CSCI471/971 Modern Cryptography Cryptographic Notions

Rupeng Yang SCIT UOW

RoadMap

- Week 1: The classical cryptography
- Week 2: Towards modern cryptography
- Week 3-12: Modern cryptography

Shannon's perfect cipher

How to send one bit securely

Alice and Bob share a secret bit K that is a random bit. Alice would like to send one bit M to Bob securely. She first computes the ciphertext $C = M \bigoplus K$ and sends C to Bob Then Bob can recover M by computing $M = C \bigoplus K$

Is the solution secure? For example, given a ciphertext C=0, can you guess if M=0 or M=1.

One-time Pad (Vernam Cipher)

- Gilbert Vernam invented a cipher that was extended by Joseph Mauborgne to give a scheme which was later proved to provide *perfect security* by Claude Shannon.
- The cipher is called one-time-pad because the key is written on a long tape and is *used only once*.
- The cipher does not rely on any assumption and no adversary can do better than simply guessing the message.

One-Time Pad

One-Time Pad

- KeyGEN
 - output a random sequence $K_1K_2...K_n$ of n bits
- Enc (X = $X_1...X_n$, K = $K_1...K_n$) \rightarrow Y= Y = $Y_1...Y_n$ • $Y_i = X_i \oplus K_i$
- Dec (Y = Y₁...Y_n, K = K₁...K_n) \rightarrow X = X₁....X_n • X_i = Y_i \oplus K_i

USING EXCLUSIVE OR (XOR) IN CRYPTOGRAPHY			
XOR LOGIC	0 xor 0 = 0 1 xor 1 = 0	Same Bits Same Bits	
XOR Symbol	1 xor 0 = 1 0 xor 1 = 1	Different Bits Different Bits	
ENCRYPT			
ູ	0110101	Plaintext	
_	<u> 1100011</u>	Secret Key	
=	1010110	Ciphertext	
DECRYPT			
⊕ 1	1010110	Ciphertext	
	1100011	Secret Key	
= (0110101	Plaintext	

Perfect Security

We can define perfect security in several different ways:

Def 1:	Def 2:
For every message m in the message space M, and every	For every pairs of messages m_0 , m_1 in the message space M,
ciphertext c in the ciphertext space C:	and every ciphertext c in the ciphertext space C:
Pr[M = m] = Pr[M = m C = c]	$Pr[C = c M = m_0] = Pr[C = c M = m_1]$
That means, knowledge of the ciphertext does not help the attacker to guess the plaintext.	That means, the probability that C = c is the same for M = m_0 or M = $m_{1.}$

And they are essentially equivalent.

One-Time Pad offers Perfect Security

- Let (m₀, m₁) be the plaintext pair chosen by the attacker
 - Note that the ciphertext c is returned to the attacker and the attacker's goal is to tell if c is the encryption of m_0 or m_1
- Argument:
 - c can be the encryption of m_0 with the key $k_0 = m_0 \oplus c$
 - c can also be the encryption of m_1 with the key $k_1 = m_1 \oplus c$
 - Since the key is randomly chosen, the probability that the key is $k_0 \mbox{ or } k_1$ is equal
- In one-time pad, the key can only be used once.

Necessary Condition for Perfect Security

Theorem (Shannon)

In a system with perfect secrecy the number of keys is at least equal to the number of messages.

- Argument:
 - If the message space is larger than the key space, then given a fixed ciphertext c that encrypts a message m, there exists some message m' that cannot be encrypted to c.
 - Therefore, we have Pr [C = c | M = m] ≠ 0, Pr [C = c | M = m'] = 0, which contradicts the perfect indistinguishability.
- Implications: If we want perfect secrecy
 - the key size must be large.
 - The key can only be used once.
 - If the key is used for multiple times, the total message length will be larger than the key length.

Necessary Condition for Perfect Security

Theorem (Shannon) In a system with perfect secrecy the number of keys is at least equal to the number of messages.

- Implications: If we want perfect secrecy
 - the key size must be large.
 - The key can only be used once.
 - If the key is used for multiple times, the total message length will be larger than the key length.
- Now, if Alice and Bob have shared a 100-bit secret key in advance, how many bits can they transform securely if they would like to achieve perfect security?
 - Why this is a problem in practice?
- Now, assuming that we have a cryptosystem that is able to encrypt n+1 bits using an n-bit secret key, how many bits can be transformed between Alice and Bob securely, if they have shared a 100-bit secret key in advance?

Cryptosystems with Computational Security

Necessary Condition for Perfect Security

Theorem (Shannon) In a system with perfect secrecy the number of keys is at least equal to the number of messages.

