
CSCI426/CSCI926
Software Testing and Analysis

Symbolic Execution (Part 2)

Acknowledgement: Slides are adapted from Koushik Sen, Cristian Cadar, Omar Chowdhury, Jeff
Foster, Suman Jana and Pezze & Young

Symbolic Execution
Limitations
 Loops and recursions --- infinite execution tree
 Path explosion --- exponentially many paths
 Heap modeling --- symbolic data structures and

pointers
 SMT solver limitations --- dealing with complex

path constraints
 Environment modeling --- dealing with

native/system/library calls/file
operations/network events

 Coverage Problem --- may not reach deep into
the execution tree, specially when encountering
loops.

Symbolic Execution
Limitations
1 void testme inf () {
2 int sum = 0;
3 int N = sym_input();
4 while (N > 0) {
5 sum = sum + N;
6 N = sym_input();
7 }
8 return;
9 }
Apply symbolic execution to the above code. How
many execution paths are there?

4

Example of Execution Tree
void test_me(int x, int y) {
if(2*x==y){

if(x != y+10){
printf(“I am fine here”);

} else {
printf(“I should not reach

here”);
ERROR;

}
}

}

2*x==y

x!=y+10

N Y

N
Y

ERROR

5

Existing Approach I
 Random testing

 generate random
inputs

 execute the program
on generated inputs

 Probability of
reaching an error can
be astronomically
less
 What is the probability

of hitting the ERROR
path?

test_me(int x){
if(x==94389){

ERROR;
}

}

Probability of hitting
ERROR = 1/232

6

Existing Approach II
 Symbolic Execution

 use symbolic values
for input variables

 execute the program
symbolically on
symbolic input values

 collect symbolic path
constraints

 use theorem prover
to check if a branch
can be taken

 Does not scale for
large programs

test_me(int x){
if(bbox(x)!=17){

ERROR;
} else {

// OK
}

}
Symbolic execution
may not be able to
determine whether
the error is
reachable.

Solution: Concolic Execution
Concolic = Concrete + Symbolic

Also called dynamic symbolic execution
 The intention is to visit deep into the

program execution tree
 Program is simultaneously executed with

concrete and symbolic inputs
 Start off the execution with a random input
 Specially useful in cases of remote procedure

call
 Concolic execution implementations:

SAGE (Microsoft), CREST

Combining Classical Testing with
Automatic Program Analysis

Concolic Execution Steps
1. Generate a random seed input to start

execution
2. Concretely execute the program with the

random seed input and collect the path
constraint - Example: a && b && c

3. In the next iteration, negate the last conjunct
to obtain the constraint a && b && !c

4. Solve it to get input to the path which matches
all the branch decisions except the last one

9

Concolic Testing Approach

 Random Test Driver:
 random value for

x and y
 Probability of

reaching ERROR is
extremely low

void testme (int x, int y) {

z = 2 * y;

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

ERROR

2*y == x

x > y+10

Y

Y

N

N

void testme (int x, int y)
{

z = 2*y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Example

void testme (int x, int y)
{

z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7 x = a, y = b

Concolic execution example

void testme (int x, int y)
{

z = 2* y;

if (z == x) {
if (x > y+10) {

ERROR;
}

}
}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y =
7, z = 14

x = a, y =
b,

z = 2*b

Concolic execution example

void testme (int x, int y)
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y =
7, z = 14

x = a, y =
b,

z = 2*b

2*b != a

Concolic execution example

void testme (int x, int y)
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y =
7, z = 14

x = a, y =
b,

z = 2*b

2*b != a

Solve: 2*b == a
Solution: a = 2, b = 1

Concolic execution example

void testme (int x, int y)
{

z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1 x = a, y =
b

Concolic execution example

void testme (int x, int y)
{
z = 2* y;

if (z == x) {
if (x > y+10) {

ERROR;
}

}
}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1,
z = 2

x = a, y =
b,

z = 2*b

Concolic execution example

void testme (int x, int y)
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1,
z = 2

x = a, y =
b,

z = 2*b

2*b ==
a

Concolic execution example

void testme (int x, int y)
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

2*b ==
a

x = 2, y = 1,
z = 2

x = a, y =
b,

z = 2*b

a < b +
10

Concolic execution example

void testme (int x, int y)
{
z = 2* y;
if (z == x) {

if (x > y+10) {
ERROR;

}
}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

2*b ==
a

x = 2, y = 1,
z = 2

x = a, y =
b,

z = 2*b

a - b <
10

Solve: (2*b == a) ^ (a – b> 10)
Solution: a = 30, b = 15

Concolic execution example

void testme (int x, int y)
{
z = 2* y;

if (z == x) {
if (x > y+10) {

ERROR;
}

}
}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 30, y =
15

x = a, y =
b

Concolic execution example

void testme (int x, int y)
{

z = 2* y;
if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 30, y =
15

z = 30

x = a, y =
b

2*b ==
a

a > b+10

Program Error

Concolic execution example

22

Novelty : Simultaneous Concrete and Symbolic Execution

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
conditio
n

x = 22, y
= 7

x = x0, y
= y0

23

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
conditio
n

x = 22, y
= 7, z =

49

x = x0, y
= y0, z =

(y0

*y0)%50

(y0*y0)%50
!=x0

Solve: (y0*y0)%50 == x0

Don’t know how to solve!

