CSCl471/971
Modern Cryptography

Cryptographic Notions

Rupeng Yang
SCIT UOW

RoadMap
* Week 1: The classical cryptography
* Week 2: Towards modern cryptography

* Week 3-12: Modern cryptography

Shannon’s perfect cipher

How to send one bit securely

C = MBK

Alice Bob
M, K K

Alice and Bob share a secret bit K that is a random bit.

Alice would like to send one bit M to Bob securely.

She first computes the ciphertext C = M@K and sends C to Bob
Then Bob can recover M by computing M = CHBK

Is the solution secure? For example, given a ciphertext C=0, can you guess if M=0 or M=1.

One-time Pad (Vernam Cipher)

* Gilbert Vernam invented a cipher that was extended by Joseph
Mauborgne to give a scheme which was later proved to provide
perfect security by Claude Shannon.

* The cipher is called one-time-pad because the key is written on a long
tape and is used only once.

* The cipher does not rely on any assumption and no adversary can do
better than simply guessing the message.

One-Time Pad

message

key @%
ciphertext

key :>%

I

message

One-Time Pad
* KeyGEN

* output a random sequence K;K,... K, of n bits

f_‘8§.c 0 xor0 =0 Same Bits
1x0r1 =0 Same Bits
1 xor0 = 1 Different Bits

* Enc (X = Xl....Xn, K= K]_Kn) - Y=Y= Yl'"Yn }{ORngmbOI 0 xor1 = 1 Different Bits
* Y. =X ®K ENCRYPT

@00110101 Plaintext
11100011 secretKey

* Dec(Y=Y;...Y, K=K;..K,) 2> X=X;...X, 11010110 ciphertext
e Xi=Y, ®K DECRYPT

@1 1010110 Ciphertext
1110001 1 secretKey
00110101 Paintext

Perfect Security

We can define perfect security in several different ways:

Def 1:
For every message m in the message space M, and every

ciphertext c in the ciphertext space C:
PriM=m] =Pr[M=m | C = (]

That means, knowledge of the ciphertext does not help the
attacker to guess the plaintext.

Def 2:
For every pairs of messages my, m; in the message space M,

and every ciphertext c in the ciphertext space C:
PriC=c|M=my] =Pr[C =c|M=m4]

That means, the probability that C = c is the same for M = mg
orM=m;

And they are essentially equivalent.

One-Time Pad offers Perfect Security

* Let (my, my) be the plaintext pair chosen by the attacker

* Note that the ciphertext c is returned to the attacker and the attacker’s goal is
to tell if c is the encryption of m, or m;

* Argument:
* c can be the encryption of m, with the key k, = m;®c
* c can also be the encryption of m; with the key k; = m;®c

* Since the key is randomly chosen, the probability that the key is k, or k; is
equal

* In one-time pad, the key can only be used once.

Necessary Condition for Perfect Security

Theorem (Shannon)
In a system with perfect secrecy the number of keys is at least equal to
the number of messages.

* Argument:

* |f the message space is larger than the key space, then given a fixed ciphertext c that encrypts a
message m, there exists some message m’ that cannot be encrypted to c.

* Therefore, we havePr[C=c | M=m]#0,Pr[C=c| M=m"]=0, which contradicts the
perfect indistinguishability.
* Implications: If we want perfect secrecy
* the key size must be large.

* The key can only be used once.
* If the key is used for multiple times, the total message length will be larger than the key length.

Necessary Condition for Perfect Security

Theorem (Shannon)
In a system with perfect secrecy the number of keys is at least equal to
the number of messages.

* Implications: If we want perfect secrecy
* the key size must be large.

* The key can only be used once.
* If the key is used for multiple times, the total message length will be larger than the key length.

* Now, if Alice and Bob have shared a 100-bit secret key in advance, how many bits
can they transform securely if they would like to achieve perfect security?

* Why this is a problem in practice?
* Now, assuming that we have a cryptosystem that is able to encrypt n+1 bits using an

n-bit secret key, how many bits can be transformed between Alice and Bob securely,
if they have shared a 100-bit secret key in advance?

Cryptosystems with Computational Security

Necessary Condition for Perfect Security

Theorem (Shannon)
In a system with perfect secrecy the number of keys is at least equal to
the number of messages.

* Implications: If we want perfect secrecy
* the key size must be large.

* The key can only be used once.
* If the key is used for multiple times, the total message length will be larger than the key length.

* The perfect security guarantees that the plaintext is completely hidden from the
ciphertext. This holds even if the attacker has unbounded resources.

* But do we really need security against an unbounded adversary?
* What if the attack will take the attacker 1000 years?
* What if the ciphertext can only increase the probability to guess the message by 1/21000?

* Can we circumvent the limitation by only considering a practical adversary?

Modern Cryptography

* Cryptography can be broken but it is very hard to break it
* How much hard?

