
CSCI471/971
Modern Cryptography

Cryptographic Notions

Rupeng Yang
SCIT UOW

RoadMap

• Week 1: The classical cryptography

• Week 2: Towards modern cryptography

• Week 3-12: Modern cryptography

Shannon’s perfect cipher

How to send one bit securely

Alice
M,K

Bob
K

Alice and Bob share a secret bit K that is a random bit.
Alice would like to send one bit M to Bob securely.
She first computes the ciphertext 𝐶 = 𝑀⨁𝐾 and sends C to Bob
Then Bob can recover M by computing 𝑀 = 𝐶⨁𝐾

Is the solution secure? For example, given a ciphertext C=0, can you guess if M=0 or M=1.

𝐶 = 𝑀⨁𝐾

One-time Pad (Vernam Cipher)

• Gilbert Vernam invented a cipher that was extended by Joseph
Mauborgne to give a scheme which was later proved to provide
perfect security by Claude Shannon.

• The cipher is called one-time-pad because the key is written on a long
tape and is used only once.

• The cipher does not rely on any assumption and no adversary can do
better than simply guessing the message.

6

One-Time Pad

key

ciphertext

message

key

message

One-Time Pad
• KeyGEN
• output a random sequence K1K2… Kn of n bits

• Enc (X = X1….Xn, K = K1…Kn) → Y= Y = Y1…Yn

• Yi = Xi Å Ki

• Dec (Y = Y1…Yn, K = K1…Kn) → X = X1….Xn

• Xi = Yi Å Ki

Perfect Security

Def 2:
For every pairs of messages m0, m1 in the message space M,
and every ciphertext c in the ciphertext space C:

𝑃𝑟 	𝐶 = 𝑐	 𝑀 = 𝑚0] 	= 𝑃𝑟 	𝐶 = 𝑐	 𝑀 = 𝑚1]

That means, the probability that C = c is the same for M = m0
or M = m1.

Def 1:
For every message m in the message space M, and every
ciphertext c in the ciphertext space C:

Pr M = m = Pr M = m	 C = c]

That means, knowledge of the ciphertext does not help the
attacker to guess the plaintext.

We can define perfect security in several different ways:

And they are essentially equivalent.

One-Time Pad offers Perfect Security

• Let (m0, m1) be the plaintext pair chosen by the attacker
• Note that the ciphertext c is returned to the attacker and the attacker’s goal is

to tell if c is the encryption of m0 or m1

• Argument:
• c can be the encryption of m0 with the key k0 = m0Åc
• c can also be the encryption of m1 with the key k1 = m1Åc
• Since the key is randomly chosen, the probability that the key is k0 or k1 is

equal

• In one-time pad, the key can only be used once.

Necessary Condition for Perfect Security

Theorem (Shannon)
In a system with perfect secrecy the number of keys is at least equal to

the number of messages.

• Argument:
• If the message space is larger than the key space, then given a fixed ciphertext c that encrypts a

message m, there exists some message m’ that cannot be encrypted to c.
• Therefore, we have Pr [𝐶 = 𝑐 | 𝑀 = 𝑚] ≠ 0 , Pr [𝐶 = 𝑐 | 𝑀 = 𝑚’] = 0 , which contradicts the

perfect indistinguishability.

• Implications: If we want perfect secrecy
• the key size must be large.
• The key can only be used once.

• If the key is used for multiple times, the total message length will be larger than the key length.

Necessary Condition for Perfect Security

Theorem (Shannon)
In a system with perfect secrecy the number of keys is at least equal to

the number of messages.

• Implications: If we want perfect secrecy
• the key size must be large.
• The key can only be used once.

• If the key is used for multiple times, the total message length will be larger than the key length.

• Now, if Alice and Bob have shared a 100-bit secret key in advance, how many bits
can they transform securely if they would like to achieve perfect security?
• Why this is a problem in practice?

• Now, assuming that we have a cryptosystem that is able to encrypt n+1 bits using an
n-bit secret key, how many bits can be transformed between Alice and Bob securely,
if they have shared a 100-bit secret key in advance?

Cryptosystems with Computational Security

Necessary Condition for Perfect Security

Theorem (Shannon)
In a system with perfect secrecy the number of keys is at least equal to

the number of messages.

• Implications: If we want perfect secrecy
• the key size must be large.
• The key can only be used once.

• If the key is used for multiple times, the total message length will be larger than the key length.

• The perfect security guarantees that the plaintext is completely hidden from the
ciphertext. This holds even if the attacker has unbounded resources.
• But do we really need security against an unbounded adversary?

• What if the attack will take the attacker 1000 years?
• What if the ciphertext can only increase the probability to guess the message by 1/21000?

• Can we circumvent the limitation by only considering a practical adversary?

Modern Cryptography

• Cryptography can be broken but it is very hard to break it

• How much hard?