- Implications: If we want perfect secrecy
 - the key size must be large.
 - The key can only be used once.
 - If the key is used for multiple times, the total message length will be larger than the key length.
- The perfect security guarantees that the plaintext is completely hidden from the ciphertext. This holds even if the attacker has unbounded resources.
- But do we really need security against an unbounded adversary?
 - What if the attack will take the attacker 1000 years?
 - What if the ciphertext can only increase the probability to guess the message by 1/2¹⁰⁰⁰?
- Can we circumvent the limitation by only considering a practical adversary?

Modern Cryptography

- Cryptography can be broken but it is very hard to break it
- How much hard?
- For example, if cryptography is well-designed, it will take at least 200 years using all computers in the whole world.
- How to describe this formally and How to achieve this?
 - Computational Complexity

1965: paper with Turing Award "On the Computational Complexity of Algorithms"

Concepts in Complexity

- Problem
 - A problem asks you to find a solution given an instance.
 - For example, the sorting problem
- Algorithm
 - An algorithm solves a class of specific problems.
 - For example, the heapsort algorithm for the sorting problem
- Costs
 - The resources (e.g., running time, memory) that an algorithm requires.
 - In computational complexity, we consider the costs as a function on the input length of the algorithm.
 - If you have a larger instance (e.g., a longer list to be sorted), the algorithm will typically need more resource.
 - The runtime of the heapsort algorithm is O(n*logn) given list containing n elements.

Big O natation

f(n) = O(g(n)) if there exists a positive real number c and a real number x_0 such that $f(n) \le cg(n)$ for all $n \ge x_0$

Polynomial time: There are some value k, $f(n) = O(n^k)$

Usually, an algorithm that can solve problem A in polynomial time is called an efficient algorithm.

Big Ω natation

 $f(n) = \Omega(g(n))$ if there exists a positive real number c and a real number x_0 such that $f(n) \ge cg(n)$ for all $n \ge x_0$

Exponential time: $f(n) = \Omega(2^n)$

Usually, if all algorithms that can solve problem A are in exponential time, we say the problem is a hard problem.

Computational complexity in 5min

- How we can say a problem is easy?
 - Find an algorithm that solves it in polynomial time~
- How we can say a problem is hard??
 - Justify that all algorithms that solve the problem are in exponential time!
 - I have tried for a while but no efficient algorithm has found $\stackrel{ ext{{\scriptsize e}}}{=}$
 - I have tried 10 yeats, but no efficient algorithm has found 😕
 -
 - Many (including the top) researchers have tried for 50 years, but no efficient algorithm has found 😀
 - For example, the hardness of problems in the class NPC.
 - Some less studied problem like factoring problem, discrete log problem, ...
 - We assume that these long-standing problems are hard.
 - Once we have accepted that some problems are hard, we can get more hard problems.

Computational complexity in 5min

- How we can say a problem is easy?
 - Find an algorithm that solves it in polynomial time~
- How we can say a problem is hard??
 - Assume that all algorithms that solve the problem are in exponential time!
 - Once we have accepted that some problems are hard, we can get more hard problems.
 - Let Problem A be the problem assumed to be hard.
 - We can "prove" that B is also hard by:
 - First, suppose that there exists an efficient algorithm F that can solve B.
 - Construct an algorithm F' that can solve A based on F. Here, we do not have to know how F works.
 - Make a contradiction.
 - The proof above is called a reduction.

Complexity vs Cryptography

- In complexity, we have defined hard problems, i.e., problems that will always cost a lot of resource to solve.
- In cryptography, we require that recovering the plaintext from the ciphertext will always cost a lot of resource.
- We can fit cryptography into computational complexity!
- Problem: Recovering the plaintext from the ciphertext.
- Potentional algorithms: The attackers!
- Problem is hard: All attackers that can recover the plaintext from the ciphertext are in exponential time, i.e., all attackers will spend a lot of resources (e.g., at least 1000 years) to recover the plaintext.

Complexity vs Cryptography

- Problem: Recovering the plaintext from the ciphertext.
- Potentional algorithms: The attackers!
- Problem is hard: All attackers that can recover the plaintext from the ciphertext are in exponential time, i.e., all attackers will spend a lot of resources (e.g., at least 1000 years) to recover the plaintext.
- How to show that a cryptosystem is secure?
 - Try to find an efficient attacker for many years; OR
 - Start with some well-accepted hard problems (assumptions) and make some reductions.
- But for both approaches, we need to define the problem formally first.
 - We need to define a cryptosystem and its security.

How to define a cryptosystem?

