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Statistical Methods for Evaluation

• Hypothesis Testing

– Form an assertion and test it with data

– Common assumption (there is no difference)

– Null hypothesis (H0) vs Alternative hypothesis (HA)

• A hypothesis is formed before validation 

– It can define expectations.



Statistical Methods for Evaluation

• Analysis of the difference of two Means
– Very common hypothesis test. 
– But simple comparison is often not sufficient. 
– Example: Assume we have two populations, one with 

mean=-3 and the other with mean=3 
• By comparing the means can we say that the difference 

between the two populations is significant? 
• Answer depends on variance.



Statistical Methods for Evaluation

• Student’s t-test
– Assumptions: Two populations, normally distributed and have a similar 

variance.

• Welch’s t-test
– Assumptions: Two populations, normally distributed.

• Wilcoxon Rank-Sum Test
– Assumptions Two populations, not normal distributed.

• ANOVA
– When: More than two populations.

• Many others: Mann-Whitney test, Kruskal-Wallis test, Fisher’s 
exact test, chi-square test, McNemartest, Friedman test, log 
rank test, spearman correlation test, Pearson correlation 
test….



Statistical Methods for Evaluation

• Wilcoxon Rank-Sum Test – Suppose we have the following data:
– Group A: [85, 80, 78, 90, 95]; Group B: [88, 82, 85, 87, 92]

• Step 1: Combine and Rank the Data 
– Combine: [85, 80, 78, 90, 95, 88, 82, 85, 87, 92]
– Rank: [4.5, 2, 1, 8, 10, 7, 3, 4.5, 6, 9]

• Step 2: Sum the Ranks for Each Group
– Group A: [4.5, 2, 1, 8, 10]; Sum of ranks 𝑊1=4.5+2+1+8+10=25.5
– Group B: [7, 3, 4.5, 6, 9]; Sum of ranks 𝑊2=6+3+4.5+5+9=29.5

• Step 3: Choose the Test Statistic
– W can be either 25.5 or 29.5 depending on the test design, but usually, 

the smaller sum is used if conducting a one-sided test.

• Step 4: Determine Significance
– Compare the test statistic 𝑊 to a critical value from the Wilcoxon rank-

sum distribution or use a p-value from statistical software.
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Statistical Methods for Evaluation

• ANOVA (Analysis of Variance)

– What if there are more than two populations?

– Multiple t-test may not perform well now 

• A generalization of the hypothesis testing

– ANOVA tests if any of the population means differ 
from the other population means

– Each population is assumed to be normal and 
have the same variance



Statistical Methods for Evaluation

• ANOVA (Analysis of Variance)

• Compute F-test statistic

– Between-groups mean sum of squares

– Within-groups mean sum of squares



Statistical Methods for Evaluation

• ANOVA (Analysis of Variance)



Statistical Methods for Evaluation

• ANOVA (Analysis of Variance)

– Measures how different the means are relative to 
the variability within each group

– The larger the F-test statistic, the greater the 
likelihood that the difference of means are due to 
something other than chance alone

– The F-test statistic follows an F-distribution

https://en.wikipedia.org/wiki/F-distribution


Statistical Methods for Evaluation

• ANOVA (Analysis of Variance)

• Shall we accept or reject the null hypothesis? 



Statistical Methods for Evaluation

• ANOVA (Analysis of Variance)
– One-Way ANOVA

• Compares means across different groups based on a single 
independent variable (factor).

• e.g. Comparing the mean test scores of students across 
different teaching methods (Method A, Method B, Method 
C).

– Two-Way ANOVA:
• Compares means across groups based on two independent 

variables (factors), and can also evaluate the interaction 
between the factors.

• e.g. Comparing test scores based on teaching methods 
(Factor 1) and study times (Factor 2).



Statistical Methods for Evaluation

• Limitations of ANOVA (Analysis of Variance)
– Assumptions

• Normality: Data should be approximately normally distributed.
• Homogeneity of Variances: Variances within each group should be 

equal (tested using Levene’s test).
• Independence: Observations should be independent of each other.