* For example, if cryptography is well-designed, it will take at
least 200 years using all computers in the whole world.

* How to describe this formally and How to achieve this?
 Computational Complexity

1965: paper with Turing Award
"On the Computational Complexity of Algorithms"

Juris Hartmanis

1993 In recognition of their seminal paper which established the
foundations for the field of computational complexity the:::r*,r.[ﬂ]

Richard E. Stearns

Concepts in Complexity

* Problem
* A problem asks you to find a solution given an instance.
* For example, the sorting problem
* Algorithm
* An algorithm solves a class of specific problems.
* For example, the heapsort algorithm for the sorting problem

* Costs
 The resources (e.g., running time, memory) that an algorithm requires.
* In computational complexity, we consider the costs as a function on the input

length of the algorithm.
* |f you have a larger instance (e.g., a longer list to be sorted), the algorithm will typically need
more resource.

* The runtime of the heapsort algorithm is O(n*logn) given list containing n elements.

Big O natation

f(n) = 0(g(n)) if there exists a positive real number c and a real number x, such that
f(n) <cg(n)foralln = x,

Polynomial time: There are some value k, f(n) = 0(n")

Usually, an algorithm that can solve problem A in polynomial time is called an efficient
algorithm.

Big {2 natation

f(n) = Q(g(n)) if there exists a positive real number c and a real number x, such that
f(n) =cg(n)foralln = x,

Exponential time: f(n) = Q(2")

Usually, if all algorithms that can solve problem A are in exponential time, we
say the problem is a hard problem.

Computational complexity in 5min

* How we can say a problem is easy?
* Find an algorithm that solves it in polynomial time™

* How we can say a problem is hard??

 Justify that all algorithms that solve the problem are in exponential time!
* | have tried for a while but no efficient algorithm has found &
* | have tried 10 yeats, but no efficient algorithm has found &
* Many (including the top) researchers have tried for 50 years, but no efficient algorithm has found &

* For example, the hardness of problems in the class NPC.
* Some less studied problem like factoring problem, discrete log problem, ...

* We assume that these long-standing problems are hard.
* Once we have accepted that some problems are hard, we can get more hard problems.

Computational complexity in 5min

* How we can say a problem is easy?
* Find an algorithm that solves it in polynomial time™

* How we can say a problem is hard??
* Assume that all algorithms that solve the problem are in exponential time!

* Once we have accepted that some problems are hard, we can get more hard problems.

* Let Problem A be the problem assumed to be hard.

* We can “prove” that B is also hard by:
* First, suppose that there exists an efficient algorithm F that can solve B.
e Construct an algorithm F’ that can solve A based on F. Here, we do not have to know how F works.
* Make a contradiction.

* The proof above is called a reduction.

Complexity vs Cryptography

* In complexity, we have defined hard problemes, i.e., problems that will
always cost a lot of resource to solve.

* In cryptography, we require that recovering the plaintext from the
ciphertext will always cost a lot of resource.

* We can fit cryptography into computational complexity!

* Problem: Recovering the plaintext from the ciphertext.
* Potentional algorithms: The attackers!

* Problem is hard: All attackers that can recover the plaintext from the
ciphertext are in exponential time, i.e., all attackers will spend a lot of
resources (e.g., at least 1000 years) to recover the plaintext.

Complexity vs Cryptography

* Problem: Recovering the plaintext from the ciphertext.
* Potentional algorithms: The attackers!

* Problem is hard: All attackers that can recover the plaintext from the
ciphertext are in exponential time, i.e., all attackers will spend a lot of
resources (e.g., at least 1000 years) to recover the plaintext.

* How to show that a cryptosystem is secure?
* Try to find an efficient attacker for many years; OR
 Start with some well-accepted hard problems (assumptions) and make some reductions.

e But for both approaches, we need to define the problem formally first.
* We need to define a cryptosystem and its security.

How to define a cryptosystem?

How to define a cryptosystem?

 Acryptosystem is a set of polynomial-time algorithms to provide security
properties.
 What algorithms do we need?
- How many algorithms do we need?
- What are inputs and outputs of algorithms?
- Probabilistic or deterministic?
* What Properties do we need?
- Correctness requirements.
- Security requirements.

* As aconcrete example, we will see how to formally define an encryption
scheme.

Symmetric-Key Encryption

message
(plaintext)
i (\ \ message
(plaintext)

La

Decryption

\
ciphertext t
/;b
key

Symmetric-Key Encryption

Application Scenario:

All users can generate and share keys. When two person Alice
and Bob share the same key. One party can encrypt a sensitive

message using the key and the other party can decrypt the
ciphertext using the same key.

