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Functional Testing, Random Testing 
and Fuzzing
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Functional testing

• Functional testing: Deriving test cases from 
program specifications 

• Functional refers to the source of information used in test 
case design, not to what is tested

• Also known as:
– specification-based testing (from specifications)
– black-box testing (no view of the code)

• Functional specification = description of 
intended program behavior
– either formal or informal
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Systematic vs Random Testing
• Random (uniform):

– Pick possible inputs uniformly
– Avoids designer bias

• A real problem: The test designer can make the same 
logical mistakes and bad assumptions as the program 
designer (especially if they are the same person)

– But treats all inputs as equally valuable
• Systematic (non-uniform):

– Try to select inputs that are especially valuable
– Usually by choosing representatives of classes that 

are apt to fail often or not at all
• Functional testing is systematic testing
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Why not 
random? 

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 4

• Compute the probability of 
selecting a test case that reveals 
the fault in line 19 by randomly 
sampling the input domain, 
assuming that type double has 
range −231 . . . 231−1.

• Compute the probability of 
randomly selecting a test case 
that reveals a fault if lines 13 and 
19 were both missing the 
condition a != 0.
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Why Not Random?

• Non-uniform distribution of faults
• Example: Java class “roots” applies quadratic 

equation  

Incomplete implementation logic:  Program does not 
properly handle the case in which b2 - 4ac =0 and 
a=0

Failing values are sparse in the input space — needles 
in a very big haystack. Random sampling is unlikely 
to choose a=0.0 and b=0.0
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Consider the purpose of testing ...
• To estimate the proportion of needles 

to hay, sample randomly
– Reliability estimation requires unbiased 

samples for valid statistics.  But that’s not 
our goal! 

• To find needles and remove them from 
hay, look systematically (non-
uniformly) for needles
– Unless there are a lot of needles in the 

haystack, a random sample will not be 
effective at finding them

– We need to use everything we know about 
needles, e.g., are they heavier than hay? Do 
they sift to the bottom? 
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Systematic Partition Testing

• Partition testing separates the input space into 
classes whose union is the entire space.

• Divides the infinite set of possible test cases 
into a finite set of classes, with the purpose of 
drawing one or more test cases from each class.

• Usually produces fewer test cases than random 
testing
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Systematic Partition Testing
Failure (valuable test case)
No failure

Failures are sparse 
in the space of 
possible inputs ...

... but dense in some 
parts of the space

If we systematically test some 
cases from each part, we will 
include the dense parts 

Functional testing is one way of 
drawing pink lines to isolate 
regions with likely failures
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The partition principle
• Exploit some knowledge to choose samples that are 

more likely to include “special” or trouble-prone 
regions of the input space
– Failures are sparse in the whole input space ... 
– ... but we may find regions in which they are dense

• (Quasi*-)Partition testing: separates the input space 
into classes whose union is the entire space
– *Quasi because: The classes may overlap

• Desirable case: Each fault leads to failures that are  
dense (easy to find) in some class of inputs
– sampling each class in the quasi-partition selects at least one 

input that leads to a failure, revealing the fault
– seldom guaranteed; we depend on experience-based heuristics
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Functional testing: exploiting the 
specification

• Functional testing uses the specification 
(formal or informal) to partition the input 
space
– E.g., for a quadratic equation, division between 

cases with zero, one, and two real roots

• Test each category, and boundaries between 
categories
– No guarantees, but experience suggests failures 

often lie at the boundaries (as in the “roots” 
program)
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Equivalence Partitioning

• A testing method that divides the input 
domain of a program into sets of data from 
which test cases can be derived. 

• Equivalence partitioning strives to define a 
test case that uncovers a class of errors, 
thereby reducing the total number of test 
cases that must be developed.
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Equivalence Partitioning

• Pizza values 1 to 10 is considered valid. A 
success message is shown.

• While value 11 to 99 are considered invalid for 
order and an error message will appear, "Only 
10 Pizza can be ordered"
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Source:https://www.guru99.com/equivalence
-partitioning-boundary-value-analysis.html
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Equivalence Partitioning



Boundary Value Analysis

A test case design technique that complements  
equivalence partitioning. 
• Rather than selecting any element of an 

equivalence set, it selects test cases at the 
edges of the set. 

• Boundary value analysis leads to a selection of 
test cases that exercise boundary values.
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Boundary Value Analysis
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Equivalence partitions
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Why functional testing?
• The baseline technique for designing test cases

– Timely
• Often useful in refining specifications and assessing 

testability before code is written
– Effective

• finds some classes of fault (e.g., missing logic) that can 
elude other approaches

– Widely applicable
• to any description of program behavior serving as spec
• at any level of granularity from module to system testing.