– Limitations:
• Sensitivity to Outliers: Outliers can affect the F-statistic and lead to 

misleading results.
• Assumes Equal Variances: Violations of this assumption can impact 

the validity of the results.
• Identifies Differences but Not Specifics: ANOVA indicates whether 

a difference exists but does not specify which groups are different 
without further tests (post-hoc).



Statistical Methods for Evaluation

• ANOVA (Analysis of Variance)

– Additional tests for each pair of groups

– Tukey’s Honest Significant Difference (HSD)



Statistical Methods for Evaluation

• Tukey’s Honest Significant Difference (HSD)
– Assumptions

• Norm + equal variance + sample sizes are approximately equal 
(though it can still be used if they are not).

– Perform ANOVA test
• establish whether there is a significant difference between the means 

of the groups

– Calculation of the HSD
• Critical value from studentized range distribution, Mean square within 

groups(from ANOVA), number of groups

– Decision Rule
• For each pair of means, calculate the absolute difference.
• Compare the absolute difference to the HSD value.
• If the absolute difference is greater than the HSD, the pair of means is 

considered significantly different.
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Clustering

• Overview of Clustering

• K-means clustering
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– Determining the Number of Clusters

– Diagnostics

– Reasons to Choose and Cautions

• Additional Algorithms
– Density Based Clustering

– Self-Organize Map (SOM)
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Overview of Clustering

• Supervised vs. Unsupervised Techniques

– Labelled data vs. Unlabelled data

• Unsupervised Techniques

– Refers to the problem of finding hidden structure 
within unlabelled data

– Clustering, density estimation, dimensionality 
reduction, etc.

• Clustering is an unsupervised technique 



K-means Clustering

• Given a collection of m objects each with n 
measurable attributes

– Mathematically,

– Each object is a point in an n-dimensional space   



K-means Clustering

• For a chosen value of k, identify k clusters of 
objects based on the objects’ proximity to the 
centre of the k groups



K-means Clustering

• Use Cases
– Often used as a lead-in to classification

• Once clusters are identified, labels can be applied to each 
cluster to do classification

– Find out whether the data is organized in cohorts, and 
how the cohorts align with labels (if available)

• Applications
– Image Processing

– Medical (Clustering patients)

– Customer grouping (find similar customers)



Overview of K-means Clustering

• Three steps

1. Choose a value of k, create k centroids, then 
initialize them by “guessing” their value.

• Use k-random selected data points to initialize the 
centroids. (pick a suitable random algorithm)

2. Compute the distance from each data point to each 
centroid. Assign each point to the closest centroid. 

3. Update the centroid of each cluster 

• Repeat Steps 2 and 3 until convergence, i.e., 
centroids don’t change.
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Overview of K-means Clustering



Overview of K-means Clustering

• Compute the Euclidean distance 

• Compute the centroid for a cluster (centre of 
gravity)



Determine the Number of Clusters

• What value of k shall be selected?

– A reasonable guess, some predefined requirement

– k-1, k, or k+1? 

• Within Sum of Squares (WSS) 

– A heuristic 

– Sum of the squares of the distances between each 
data point and the closest centroid



Determine the Number of Clusters

• An optimization point of view

– A combinatorial partition problem 



Determine the Number of Clusters

• Within Sum of Squares (WSS) 

Find the “elbow”



Using R to Perform K-mean Clustering

• Task is to 

– Group 620 high school seniors based on their 
grades in “English”, “Math”, and “Science” 

grade_input = as.data.frame(read.csv('grades_km_input.csv’))

kmdata_orig = 

as.matrix(grade_input[,c("Student","English","Math","Science")])

kmdata <- kmdata_orig[,2:4]



Using R to Perform K-mean Clustering

• Compute and plot WSS to choose k value
wss <- numeric(15)

for (k in 1:15) wss[k] <- sum(kmeans(kmdata, centers=k, nstart=25)$withinss)

plot(1:15, wss, type = "b", xlab="Number of Clusters", ylab="Within Sum of 

Squares")

nstart option attempts multiple 
initial configurations and 
reports on the best one. For 
example, adding nstart=25 will 
generate 25 initial random 
centroids and choose the best 
one for the algorithm



Using R to Perform K-means Clustering

• Perform K-means Clustering



Using R to Perform K-means Clustering

• Perform K-means Clustering



Using R to Perform K-means Clustering

• Visualize the identified clusters and centroids



Diagnostics – K-means (clustering)

• The following questions shall be asked
– Are the clusters well separated from each other?

