
Based on slides by Mauro Pezzè & Michal Young

Functional Testing, Random Testing
and Fuzzing

slide 1

Based on slides by Mauro Pezzè & Michal Young

Functional testing

• Functional testing: Deriving test cases from
program specifications

• Functional refers to the source of information used in test
case design, not to what is tested

• Also known as:
– specification-based testing (from specifications)
– black-box testing (no view of the code)

• Functional specification = description of
intended program behavior
– either formal or informal

slide 2

Based on slides by Mauro Pezzè & Michal Young

Systematic vs Random Testing
• Random (uniform):

– Pick possible inputs uniformly
– Avoids designer bias

• A real problem: The test designer can make the same
logical mistakes and bad assumptions as the program
designer (especially if they are the same person)

– But treats all inputs as equally valuable
• Systematic (non-uniform):

– Try to select inputs that are especially valuable
– Usually by choosing representatives of classes that

are apt to fail often or not at all
• Functional testing is systematic testing

slide 3

Why not
random?

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 4

• Compute the probability of
selecting a test case that reveals
the fault in line 19 by randomly
sampling the input domain,
assuming that type double has
range −231 . . . 231−1.

• Compute the probability of
randomly selecting a test case
that reveals a fault if lines 13 and
19 were both missing the
condition a != 0.

Based on slides by Mauro Pezzè & Michal Young

Why Not Random?

• Non-uniform distribution of faults
• Example: Java class “roots” applies quadratic

equation

Incomplete implementation logic: Program does not
properly handle the case in which b2 - 4ac =0 and
a=0

Failing values are sparse in the input space — needles
in a very big haystack. Random sampling is unlikely
to choose a=0.0 and b=0.0

slide 5

Consider the purpose of testing ...
• To estimate the proportion of needles

to hay, sample randomly
– Reliability estimation requires unbiased

samples for valid statistics. But that’s not
our goal!

• To find needles and remove them from
hay, look systematically (non-
uniformly) for needles
– Unless there are a lot of needles in the

haystack, a random sample will not be
effective at finding them

– We need to use everything we know about
needles, e.g., are they heavier than hay? Do
they sift to the bottom?

slide 6
Based on slides by Mauro Pezzè & Michal Young slide 6

Systematic Partition Testing

• Partition testing separates the input space into
classes whose union is the entire space.

• Divides the infinite set of possible test cases
into a finite set of classes, with the purpose of
drawing one or more test cases from each class.

• Usually produces fewer test cases than random
testing

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 7

Based on slides by Mauro Pezzè & Michal Young

Systematic Partition Testing
Failure (valuable test case)
No failure

Failures are sparse
in the space of
possible inputs ...

... but dense in some
parts of the space

If we systematically test some
cases from each part, we will
include the dense parts

Functional testing is one way of
drawing pink lines to isolate
regions with likely failures

Th
e

sp
ac

e
of

 p
os

si
bl

e
in

pu
t v

al
ue

s
(th

e
ha

ys
ta

ck
)

slide 8

Based on slides by Mauro Pezzè & Michal Young

The partition principle
• Exploit some knowledge to choose samples that are

more likely to include “special” or trouble-prone
regions of the input space
– Failures are sparse in the whole input space ...
– ... but we may find regions in which they are dense

• (Quasi*-)Partition testing: separates the input space
into classes whose union is the entire space
– *Quasi because: The classes may overlap

• Desirable case: Each fault leads to failures that are
dense (easy to find) in some class of inputs
– sampling each class in the quasi-partition selects at least one

input that leads to a failure, revealing the fault
– seldom guaranteed; we depend on experience-based heuristics

slide 9

Based on slides by Mauro Pezzè & Michal Young

Functional testing: exploiting the
specification

• Functional testing uses the specification
(formal or informal) to partition the input
space
– E.g., for a quadratic equation, division between

cases with zero, one, and two real roots

• Test each category, and boundaries between
categories
– No guarantees, but experience suggests failures

often lie at the boundaries (as in the “roots”
program)

slide 10

Equivalence Partitioning

• A testing method that divides the input
domain of a program into sets of data from
which test cases can be derived.

• Equivalence partitioning strives to define a
test case that uncovers a class of errors,
thereby reducing the total number of test
cases that must be developed.