– Economical
• typically less expensive to design and execute than 

structural (code-based) test cases
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Early functional test design
• Program code is not necessary

– Only a description of intended behavior is needed
– Even incomplete and informal specifications can be 

used
• Although precise, complete specifications lead to better 

test suites

• Early functional test design has side benefits
– Often reveals ambiguities and inconsistency in spec
– Useful for assessing testability

• And improving test schedule and budget by improving spec
– Useful explanation of specification

• or in the extreme case (as in XP), test cases are the spec 
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Functional versus Structural:
Classes of faults

• Different testing strategies (functional, 
structural, fault-based, model-based) are most 
effective for different classes of faults

• Functional testing is best for missing logic
faults
– A common problem: Some program logic was simply 

forgotten
– Structural (code-based) testing will never focus on 

code that isn’t there! 
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Functional vs structural test: granularity 
levels

• Functional test applies at all granularity levels:
– Unit (from module interface spec)

– Integration (from API or subsystem spec)

– System (from system requirements spec)

– Regression (from system requirements + bug history)

• Structural (code-based) test design applies to 
relatively small parts of a system:
– Unit
– Integration
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Steps: From specification to test cases

• 1. Decompose the specification
– If the specification is large, break it into independently 

testable features to be considered in testing

• 2. Select representatives
– Representative values of each input, or
– Representative behaviors of a model

• Often simple input/output tuples don’t describe a system.  
We use models in program specification, in program design, 
and in test design

• 3. Form test specifications
• Typically: combinations of input values, or model behaviors

• 4. Produce and execute actual tests
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From specification to test cases
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Simple example: Postal code lookup

• Input: ZIP code (5-digit 
US Postal code)

• Output: List of cities
• What are some 

representative values (or 
classes of value) to test?
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Example: Representative values

• Correct zip code
– With 0, 1, or many cities

• Malformed zip code
– Empty; 1-5 characters; 6 characters; very long
– Non-digit characters
– Non-character data

Simple example with 
one input, one output

Note prevalence of boundary 
values (0 cities, 6 characters) 

and error cases
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Pen and paper exercise

• Identify independently testable units in the 
following specification.
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Random Testing

• Test a program by generating random, 
independent inputs. 

• Using the specification to derive expected 
output and pass/fail criteria

• In the absence of specifications, exceptions 
thrown during test execution is an indication of 
faults. 
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Random Testing

• Advantages:
– Cheap to use
– No bias (uniform random test)
– Sometimes quick to find bug candidates

• Disadvantages: 
– Only finds basic bugs
– Perform poorly with respect to other techniques to 

find bugs
– Low coverage
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Fuzzing
• Fuzzing is a random testing technique

– Automatically generate test cases
– Many slightly anomalous test cases are input into a 

target
• Generate invalid, unexpected, or random data as inputs 

to a computer program, and then observe for 
exceptions such as crashes, failing built-in code 
assertions, or potential memory leaks.

• Different types of fuzzing:
– Generation-based vs. Mutation-based
– Dumb vs. smart
– White-box vs. grey-box vs. black-box. 
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• Take a well-formed input, randomly perturb (flipping bit, etc.)
• Little or no knowledge of the structure of the inputs is assumed 
• Anomalies are added to existing valid inputs 

– Anomalies may be completely random or follow some heuristics 
(e.g., remove NULL, shift character forward)

• Examples: ZZUF, Taof, GPF, ProxyFuzz, FileFuzz, Filep, etc. 

Seed input Mutated input Run test program

?

Mutation-based Fuzzing



Example: Mutation-based Fuzzing

Fuzzing a PDF viewer:
1. Google for .pdf (about 1 billion results) 
2. Crawl pages to build a corpus 
3. Use fuzzing tool (or script) 

– Collect seed PDF files 
– Mutate that file
– Feed it to the program 
– Record if it crashed (and input that crashed it) 
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Mutation-based fuzzing

• Easy  to setup and automate
• Little or no file format knowledge is required
• Limited by initial corpus
• May fail for protocols with checksums, those 

which depend on challenge



Generation-Based Fuzzing

• Test cases are generated from some description of the input 
format: RFC, documentation, etc.
– Using specified protocols/file format info
– E.g., SPIKE by Immunity

• Anomalies are added to each possible spot in the inputs
• Knowledge of protocol should give better results than random 

fuzzing

Input spec Generated 
inputs

Run test program

?RF
C



Generation-Based Fuzzing

Sample PNG spec 



Mutation-based vs. Generation-based

• Mutation-based fuzzer
– Pros: Easy to set up and automate, little to no 

knowledge of input format required
– Cons: Limited by initial corpus, may fall for 

protocols with checksums and other hard checks

• Generation-based fuzzers
– Pros: Completeness, can deal with complex 

dependencies (e.g, checksum)
– Cons: writing generators is hard, performance 

depends on the quality of the spec



How much fuzzing is enough?

• Mutation-based-fuzzers may generate an 
infinite number of test cases. When has the 
fuzzer run long enough? 

• Generation-based fuzzers may generate a finite 
number of test cases. What happens when 
they’re all run and no bugs are found? 



Code coverage

• Some of the answers to these questions lie in 
code coverage 

• Code coverage is a metric that can be used to 
determine how much code has been executed. 

• Data can be obtained using a variety of 
profiling tools. e.g. gcov, lcov



Coverage-guided gray-box fuzzing

• Special type of mutation-based fuzzing
– Run mutated inputs on instrumented program and 

measure code coverage
– Search for mutants that result in coverage increase
– Often use genetic algorithms, i.e., try random 

mutations on test corpus and only add mutants  to 
the corpus if coverage increases

– Examples:  AFL, libfuzzer
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