– Do any of the clusters have only a few points?

– Do any of the centroids appear to be too close to each other? 



Diagnostics

• A principle

– If using more clusters does not better distinguish 
the groups, it is almost certainly better to go with 
fewer clusters



Reasons to Choose and Cautions

• Several decisions that must be made

– What object attributions shall be included in 
clustering analysis?

– What unit of measure shall be used for each 
attribute?

– Do the attributes need to be rescaled?

• One attribute could have a disproportionate effect

May lead back to Phase 2 data preparation!



Reasons to Choose and Cautions

• Object attributes

– Whether it will be known for a new object?

– Best to reduce the number of attributes to the 
extent of possible 

• Avoid using too many variables (Why?)

• Avoid using several similar variables (Why?)

• Identify any highly correlated attributes 

• Feature selection, PCA, etc.



Reasons to Choose and Cautions

• Identify any highly correlated attributes

What is your observation? 

Fig. Scatterplot matrix for 7 attributes

R-Squared or Pearson's r



Reasons to Choose and Cautions

• Units of measure could affect clustering result



Reasons to Choose and Cautions

• Rescaling attributes affect clustering result

– Divide each attribute by its standard deviation 

– Normalisation: mean=0, sdev=1, particularly when 
Euclidean distance is used



Additional Algorithms
• K-means clustering is easily applied to numeric data where 

the concept of distance can naturally be applied
• K-modes handles categorical data

– Use the number of differences in the respective components of 
the attributes
• What is the distance between (a,b,e,d) and (d,d,d,d)?

– Implemented by the kmode() function

• Caution: Sometimes it is better to convert categorial (or 
symbolic) data to numerical i.e. {hot, warm, cold} to {1,0,-
1}, or use one-hot encoding.
– Understand why!
– Understand how to encode categorial values.



Additional Considerations

• Despite its popularity, K-means has problems:
– When data contains noise and/or outliers

– When clusters have non-globular shapes
• Cluster shape affect the choice of the distance metric

– When clusters vary in densities

– When clusters differ significantly in size

– Can reveal “empty” clusters

– Sensitive to the starting positions of the initial centroids
• Sunning multiple times with different initialization and choose the one 

with lowest WSS

• Know your data (i.e via visualization) to verify whether K-
means is suitable.



Density Based Clustering

• Density-based clustering locates regions of high 
density that are separated from one another by 
regions of low density.

• In other words, clusters are dense regions in the 
data space, separated by regions of lower object 
density

• Major features of density-based clustering:
– Discover clusters of arbitrary shape

– Handle and identify noise

– Need density parameters as termination condition



DBScan

• Density is estimated for a particular point in the data 
set by counting the number of points within a 
specified radius, 𝐸𝑝𝑠, of that point. This includes the 
point itself.

• Example: the number of 
points within a radius of 
𝐸𝑝𝑠 of point A is 7, 
including A itself.
– The density of A is 7.



DBScan

• Given a density threshold (𝑀𝑖𝑛𝑃𝑡𝑠) and a radius (𝐸𝑝𝑠), 
the points in a dataset are classified into three types: 
core point, border point, and noise point.
– Core points: 𝑃𝑜𝑖𝑛𝑡 𝑤ℎ𝑜𝑠𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 >=  𝑀𝑖𝑛𝑃𝑡𝑠

– Core points are in the interior of a density-based cluster.

Example: If 𝑀𝑖𝑛𝑃𝑡𝑠 =
 6 then A is a core point 
because its density = 7 
(7>6)



DBScan

• Three types: core point, border point, and noise 
point.
– A border point is not a core point but falls within the 

neighborhood of a core point.

Example:
• The density of B is 4 and 

less than 𝑀𝑖𝑛𝑃𝑡𝑠 = 6, so 
B is not a core point.

• But B falls within the 
neighbor of A (a core 
point).

• So, B is a border point.