Stuck?

Novelty : Simultaneous Concrete and Symbolic Execution

24

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
conditio
n

x = 22, y
= 7, z =

49

x = x0, y
= y0, z =

foo (y0)

foo (y0) !=x0

Novelty : Simultaneous Concrete and Symbolic Execution

Solve: foo (y0) == x0

Don’t know how to solve!

Stuck?

25

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
conditio
n

x = 22, y
= 7, z =

49

x = x0, y
= y0, z =

(y0

*y0)%50

(y0*y0)%50
!=x0

Solve: (y0*y0)%50 == x0

Don’t know how to solve!

Not Stuck!

Use concrete state

Replace y0 by 7 (sound)

Novelty : Simultaneous Concrete and Symbolic Execution

26

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
conditio
n

x = 22, y
= 7, z =

48

x = x0, y
= y0, z =

49

49 !=x0

Solve: 49 == x0

Solution : x0 = 49, y0 = 7

Novelty : Simultaneous Concrete and Symbolic Execution

27

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
conditio
n

x = 49, y
= 7

x = x0, y
= y0

Novelty : Simultaneous Concrete and Symbolic Execution

28

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
conditio
n

x = 49, y
= 7, z =

49

x = x0, y
= y0 , z

= 49

(y0*y0
)%50
==x0

x0 >
y0+10

Program Error

Novelty : Simultaneous Concrete and Symbolic Execution

29

Concolic Testing: A Middle Approach

+ Complex
programs

+ Efficient
- Less coverage
+ No false positive

- Simple
programs

- Not efficient
+ High coverage
- False positive

Random Testing Symbolic Testing

Concolic Testing

+ Complex programs
+/- Somewhat

efficient
+ High coverage
+ No false positive

30

Concolic Testing: Finding Security and Safety Bugs

Divide by 0 Error

x = 3 / i;

Buffer Overflow

a[i] = 4;

31

Concolic Testing: Finding Security and Safety Bugs

Divide by 0 Error

if (i !=0)
x = 3 / i;

else
ERROR;

Buffer Overflow

if (0<=i && i <
a.length)
a[i] = 4;

else
ERROR;

Key: Add Checks Automatically and

Perform Concolic Testing

32

Implementations
 DART and CUTE for C programs
 jCUTE for Java programs

 Goto http://srl.cs.berkeley.edu/~ksen/ for
CUTE and jCUTE binaries

 MSR has four implementations
 SAGE, PEX, YOGI, Vigilante

 Similar tool: EXE at Stanford
 Easiest way to use and to develop on top

of CUTE
 Implement concolic testing yourself

http://srl.cs.berkeley.edu/%7Eksen/

Pen and paper exercise
 Apply concolic execution on the following program

void hello(int x, int y) {
int t = 0;
if (x > y) {

t = x * x - 3;
} else {

t = y;
}

if (t < x) {
print(“Hello World”);

}
}

Further reading
 Symbolic execution and program testing -

James King
 KLEE: Unassisted and Automatic Generation

of High-Coverage Tests for Complex Systems
Programs - Cadar et. al.

 Symbolic Execution for Software Testing:
Three Decades Later - Cadar and Sen

 DART: Directed Automated Random Testing -
Godefroid et. al.

 CUTE: A Concolic Unit Testing Engine for C -
Sen et. al.

http://madhu.cs.illinois.edu/cs598-fall10/king76symbolicexecution.pdf
http://www.doc.ic.ac.uk/%7Ecristic/papers/klee-osdi-08.pdf
http://cacm.acm.org/magazines/2013/2/160161-symbolic-execution-for-software-testing/fulltext
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/pldi2005.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf

	CSCI426/CSCI926 �Software Testing and Analysis
	Symbolic Execution�Limitations
	Symbolic Execution�Limitations
	Example of Execution Tree
	Existing Approach I
	Existing Approach II
	Solution: Concolic Execution
	Concolic Execution Steps
	Concolic Testing Approach
	Example
	Concolic execution example
	Slide Number 12
	Concolic execution example
	Concolic execution example
	Concolic execution example
	Concolic execution example
	Concolic execution example
	Concolic execution example
	Concolic execution example
	Concolic execution example
	Concolic execution example
	Novelty : Simultaneous Concrete and Symbolic Execution
	Novelty : Simultaneous Concrete and Symbolic Execution
	Novelty : Simultaneous Concrete and Symbolic Execution
	Novelty : Simultaneous Concrete and Symbolic Execution
	Novelty : Simultaneous Concrete and Symbolic Execution
	Novelty : Simultaneous Concrete and Symbolic Execution
	Novelty : Simultaneous Concrete and Symbolic Execution
	Concolic Testing: A Middle Approach
	Concolic Testing: Finding Security and Safety Bugs
	Concolic Testing: Finding Security and Safety Bugs
	Implementations
	Pen and paper exercise
	Further reading