Symmetric-Key Encryption

 KeyGen(A): Taking as input a security parameter A, the key
generation algorithms returns a key K

* Encrypt(K, M): Taking as input a message M and a key K, the
encryption algorithm returns a ciphertext denoted by C.
C—Encrypt(K,M)

* Decrypt(K,C): Taking as input a ciphertext C and a key K, the
decryption algorithm returns a message M.

The security parameter A is denoted by security strength.

Symmetric-Key Encryption: Correctness

* Correctness: For all generated K and all C&Encrypt(K,M), we have
Pr[Decrypt(K,C)=M]=1

* Correctness (with correctness error): For all generated K and all
C&Encrypt(K,M), we have
Pr[Decrypt(K,C)=M] = 1-negl(A)

We use negl to denote a negligible function, which is smaller than all inverse
polynomial.

Symmetric-Key Encryption: Security

ciphertext

Channel

(3

ciphertext

Symmetric-Key Encryption: Security

Game-Based Security Definition:

Algorithms KeyGen, Enc, Des are public.

)

<

Attacker wins if O satisfies some condition!

< 4. Attacker returns an output O.

An Encryption Scheme is Secure if NO efficient attacker can win with a good probability.

Efficient attacker: The attacker is a probabilistic polynomial time algorithm.

Symmetric-Key Encryption: Security

 The game-based definition is described by a game between an adversary and a
challenger.

 The challenger represents the secret key owners of the system.
 The adversary is the attacker trying to break the cryptosystem.

* In agame-based definition, we only consider abstract attacks from the adversary,
which focus on what information can be learned by the adversary rather than how
the information can be learned.

* When defining the security, we need to consider

 The adversary’s capabilities:

 What information can be learned by the adversary and When the adversary can learn the
information.

 Thisis described by allowing the adversary to make some queries to the challenger.
 The challenger must answer the queries honestly.

 The adversary’s security goal:
* How the adversary wins the game.

Symmetric-Key Encryption: Security

What is the adversary’s security goal?
* One-Wayness: Given a ciphertetx C*=Enc(K,M*) generated

by the challenger, the adversary is going to compute its
plaintext M*,

This observation is straightforward but

Symmetric-Key Encryption: Security

What is the adversary’s security goal?
* Semantic-Security : Given a ciphertetx C*=Enc(K,M*)

generated by the challenger, the adversary’s goal is to learn
any information about M*.

This seems a reasonable goal, but how to define it?

Symmetric-Key Encryption: Security

What is the adversary’s security goal?

* Indistinguishability : Given a ciphertext C* and two messages
M_0 and M_1 where C*=Enc(K,M _b), the adversary is going
to compute b from {0,1}.

Question: Who chose M_0and M_17?

This security goal is equivalent to the semantic-security in most
cases!

Symmetric-Key Encryption

What are the capabilities of the adversary?

* Ciphertext-Only Attack:
The adversary knows some ciphertexts.

 Known-Plaintext Attack:
The adversary knows some plaintext-ciphertext pairs.

 Chosen-Plaintext Attack:
The adversary can choose any plaintext to know its ciphertext.

e Chosen-Ciphertext Attack:
The adversary can choose any plaintext to know its ciphertext.
The adversary can choose any ciphertxt to know its plaintext.

Symmetric-Key Encryption: IND-CPA Security

[1. Run KeyGen to get k

|

< 2.1 Attacker sends m to challenger
[2.2 Run Enc(k, m) to get c]

3.2 Randomly choose a bit b,
run Enc(k, my) to get c*

]

2.3 Send c to the Attacker

< 3.1 Attacker sends mg, m; to challenger

3.3 Send c* to the Attacker >

< 4.1 Attacker sends m to challenger
[4.2 Run Enc(k, m) to get c]

Attacker wins if b = b’!

4.3 Send c to the Attacker

>.§

< 5. Attacker returns a guess bit b’

Algorithms KeyGen, Enc, Des are public.

We assume that
(Imgl=]my])

An Encryption Scheme is Secure if
NO efficient attacker can win with
a probability of %5+1/poly(A).
Alternatively, that means,

Security Model of Symmetric-Key Encryption (IND-CPA)

Setup: The challenger chooses a random key K.

Phase 1: The adversary can choose any M for encryption queries and learns the

encrypted result.

Challenge: The adversary can choose any two different messages M _0and M_1. The
challenger chooses a random b and computes the challenge ciphertext CT*=Enc(M b,

K), which is given to the adversary.

Phase 2: The adversary can choose any M for encryption queries.

Guess: The adversary returns the guess b’ and wins if b’=b.

We say that the encryption is secure if no P.P.T adversary can win with a probability of
¥+1/poly(A).

Summary

* One-time pad * Definition
* Construction * Syntax
* Security * Correctness
* Limitations * Security

* Game-based definition

 Computational Security*
* The adversary’s capabilities

* Computational Complexity . Security goals

* Reduction * The security definition
 Modern Cryptography — An Overview