11

Equivalence Partitioning

• Pizza values 1 to 10 is considered valid. A
success message is shown.

• While value 11 to 99 are considered invalid for
order and an error message will appear, "Only
10 Pizza can be ordered"

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 12

Source:https://www.guru99.com/equivalence
-partitioning-boundary-value-analysis.html

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 13

Equivalence Partitioning

Boundary Value Analysis

A test case design technique that complements
equivalence partitioning.
• Rather than selecting any element of an

equivalence set, it selects test cases at the
edges of the set.

• Boundary value analysis leads to a selection of
test cases that exercise boundary values.

14

Boundary Value Analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 15

Equivalence partitions

16

Based on slides by Mauro Pezzè & Michal Young

Why functional testing?
• The baseline technique for designing test cases

– Timely
• Often useful in refining specifications and assessing

testability before code is written
– Effective

• finds some classes of fault (e.g., missing logic) that can
elude other approaches

– Widely applicable
• to any description of program behavior serving as spec
• at any level of granularity from module to system testing.

– Economical
• typically less expensive to design and execute than

structural (code-based) test cases

slide 17

Based on slides by Mauro Pezzè & Michal Young

Early functional test design
• Program code is not necessary

– Only a description of intended behavior is needed
– Even incomplete and informal specifications can be

used
• Although precise, complete specifications lead to better

test suites

• Early functional test design has side benefits
– Often reveals ambiguities and inconsistency in spec
– Useful for assessing testability

• And improving test schedule and budget by improving spec
– Useful explanation of specification

• or in the extreme case (as in XP), test cases are the spec

slide 18

Based on slides by Mauro Pezzè & Michal Young

Functional versus Structural:
Classes of faults

• Different testing strategies (functional,
structural, fault-based, model-based) are most
effective for different classes of faults

• Functional testing is best for missing logic
faults
– A common problem: Some program logic was simply

forgotten
– Structural (code-based) testing will never focus on

code that isn’t there!

slide 19

Based on slides by Mauro Pezzè & Michal Young

Functional vs structural test: granularity
levels

• Functional test applies at all granularity levels:
– Unit (from module interface spec)

– Integration (from API or subsystem spec)

– System (from system requirements spec)

– Regression (from system requirements + bug history)

• Structural (code-based) test design applies to
relatively small parts of a system:
– Unit
– Integration

slide 20

Based on slides by Mauro Pezzè & Michal Young

Steps: From specification to test cases

• 1. Decompose the specification
– If the specification is large, break it into independently

testable features to be considered in testing

• 2. Select representatives
– Representative values of each input, or
– Representative behaviors of a model

• Often simple input/output tuples don’t describe a system.
We use models in program specification, in program design,
and in test design

• 3. Form test specifications
• Typically: combinations of input values, or model behaviors

• 4. Produce and execute actual tests
slide 21

Based on slides by Mauro Pezzè & Michal Young

From specification to test cases

slide 22

Based on slides by Mauro Pezzè &
Michal Young

Simple example: Postal code lookup

• Input: ZIP code (5-digit
US Postal code)

• Output: List of cities
• What are some

representative values (or
classes of value) to test?

slide 23

Based on slides by Mauro Pezzè &
Michal Young

Example: Representative values

• Correct zip code
– With 0, 1, or many cities

• Malformed zip code
– Empty; 1-5 characters; 6 characters; very long
– Non-digit characters
– Non-character data

Simple example with
one input, one output

Note prevalence of boundary
values (0 cities, 6 characters)

and error cases

slide 24

Pen and paper exercise

• Identify independently testable units in the
following specification.

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 25

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 26

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 27

Random Testing

• Test a program by generating random,
independent inputs.

• Using the specification to derive expected
output and pass/fail criteria

• In the absence of specifications, exceptions
thrown during test execution is an indication of
faults.

Based on slides by Mauro Pezzè & Michal Young slide 28

Random Testing

• Advantages:
– Cheap to use
– No bias (uniform random test)
– Sometimes quick to find bug candidates

• Disadvantages:
– Only finds basic bugs
– Perform poorly with respect to other techniques to

find bugs
– Low coverage

Based on slides by Mauro Pezzè & Michal Young slide 29

Fuzzing
• Fuzzing is a random testing technique

– Automatically generate test cases
– Many slightly anomalous test cases are input into a

target
• Generate invalid, unexpected, or random data as inputs

to a computer program, and then observe for
exceptions such as crashes, failing built-in code
assertions, or potential memory leaks.