DBScan

• Three types: core point, border point, and noise 
point.
– A noise point is any point that is neither a core point 

nor a border point.

Example:
• The density of C is 3 which 

is less than 𝑀𝑖𝑛𝑃𝑡𝑠 = 6, 
so C is not a core point.

• C doesn’t fall within the 
neighborhood of any core 
point, so it is not a border 
point.

• So, C is a noise point..



DBScan

• Steps of DBSCAN to identify clusters

– Step 1: Label each point as either core, 
border, or noise point.

– Step 2: Mark each group of Eps connected 
core points as a separate cluster.

– Step 3: Assign each border point to one of 
the clusters of its associate core points.



DBScan Example

Eps = 10, MinPts = 4

Original Points

Mark core, border and noise points Mark connected core points



DBScan Properties

• DBSCAN:
– Resistant to noise and outliers

– Can handle clusters of different shapes and sizes

– Computational complexity is similar to K-means

• When DBSCAN does not work well
– Varying densities

• Can be overcome by using sampling

– Sparse and high-dimensional data
• Can be overcome by using topology preserving dimension 

reduction techniques.



Self-Organizing Maps

• Self organizing maps are a type of Neural 
Network (NN).

• Unsupervised algorithm.

• Project high dimensional data onto a n-
dimensional display space (the feature map).
– Commonly n=2

• Topology preserving mappings & clustering.
– Data that is “similar” within the input space 

remain “close” to each other in the display space



Self-Organizing Maps
• Self-organizing maps have two 

layers:
– An input layer and
– An output layer called the feature 

map.

• The feature map consists of 
neurons.
– organized on a regular grid.
– Unlike other ANN types, the neurons 

in a SOM don’t have an activation 
function.

• Each neuron in a SOM is assigned a 
weight vector with the same 
dimensionality as the input space.



Self-Organizing Maps

• The weights in a SOM are trained in a two-
step algorithm:

– Step 1: Competitive step

• Every neuron is examined to calculate which one's 
weights is most similar to the input vector. The winning 
neuron is known as the Best Matching Unit (BMU).

– Step 2: Cooperative step

• The weights of the BMU and the weights of the 
neighboring neurons is updated.



Self-Organizing Maps

• Training Algorithm:
1. Each neuron's weights is initialized with random values.
2. A sample is chosen at random from the set of training data.
3. Find the BMU.
4. Identify the neighbourhood of the BMU. The size of the 

neighborhood decreases over time.
5. Update the weights of the BMU and all of its neighbors so that 

they become more similar to the sample vector. The closer a 
node is to the BMU, the more its weights get altered and the 
farther away the neighbor is from the BMU, the less it is 
updated.

• Step 2 through to 5 are repeated N times.
– Normally N is a multiple of the number of training samples.



Self-Organizing Maps in Python

#Step 1: Prepare the data

import pandas as pd

import numpyas np

from sklearn.utilsimport shuffle

df = pd.read_csv("A1_BC_SEER_data.csv", )

df = shuffle(df)

df = df[:int(df.shape[0]*0.2)] #use 20% subset for

                               #demonstration purposes

target = df['Survival months'] #Extract the target column

#Binarize target

target = np.where(df['Survival months'] < 60, 0, target) 

target = np.where(df['Survival months'] >= 60, 1, target)



Self-Organizing Maps in Python
#Step 2: Preprocessthe data

from sklearn.model_selectionimport train_test_split

myseed=7 #Seed for the random number generator

#Remove irrelevant features, and targets from df

dropList= ['Patient ID', 'Survival months']

for item in dropList:

df.drop(item, axis=1, inplace=True)

#Scale the data?

