
Based on slides by Mauro Pezzè &
Michal Young

Ch 9, slide 1

Test Case Selection
and Adequacy Criteria

Test adequacy
• A key problem in software testing is selecting and

evaluating test cases
• Software that has passed a thorough set of

systematic tests vs. software that has been only
superficially or unsystematically tested.

• Each software module should be required undergo
thorough, systematic testing before being
incorporated into the main product.
– What do we mean by “thorough testing”?
– What is the criterion by which we can judge the

adequacy of a suite of tests that a software module
has passed?

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 2

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 3

Adequacy: We can’t get what we want

• What we would like:
– A real way of measuring effective testing

If the system passes an adequate suite of test cases,
then it must be correct (or dependable)

• But that’s impossible!
– Adequacy of test suites, in the sense above, is

provably undecidable.

• So we’ll have to settle on weaker proxies for
adequacy
– Design rules to highlight inadequacy of test suites

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 4

Important Terminology
• Test case: a set of inputs, execution conditions, and a

pass/fail criterion.
• Test case specification: a requirement to be satisfied by

one or more test cases.
• Test obligation: a pattern for test case specification

– usually derived from an adequacy criterion (see below)
– requiring some property deemed important to thorough testing.

• Test suite: a set of test cases.
• Test or test execution: the activity of executing test

cases and evaluating their results.
• (Test) adequacy criterion: a predicate that is true

(satisfied) or false (not satisfied) of a 〈program, test suite〉
pair.

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 5

Practical (in)Adequacy Criteria
• Criteria that identify inadequacies in test suites, e.g.:

– if the specification describes different treatment in
two cases, but the test suite does not check that the
two cases are in fact treated differently, we may
conclude that the test suite is inadequate to guard
against faults in the program logic.

– If no test in the test suite executes a particular
program statement, the test suite is inadequate to
guard against faults in that statement.

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 6

Practical (in)Adequacy Criteria
• If a test suite fails to satisfy some criterion, the obligation

that has not been satisfied may provide some useful
information about improving the test suite.

• If a test suite satisfies all the obligations by all the
criteria, we still do not know definitively that it is an
effective test suite, but we have some evidence of its
thoroughness.

Test case vs. Test case specification
• Suppose, for example, we are testing a program

that sorts a sequence of words.
– “The input is two or more words” would be a test

case specification,
• Q: What would be the test cases satisfying the case

specification?

– How’s about the test case specification “the input is
two or more words” and the test case specification
“the input contains a mix of lower- and upper-case
alphabetic characters.”?

• Q: What would be the test cases satisfying the case
specification?

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 7

Test case specification
• Characteristics of the input are not the only

thing that might be mentioned in a test case
specification.

• A complete test case specification includes
pass/fail criteria for judging test execution

• It may include requirements, drawn from any of
several sources of information, such as:
– system, program, and module interface

specifications;
– source code or detailed design of the program itself;
– and records of faults encountered in other software

systems.
Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 8

Test case specification (cont.)

• Test specifications drawn from system, program,
and module interface specifications often
describe program inputs,

• But they can just as well specify any observable
behavior that could appear in specifications.

• For example, the specification of a database
system might require certain kinds of robust
failure recovery in case of power loss,
– and test specifications might therefore require

removing system power at certain critical points in
processing.

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 9

Test case specification (cont.)
• If a specification describes inputs and outputs, a test specification

could prescribe aspects of the input, the output, or both.
• If the specification is modeled as an extended finite state machine,

it might require executions corresponding to particular transitions or
paths in the state-machine model.

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 10

Test case example

11Based on slides by Mauro Pezzè & Michal Young

IEEE 829 Test Case Specification Template
• Test Case Specification Identifier
• Test Items

– Describe features and conditions tested

• Input Specifications
– Data Names
– Ordering
– Values (with tolerances or generation procedures)
– States
– Timing

• Output Specifications
– Data Names
– Ordering
– Values (with tolerances or generation procedures)
– States
– Timing

• Environmental Needs
– Hardware
– Software
– Other

• Special Procedural Requirements
• Inter-Case Dependencies

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 12

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 13

Where do test obligations
come from?

• Functional (black box, specification-based): from
software specifications

• Example: If spec requires robust recovery from power failure, test
obligations should include simulated power failure

• Structural (white or glass box): from code
• Example: Traverse each program loop one or more times.

• Model-based: from model of system
• Models used in specification or design, or derived from code
• Example: Exercise all transitions in communication protocol model

• Fault-based: from hypothesized faults (common bugs)
• Example: Check for buffer overflow handling (common

vulnerability) by testing on very large inputs

Test obligations for white-box testing

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 14

• Items to keep in mind during white box testing
– Statement coverage: each statement is executed at

least once
– Decision (branch) coverage: each statement …;

each decision takes on all possible outcome at least
once

– Condition coverage: each statement…; each
decision …; each condition in a decision takes on all
possible outputs at least once

– Path coverage: each statement …; all possible
combinations of condition outcomes in each decision
occur at least once

Quiz
premium = 500;
if (age < 25) && (gender ==

male) && !married
{

premium += 500;
}
else
{

if (married || (gender ==
female)

premium -= 200;
if (age > 45) && (age <
65)

premium -= 100;
}

• Identify a test
suite that satisfies:
– Statement

coverage
– Branch coverage
– Path coverage

Based on slides by Mauro Pezzè & Michal Young

Exercise
• Discuss and

identify a
number of
possible test
obligations for
this program.