• Different types of fuzzing:
– Generation-based vs. Mutation-based
– Dumb vs. smart
– White-box vs. grey-box vs. black-box.

Based on slides by Mauro Pezzè & Michal Young slide 30

• Take a well-formed input, randomly perturb (flipping bit, etc.)
• Little or no knowledge of the structure of the inputs is assumed
• Anomalies are added to existing valid inputs

– Anomalies may be completely random or follow some heuristics
(e.g., remove NULL, shift character forward)

• Examples: ZZUF, Taof, GPF, ProxyFuzz, FileFuzz, Filep, etc.

Seed input Mutated input Run test program

?

Mutation-based Fuzzing

Example: Mutation-based Fuzzing

Fuzzing a PDF viewer:
1. Google for .pdf (about 1 billion results)
2. Crawl pages to build a corpus
3. Use fuzzing tool (or script)

– Collect seed PDF files
– Mutate that file
– Feed it to the program
– Record if it crashed (and input that crashed it)

Based on slides by Mauro Pezzè & Michal Young slide 32

Mutation-based fuzzing

• Easy to setup and automate
• Little or no file format knowledge is required
• Limited by initial corpus
• May fail for protocols with checksums, those

which depend on challenge

Generation-Based Fuzzing

• Test cases are generated from some description of the input
format: RFC, documentation, etc.
– Using specified protocols/file format info
– E.g., SPIKE by Immunity

• Anomalies are added to each possible spot in the inputs
• Knowledge of protocol should give better results than random

fuzzing

Input spec Generated
inputs

Run test program

?RF
C

Generation-Based Fuzzing

Sample PNG spec

Mutation-based vs. Generation-based

• Mutation-based fuzzer
– Pros: Easy to set up and automate, little to no

knowledge of input format required
– Cons: Limited by initial corpus, may fall for

protocols with checksums and other hard checks

• Generation-based fuzzers
– Pros: Completeness, can deal with complex

dependencies (e.g, checksum)
– Cons: writing generators is hard, performance

depends on the quality of the spec

How much fuzzing is enough?

• Mutation-based-fuzzers may generate an
infinite number of test cases. When has the
fuzzer run long enough?

• Generation-based fuzzers may generate a finite
number of test cases. What happens when
they’re all run and no bugs are found?

Code coverage

• Some of the answers to these questions lie in
code coverage

• Code coverage is a metric that can be used to
determine how much code has been executed.

• Data can be obtained using a variety of
profiling tools. e.g. gcov, lcov

Coverage-guided gray-box fuzzing

• Special type of mutation-based fuzzing
– Run mutated inputs on instrumented program and

measure code coverage
– Search for mutants that result in coverage increase
– Often use genetic algorithms, i.e., try random

mutations on test corpus and only add mutants to
the corpus if coverage increases

– Examples: AFL, libfuzzer

	Functional Testing, Random Testing and Fuzzing
	Functional testing
	Systematic vs Random Testing
	Why not random?
	Why Not Random?
	Consider the purpose of testing ...
	Systematic Partition Testing
	Systematic Partition Testing
	The partition principle
	Functional testing: exploiting the specification
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Partitioning
	Boundary Value Analysis
	Boundary Value Analysis
	Equivalence partitions
	Why functional testing?
	Early functional test design
	Functional versus Structural:� Classes of faults
	Functional vs structural test: granularity levels
	Steps: From specification to test cases
	From specification to test cases
	Simple example: Postal code lookup
	Example: Representative values
	Pen and paper exercise
	Slide Number 26
	Slide Number 27
	Random Testing
	Random Testing
	Fuzzing
	Mutation-based Fuzzing
	Example: Mutation-based Fuzzing
	Mutation-based fuzzing
	Generation-Based Fuzzing�
	Generation-Based Fuzzing�
	Mutation-based vs. Generation-based
	How much fuzzing is enough?
	Code coverage
	Coverage-guided gray-box fuzzing