How to define a cryptosystem?

- A cryptosystem is a set of polynomial-time algorithms to provide security properties.
- What algorithms do we need?
 - How many algorithms do we need?
 - What are inputs and outputs of algorithms?
 - Probabilistic or deterministic?
 - ...
- What Properties do we need?
 - Correctness requirements.
 - Security requirements.
- As a concrete example, we will see how to formally define an encryption scheme.

Symmetric-Key Encryption

Symmetric-Key Encryption

Application Scenario:

All users can generate and share keys. When two person Alice and Bob share the same key. One party can encrypt a sensitive message using the key and the other party can decrypt the ciphertext using the same key.

Symmetric-Key Encryption

- KeyGen(λ): Taking as input a security parameter λ, the key generation algorithms returns a key K
- Encrypt(K, M): Taking as input a message M and a key K, the encryption algorithm returns a ciphertext denoted by C.
 C←Encrypt(K,M)
- Decrypt(K,C): Taking as input a ciphertext C and a key K, the decryption algorithm returns a message M.
- The security parameter λ is denoted by security strength.

Symmetric-Key Encryption: Correctness

 <u>Correctness</u>: For all generated K and all C←Encrypt(K,M), we have Pr[Decrypt(K,C)=M]=1

- Correctness (with correctness error): For all generated K and all C←Encrypt(K,M), we have Pr[Decrypt(K,C)=M] ≥ 1-negl(λ)
- We use negl to denote a negligible function, which is smaller than all inverse polynomial.

Game-Based Security Definition:

Algorithms KeyGen, Enc, Des are public.

An Encryption Scheme is Secure if **NO** efficient attacker can win with a good probability.

Efficient attacker: The attacker is a probabilistic polynomial time algorithm.

- The game-based definition is described by a game between an adversary and a challenger.
 - The challenger represents the secret key owners of the system.
 - The adversary is the attacker trying to break the cryptosystem.
- In a game-based definition, we only consider abstract attacks from the adversary, which focus on what information can be learned by the adversary rather than how the information can be learned.
- When defining the security, we need to consider
 - The adversary's capabilities:
 - What information can be learned by the adversary and When the adversary can learn the information.
 - This is described by allowing the adversary to make some queries to the challenger.
 - The challenger must answer the queries honestly.
 - The adversary's security goal:
 - How the adversary wins the game.

What is the adversary's security goal?

 One-Wayness: Given a ciphertetx C*=Enc(K,M*) generated by the challenger, the adversary is going to compute its plaintext M*.

This observation is straightforward but

What is the adversary's security goal?

 Semantic-Security : Given a ciphertetx C*=Enc(K,M*) generated by the challenger, the adversary's goal is to learn any information about M*.

This seems a reasonable goal, but how to define it?

What is the adversary's security goal?

 Indistinguishability : Given a ciphertext C* and two messages M_0 and M_1 where C*=Enc(K,M_b), the adversary is going to compute b from {0,1}.

Question: Who chose M_0 and M_1?

This security goal is equivalent to the semantic-security in most cases!

Symmetric-Key Encryption

What are the capabilities of the adversary?

• Ciphertext-Only Attack:

The adversary knows some ciphertexts.

• Known-Plaintext Attack:

The adversary knows some plaintext-ciphertext pairs.

• Chosen-Plaintext Attack:

The adversary can choose any plaintext to know its ciphertext.

• Chosen-Ciphertext Attack:

The adversary can choose any plaintext to know its ciphertext. The adversary can choose any ciphertxt to know its plaintext.

Symmetric-Key Encryption: IND-CPA Security

Security Model of Symmetric-Key Encryption (IND-CPA)

<u>Setup:</u> The challenger chooses a random key K.

<u>Phase 1:</u> The adversary can choose any M for encryption queries and learns the

encrypted result.

<u>Challenge</u>: The adversary can choose any two different messages M_0 and M_1. The challenger chooses a random b and computes the challenge ciphertext CT*=Enc(M_b, K), which is given to the adversary.

<u>Phase 2:</u> The adversary can choose any M for encryption queries.

<u>Guess</u>: The adversary returns the guess b' and wins if b'=b.

We say that the encryption is secure if no P.P.T adversary can win with a probability of $\frac{1}{2}+1/poly(\lambda)$.

Summary

- One-time pad
 - Construction
 - Security
 - Limitations
- Computational Security*
 - Computational Complexity
 - Reduction
 - Modern Cryptography An Overview

- Definition
 - Syntax
 - Correctness
 - Security
 - Game-based definition
 - The adversary's capabilities
 - Security goals
 - The security definition