#from sklearnimport preprocessing

#scaling = preprocessing.MinMaxScaler()

#data = scaling.fit_transform(data)

#Create a train, test, and validation set

X, X_tst, Y, Y_tst= train_test_split(df, target, test_size=.333, 
random_state=myseed)

X_trn, X_val, Y_trn, Y_val= train_test_split(X, Y, test_size=.5, 
random_state=myseed)

X_trn= X_trn.to_numpy()

X_tst= X_tst.to_numpy()

X_val= X_val.to_numpy()



Self-Organizing Maps in Python
#Step 3: Train the SOM

from myminisom import MiniSom #see Moodle site for myminisom

#Create the SOM

som_shape = (100, 100) #define the size of the som

som = MiniSom(som_shape[0], som_shape[1], X_trn.shape[1], 

sigma=som_shape[0]/2, learning_rate=.9, 

neighborhood_function='gaussian', random_seed=myseed)

#initialize the SOM, then train it

epochs=40

som.pca_weights_init(X_trn)

som.train_random(X_trn, epochs * len(X_trn), verbose=True)

#Find the BMU for each sample

BMU_trn = np.array([som.winner(x) for x in X_trn])

BMU_class0 = BMU_trn[Y_trn==0]

BMU_class1 = BMU_trn[Y_trn==1]



Self-Organizing Maps in Python
#Step 4: Plot some results (density map of all samples)

import matplotlib.pyplot as plt

from copy import copy

densitymap = np.zeros(som_shape)

for row in range(0,BMU_trn.shape[0]): 

x,y = BMU_trn[row] 

 densitymap[y,x] += 1

densitymap[densitymap==0]=np.nan #mark zero values with nan

my_cmap = copy(plt.cm.jet)

my_cmap.set_bad(color=(1,1,1)) #plot nan in white color

plt.imshow(densitymap, cmap=my_cmap, interpolation="none", 

origin="lower", aspect=0.75)

plt.colorbar()

plt.title('Mapping density')

plt.show()



Self-Organizing Maps in Python
#density map of all samples from class 1

import matplotlib.pyplot as plt

densitymap = np.zeros(som_shape)

for row in range(0,BMU_class1.shape[0]): 

x,y = BMU_class1[row] 

densitymap[y,x] += 1

densitymap[densitymap==0]=np.nan #mask zero 

values

plt.imshow(densitymap, cmap=my_cmap, 

interpolation="none", origin="lower", 

aspect=0.75)

plt.colorbar()

plt.title('Mapping density (class 1)')

plt.show()



Self-Organizing Maps – An Example



Self-Organizing Maps – An Example



Self-Organizing Maps – An Example



Self-Organizing Maps - Note

• Each neuron clusters samples that are 
mapped to it.
– 𝑛 𝑥 𝑚 clusters (size of the SOM)

• A group of neurons form larger cluster
– Cluster analysis needed to detect these.



Self-Organizing Maps in Python

#Compute the quantization error

qerr = som.quantization_error(X_trn)

qerr

7.454546962215053

#inspect some weights

som.get_weights()[1,1]
array([1.45920861e+00, 2.94414892e+00, 1.58042285e+00, 1.98123243e+00, 

 5.60639639e+01, 1.49714974e+02, 2.37928820e-01, 2.06261914e+02, 

 5.05750682e+02, 1.57189567e+00, 1.03022154e+00, 8.98461177e+00, 

 1.20844111e+00, 1.33963081e+00, 5.28842982e+01, 4.74582306e+01])



Self-Organizing Maps

• SOMs are an excellent choice for data visualization
• Many visualization techniques

– From exploratory data analytics
– Dimension reduction techniques

• i.e. PCA, t-SNE, SOM,…

• Why use Self-Organizing Maps (SOMs) in BDA?
– Topology preservation (unlike PCA)
– Able to deal with new data & missing values (unlike t-SNE)
– Can reduces the amount of information that needs to be 

evaluated 
– Produces prototypes that represent the full set of attributes 

with their original meaning (unlike PCA)
– …



Self-Organizing Maps

• When not to use SOMs in BDA:
–When the data is very sparse

–When cardinality (limited resolution) of the 
map is a problem.

–When multi-core compute infrastructure is 
unavailable.



Hierarchical Clustering

• Hierarchical Clustering (hclust())

– Hierarchical agglomerative clustering

– Hierarchical divisive clustering

1. Each object is initially treated as a cluster
2. The clusters are then combined with the 

most similar cluster in each step
3. This process is repeated until one cluster 

(containing all objects) exists

Computationally very expensive 𝑂(𝑛2) to  𝑂(𝑛3) 
and thus rarely used in Big Data analytics.



Q&A

Images Courtesy of Google Image
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