• For example, if cryptography is well-designed, it will take at
least 200 years using all computers in the whole world.

• How to describe this formally and How to achieve this?
• Computational Complexity

1965: paper with Turing Award
"On the Computational Complexity of Algorithms"

Concepts in Complexity
• Problem
• A problem asks you to find a solution given an instance.
• For example, the sorting problem

• Algorithm
• An algorithm solves a class of specific problems.
• For example, the heapsort algorithm for the sorting problem

• Costs
• The resources (e.g., running time, memory) that an algorithm requires.
• In computational complexity, we consider the costs as a function on the input

length of the algorithm.
• If you have a larger instance (e.g., a longer list to be sorted), the algorithm will typically need

more resource.
• The runtime of the heapsort algorithm is O(n*logn) given list containing n elements.

Big O natation

𝑓 𝑛 = 𝑂(𝑔(𝑛)) if there exists a positive real number c and a real number 𝑥2 such that
𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑥2

Polynomial time: There are some value k, 𝑓 𝑛 = 𝑂(𝑛3)

Usually, an algorithm that can solve problem A in polynomial time is called an efficient
algorithm.

Big 𝛀 natation
𝑓 𝑛 = Ω(𝑔(𝑛)) if there exists a positive real number c and a real number 𝑥2 such that

𝑓 𝑛 ≥ 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑥2

Exponential time: 𝑓 𝑛 = Ω(24)

Usually, if all algorithms that can solve problem A are in exponential time, we
say the problem is a hard problem.

Computational complexity in 5min
• How we can say a problem is easy?
• Find an algorithm that solves it in polynomial time~

• How we can say a problem is hard??
• Justify that all algorithms that solve the problem are in exponential time!

• I have tried for a while but no efficient algorithm has found 😕
• I have tried 10 yeats, but no efficient algorithm has found 🙁
• ….
• Many (including the top) researchers have tried for 50 years, but no efficient algorithm has found 😀

• For example, the hardness of problems in the class NPC.
• Some less studied problem like factoring problem, discrete log problem, …

• We assume that these long-standing problems are hard.
• Once we have accepted that some problems are hard, we can get more hard problems.

Computational complexity in 5min
• How we can say a problem is easy?
• Find an algorithm that solves it in polynomial time~

• How we can say a problem is hard??
• Assume that all algorithms that solve the problem are in exponential time!
• Once we have accepted that some problems are hard, we can get more hard problems.

• Let Problem A be the problem assumed to be hard.
• We can “prove” that B is also hard by:

• First, suppose that there exists an efficient algorithm F that can solve B.
• Construct an algorithm F’ that can solve A based on F. Here, we do not have to know how F works.
• Make a contradiction.

• The proof above is called a reduction.

Complexity vs Cryptography
• In complexity, we have defined hard problems, i.e., problems that will

always cost a lot of resource to solve.
• In cryptography, we require that recovering the plaintext from the

ciphertext will always cost a lot of resource.
• We can fit cryptography into computational complexity!

• Problem: Recovering the plaintext from the ciphertext.
• Potentional algorithms: The attackers!
• Problem is hard: All attackers that can recover the plaintext from the

ciphertext are in exponential time, i.e., all attackers will spend a lot of
resources (e.g., at least 1000 years) to recover the plaintext.

Complexity vs Cryptography
• Problem: Recovering the plaintext from the ciphertext.
• Potentional algorithms: The attackers!
• Problem is hard: All attackers that can recover the plaintext from the

ciphertext are in exponential time, i.e., all attackers will spend a lot of
resources (e.g., at least 1000 years) to recover the plaintext.

• How to show that a cryptosystem is secure?
• Try to find an efficient attacker for many years; OR
• Start with some well-accepted hard problems (assumptions) and make some reductions.

• But for both approaches, we need to define the problem formally first.
• We need to define a cryptosystem and its security.

How to define a cryptosystem?

How to define a cryptosystem?
• A cryptosystem is a set of polynomial-time algorithms to provide security

properties.
• What algorithms do we need?

- How many algorithms do we need?
- What are inputs and outputs of algorithms?
- Probabilistic or deterministic?
- …

• What Properties do we need?
- Correctness requirements.
- Security requirements.

• As a concrete example, we will see how to formally define an encryption
scheme.

key
key

Encryption

message
(plaintext) ciphertext

Decryption

message
(plaintext)

ciphertext

Channel

Symmetric-Key Encryption

Symmetric-Key Encryption

Application Scenario:

All users can generate and share keys. When two person Alice
and Bob share the same key. One party can encrypt a sensitive
message using the key and the other party can decrypt the
ciphertext using the same key.

Symmetric-Key Encryption

• KeyGen(λ): Taking as input a security parameter λ, the key
generation algorithms returns a key K

• Encrypt(K, M): Taking as input a message M and a key K, the
encryption algorithm returns a ciphertext denoted by C.