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 16

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 17

Adequacy criteria

• Adequacy criterion = a set of test obligations
• A test suite satisfies an adequacy criterion if

– all the tests succeed (pass)
– every test obligation in the criterion is fulfilled, or

satisfied, by at least one of the test cases in the test
suite.

– Example:
Question: How does test suite S for program P satisfy the
statement coverage adequacy criterion?
Answer: Each executable statement in P is executed by at
least one test case in S, and the outcome of each test
execution was “pass”.

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 18

Coping with Unsatisfiability
• Sometimes no test suite can satisfy a criterion for a

given program
• Approach A: exclude any unsatisfiable obligation from

the criterion.
– Example: modify statement coverage to require execution only

of statements that can be executed.
– But… we can’t know for sure which are executable!

• Approach B: measure the extent to which a test suite
approaches an adequacy criterion.
– Example: if a test suite satisfies 85 of 100 obligations, we have

reached 85% coverage.
• Terms: We say that an adequacy criterion is satisfied or not.

A coverage measure is the fraction of satisfied obligations

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 19

Coverage: Useful or Harmful?
• Measuring coverage (% of satisfied test

obligations) can be a useful indicator
– E.g., of progress towards a thorough test suite, of

trouble spots requiring more attention
• Or a dangerous seduction

– Coverage is only a proxy for thoroughness or
adequacy

– It’s easy to improve coverage without improving a
test suite (designing more trivial test cases is much
easier than designing good test cases)

– The only measure that really matters is (cost-)
effectiveness

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 20

Comparing Criteria
• Can we distinguish stronger from weaker adequacy

criteria?
• Empirical approach: Study the effectiveness of

different approaches to testing in industrial practice
– What we really care about, but ...
– Depends on the setting; may not generalize from one

organization or project to another

• Analytical approach: Describe conditions under which
one adequacy criterion is provably stronger than
another
– Stronger = gives stronger guarantees
– One piece of the overall “effectiveness” question

Comparing Criteria (cont.)

• Analytic comparisons of the strength of test
coverage depends on a precise definition of
what it means for one criterion to be
“stronger” or “more effective” than another.

• A test suite TA that does not include all the test
cases of another test suite TB may fail revealing
the potential failure exposed by the test cases
that are in TB but not in TA.

• Question: How to make test suite TA to be
stronger than another suite TB?

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 21

Comparing Criteria (cont.)

• Many different test suites might satisfy the
same coverage criterion.

• To compare criteria, then, we consider all the
possible ways of satisfying the criteria.

• If every test suite that satisfies some criterion A
is a superset of some test suite that satisfies
criterion B, or equivalently, every suite that
satisfies A also satisfies B, then we can say that
A “subsumes” B.

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 22

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 23

The subsumes relation
Test adequacy criterion A subsumes test adequacy

criterion B iff, for every program P, every test
suite satisfying A with respect to P also
satisfies B with respect to P.

• Example:
– Exercising all program branches (branch coverage)

subsumes exercising all program statements

The subsumes relation (cont.)

• In this case, if we satisfy criterion C1, there is
no point in measuring adequacy with respect to
C2 if C1 subsumes C2.

• For example, a structural criterion that
requires exploring all outcomes of conditional
branches subsumes statement coverage.

• Likewise, a specification-based criterion that
requires use of a set of possible values for
attribute A and, independently, for attribute B,
will be subsumed by a criterion that requires all
combinations of those values.

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 24

Exercise
• Which adequacy

criterion
imposed by the
test obligation
you identified
earlier subsumes
the others?

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 25

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 26

Uses of Adequacy Criteria

• Test selection approaches
– Guidance in devising a thorough test suite

• Example: A specification-based criterion may suggest test
cases covering representative combinations of values

• Revealing missing tests
– Post hoc analysis: What might I have missed with this

test suite?

• Often in combination
– Example: Design test suite from specifications, then

use structural criterion (e.g., coverage of all
branches) to highlight missed logic

Quiz

• Suppose test suite A satisfies adequacy criterion
C1. Test suite B satisfies adequacy criterion C2,
and C2 subsumes C1. Can we be certain that
faults revealed by A will also be revealed by B?
Why?

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 27

Based on slides by Mauro Pezzè & Michal Young Ch 9, slide 28

Summary
• Adequacy criteria provide a way to define a

notion of “thoroughness” in a test suite
– But they don’t offer guarantees; more like design

rules to highlight inadequacy
• Defined in terms of “covering” some

information
– Derived from many sources: Specs, code, models, ...

• May be used for selection as well as
measurement
– With caution! An aid to thoughtful test design, not a

substitute

	Test Case Selection �and Adequacy Criteria
	Test adequacy
	Adequacy: We can’t get what we want
	Important Terminology
	Practical (in)Adequacy Criteria
	Practical (in)Adequacy Criteria
	Test case vs. Test case specification
	Test case specification
	Test case specification (cont.)
	Test case specification (cont.)
	Test case example
	IEEE 829 Test Case Specification Template
	Where do test obligations� come from?
	Test obligations for white-box testing
	Quiz
	Exercise
	Adequacy criteria
	Coping with Unsatisfiability
	Coverage: Useful or Harmful?
	Comparing Criteria
	Comparing Criteria (cont.)
	Comparing Criteria (cont.)
	The subsumes relation
	The subsumes relation (cont.)
	Exercise
	Uses of Adequacy Criteria
	Quiz
	Summary

