the path 
constraint - Example: a && b && c 

3. In the next iteration, negate the last conjunct 
to obtain the constraint a && b && !c 

4. Solve it to get input to the path which matches 
all the branch decisions except the last one 
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Concolic Testing Approach

 Random Test Driver:
 random value for         

x and y
 Probability of 

reaching ERROR is 
extremely low

void testme (int x, int y) {

z = 2 * y;

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}



ERROR

2*y == x

x > y+10

Y

Y

N

N

void testme (int x, int y) 
{

z = 2*y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Example



void testme (int x, int y) 
{

z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 7 x = a, y = b

Concolic execution example



void testme (int x, int y) 
{

z = 2* y;

if (z == x) {
if (x > y+10) {

ERROR;
}

}
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 
7,    z = 14

x = a, y = 
b, 

z = 2*b

Concolic execution example



void testme (int x, int y) 
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 
7,    z = 14

x = a, y = 
b, 

z = 2*b

2*b != a

Concolic execution example



void testme (int x, int y) 
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 
7,    z = 14

x = a, y = 
b, 

z = 2*b

2*b != a

Solve: 2*b == a
Solution: a = 2, b = 1

Concolic execution example



void testme (int x, int y) 
{

z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 2, y = 1 x = a, y = 
b

Concolic execution example



void testme (int x, int y) 
{
z = 2* y;

if (z == x) {
if (x > y+10) {

ERROR;
}

}
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 2, y = 1,       
z = 2

x = a, y = 
b, 

z = 2*b

Concolic execution example



void testme (int x, int y) 
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 2, y = 1,       
z = 2

x = a, y = 
b, 

z = 2*b

2*b == 
a

Concolic execution example



void testme (int x, int y) 
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

2*b == 
a

x = 2, y = 1,       
z = 2

x = a, y = 
b, 

z = 2*b

a < b + 
10

Concolic execution example



void testme (int x, int y) 
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

2*b == 
a

x = 2, y = 1,       
z = 2

x = a, y = 
b, 

z = 2*b

a - b <
10

Solve: (2*b == a) ^ (a – b> 10)
Solution: a = 30, b = 15

Concolic execution example



void testme (int x, int y) 
{
z = 2* y;

if (z == x) {
if (x > y+10) {

ERROR;
}

}
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 30, y = 
15

x = a, y = 
b

Concolic execution example



void testme (int x, int y) 
{

z = 2* y;
if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 30, y = 
15

z = 30

x = a, y = 
b

2*b == 
a

a > b+10

Program Error

Concolic execution example
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Novelty : Simultaneous Concrete and Symbolic Execution

int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
conditio
n

x = 22, y 
= 7

x = x0, y 
= y0
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
conditio
n

x = 22, y 
= 7,    z = 

49

x = x0, y 
= y0,  z = 

(y0 

*y0)%50

(y0*y0)%50
!=x0

Solve: (y0*y0 )%50 == x0

Don’t know how to solve! 

Stuck?

Novelty : Simultaneous Concrete and Symbolic Execution
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void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
conditio
n

x = 22, y 
= 7,    z = 

49

x = x0, y 
= y0,  z = 

foo (y0)

foo (y0) !=x0

Novelty : Simultaneous Concrete and Symbolic Execution

Solve: foo (y0) == x0

Don’t know how to solve! 

Stuck?
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
conditio
n

x = 22, y 
= 7,    z = 

49

x = x0, y 
= y0,  z = 

(y0 

*y0)%50

(y0*y0)%50
!=x0

Solve: (y0*y0 )%50 == x0

Don’t know how to solve! 

Not Stuck!

Use concrete state

Replace y0 by 7 (sound)

Novelty : Simultaneous Concrete and Symbolic Execution
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
conditio
n

x = 22, y 
= 7,    z = 

48

x = x0, y 
= y0,  z = 

49

49 !=x0

Solve: 49 == x0

Solution : x0 = 49, y0 = 7

Novelty : Simultaneous Concrete and Symbolic Execution



27

int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
conditio
n

x = 49, y 
= 7

x = x0, y 
= y0

Novelty : Simultaneous Concrete and Symbolic Execution
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
conditio
n

x = 49, y 
= 7,    z = 

49

x = x0, y 
= y0 , z 

= 49  

(y0*y0
)%50
==x0

x0 > 
y0+10

Program Error

Novelty : Simultaneous Concrete and Symbolic Execution
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Concolic Testing: A Middle Approach

+ Complex 
programs

+ Efficient
- Less coverage
+ No false positive

- Simple 
programs

- Not efficient
+  High coverage
- False positive

Random Testing Symbolic Testing

Concolic Testing

+  Complex programs
+/- Somewhat 

efficient
+ High coverage
+ No false positive
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Concolic Testing: Finding Security and Safety Bugs

Divide by 0 Error

x = 3 / i;

Buffer Overflow

a[i] = 4;
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Concolic Testing: Finding Security and Safety Bugs

Divide by 0 Error

if (i !=0)
x = 3 / i;

else
ERROR;

Buffer Overflow

if (0<=i  &&  i < 
a.length)
a[i] = 4;

else
ERROR;

Key: Add Checks Automatically and 

Perform Concolic Testing
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Implementations
 DART and CUTE for C programs
 jCUTE for Java programs

 Goto http://srl.cs.berkeley.edu/~ksen/ for 
CUTE and jCUTE binaries

 MSR has four implementations
 SAGE, PEX, YOGI, Vigilante

 Similar tool: EXE at Stanford
 Easiest way to use and to develop on top 

of CUTE
 Implement concolic testing yourself 

http://srl.cs.berkeley.edu/%7Eksen/


Pen and paper exercise
 Apply concolic execution on the following program

void hello(int x, int y) { 
int t = 0; 
if (x > y) {

t = x * x - 3;  
} else {

t = y;  
}

if (t < x) {
print(“Hello World”); 

}
}



Further reading
 Symbolic execution and program testing -

James King
 KLEE: Unassisted and Automatic Generation 

of High-Coverage Tests for Complex Systems 
Programs - Cadar et. al. 

 Symbolic Execution for Software Testing: 
Three Decades Later - Cadar and Sen 

 DART: Directed Automated Random Testing -
Godefroid et. al. 

 CUTE: A Concolic Unit Testing Engine for C -
Sen et. al. 

http://madhu.cs.illinois.edu/cs598-fall10/king76symbolicexecution.pdf
http://www.doc.ic.ac.uk/%7Ecristic/papers/klee-osdi-08.pdf
http://cacm.acm.org/magazines/2013/2/160161-symbolic-execution-for-software-testing/fulltext
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/pldi2005.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf
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