C←Encrypt(K,M)

• Decrypt(K,C): Taking as input a ciphertext C and a key K, the
decryption algorithm returns a message M.

• The security parameter λ is denoted by security strength.

Symmetric-Key Encryption: Correctness

• Correctness: For all generated K and all C←Encrypt(K,M), we have
Pr[Decrypt(K,C)=M]=1

• Correctness (with correctness error): For all generated K and all
C←Encrypt(K,M), we have

Pr[Decrypt(K,C)=M] ≥ 1-negl(λ)

• We use negl to denote a negligible function, which is smaller than all inverse
polynomial.

key
key

Encryption

message
(plaintext) ciphertext

Decryption

message
(plaintext)

ciphertext

Channel

Symmetric-Key Encryption: Security

4. Attacker returns an output O.

Attacker wins if O satisfies some condition!

An Encryption Scheme is Secure if NO efficient attacker can win with a good probability.

Efficient attacker: The attacker is a probabilistic polynomial time algorithm.

.

.

.

Symmetric-Key Encryption: Security
Game-Based Security Definition:

Algorithms KeyGen, Enc, Des are public.

Symmetric-Key Encryption: Security
• The game-based definition is described by a game between an adversary and a

challenger.
• The challenger represents the secret key owners of the system.
• The adversary is the attacker trying to break the cryptosystem.

• In a game-based definition, we only consider abstract attacks from the adversary,
which focus on what information can be learned by the adversary rather than how
the information can be learned.

• When defining the security, we need to consider
• The adversary’s capabilities:

• What information can be learned by the adversary and When the adversary can learn the
information.

• This is described by allowing the adversary to make some queries to the challenger.
• The challenger must answer the queries honestly.

• The adversary’s security goal:
• How the adversary wins the game.

Symmetric-Key Encryption: Security

What is the adversary’s security goal?

• One-Wayness: Given a ciphertetx C*=Enc(K,M*) generated
by the challenger, the adversary is going to compute its
plaintext M*.

This observation is straightforward but

Symmetric-Key Encryption: Security

What is the adversary’s security goal?

• Semantic-Security : Given a ciphertetx C*=Enc(K,M*)
generated by the challenger, the adversary’s goal is to learn
any information about M*.

This seems a reasonable goal, but how to define it?

Symmetric-Key Encryption: Security
What is the adversary’s security goal?

• Indistinguishability : Given a ciphertext C* and two messages
M_0 and M_1 where C*=Enc(K,M_b), the adversary is going
to compute b from {0,1}.

Question: Who chose M_0 and M_1?

This security goal is equivalent to the semantic-security in most
cases!

Symmetric-Key Encryption
What are the capabilities of the adversary?

• Ciphertext-Only Attack:
The adversary knows some ciphertexts.

• Known-Plaintext Attack:
The adversary knows some plaintext-ciphertext pairs.

• Chosen-Plaintext Attack:
The adversary can choose any plaintext to know its ciphertext.

• Chosen-Ciphertext Attack:
The adversary can choose any plaintext to know its ciphertext.
The adversary can choose any ciphertxt to know its plaintext.

1. Run KeyGen to get k

3.3 Send c* to the Attacker

Algorithms KeyGen, Enc, Des are public.

5. Attacker returns a guess bit b’Attacker wins if b = b’!

3.1 Attacker sends m0, m1 to challenger
3.2 Randomly choose a bit b,

run Enc(k, mb) to get c*

2.1 Attacker sends m to challenger

2.3 Send c to the Attacker
2.2 Run Enc(k, m) to get c

Symmetric-Key Encryption: IND-CPA Security

4.1 Attacker sends m to challenger

4.3 Send c to the Attacker
4.2 Run Enc(k, m) to get c An Encryption Scheme is Secure if

NO efficient attacker can win with
a probability of ½+1/poly(λ).
Alternatively, that means,

We assume that
(|m0|=|m1|)

Security Model of Symmetric-Key Encryption (IND-CPA)

Setup: The challenger chooses a random key K.

Phase 1: The adversary can choose any M for encryption queries and learns the

encrypted result.
Challenge: The adversary can choose any two different messages M_0 and M_1. The
challenger chooses a random b and computes the challenge ciphertext CT*=Enc(M_b,
K), which is given to the adversary.

Phase 2: The adversary can choose any M for encryption queries.

Guess: The adversary returns the guess b’ and wins if b’=b.

We say that the encryption is secure if no P.P.T adversary can win with a probability of
½+1/poly(λ).

Summary

• One-time pad
• Construction
• Security
• Limitations

• Computational Security*
• Computational Complexity
• Reduction
• Modern Cryptography – An Overview

• Definition
• Syntax
• Correctness
• Security

• Game-based definition
• The adversary’s capabilities
• Security goals
• The security definition

