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How to Design A Block Cipher



Confusion and Diffusion: Design Principles

Shannon (1949) introduced two concepts 

• Confusion:  If a single bit in a key is changed, the returned 
ciphertext will be significantly different.  

• Diffusion:  If a single bit in a plaintext is changed, the returned 
ciphertext will be significantly different.



Property: The avalanche effect

• A desirable property for encryption is that small changes in either 
plaintext or key should result in significant changes in the ciphertext.

• For example, a cipher might be said to have the avalanche effect if  
changing a single bit (in either the key or plaintext) results in half the 
output being different.



Block cipher

• An encryption algorithm that takes a fixed length block of message letters (plaintext) and a 
key (not necessarily the same length), and produces a block of ciphertext of the same length 
as the plaintext.

• A decryption algorithm that takes the ciphertext and the key and produces the plaintext.
• The key is reused for different plaintext blocks
• Typical block sizes (value of n): 64 bits, 128 bits
• Key sizes (value of k): 56 bits (DES), 128/192/256 bits (AES)
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Common Block Cipher Design approaches

• Iterated cipher
• Each iteration is called a round. The output of each 

round is a function of the output of the previous 
round and a sub-key derived from the full secret key 
by a key-scheduling algorithm.
• DES – 16 rounds, AES – 10 rounds

• Each Round inside DES is: Feistel structure

• Each Round inside AES is: Substitution-
Permutation Networks 
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The Development of DES
• It became clear in the 1970‘s that there was a need for a standard encryption algorithm, because:

• Advances in information technology and the need for security to support this. Government and Commercial 
parties were beginning to use computers extensively.

• Required security could not be provided by ad-hoc algorithms.
• Different devices had to be able to exchange encrypted information.

• The standard needed to have the following properties:
• It needed a high level of security.
• It needed to be completely specified. In accordance with Kirchoff’s Law the security shouldn’t rely on a hidden 

part of the algorithm.
• It needed to be economical to implement.
• It needed to be adaptable to diverse application.

• In 1973 National Bureau of Standards published a solicitation for cryptosystems in the Federal 
Register. This lead ultimately to the development of the Data Encryption Standard, or DES. 

• DES was developed at IBM based on an earlier cipher system known as Lucifer.



DES
Input
64 bit

Output
64 bit

Key: 56 bit



DES

IP IP-1

Input
64 bit

Output
64 bit

Key Scheduling

…

Key: 56 bit

16-round Feistel Network

We focus on the 16-round Feistel Network!



Feistel network (aka Feistel cipher, Feistel 
structure)
• Introduced by Feistel
• Many block ciphers follow this structure
• It simplifies the design of secure (block)ciphers by introducing the 

following design philosophy:
• Increase security (confusion and diffusion) by having multiple rounds
• Building blockcipher on a simpler function F that is not decryptable
• …
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https://en.wikipedia.org/wiki/Feistel_cipher
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Ln+1 =Rn 
Rn+1 = F(Rn, Kn) Å Ln



Feistel Structure

• At each round, only the right half of the message is put into the 
function F based on the round sub-key Ki

• After that, the left part of the message is XOR with the output of 
function F, and the right part is kept unchanged.
• Then, left part and right part exchange position at the end of each 

round (except the last round)
• In the last round, the left part and the right part are not exchanged.
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Ln = F(Ln+1, Kn) Å Rn+1
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Feistel Structures
• Encryption and Decryption are the same (with 

subkeys being applied in reverse order)!
• It remains to show how to design a suitable function 

F.



F(ki,Ri-1)

The function F
• E = Extension and Permutation
• P = Permutation

• How to design S1 to S8?



Substitution Box (S-Box)
• There are 8 S-boxes.
• Take the 6-bit input b1, b2, b3, b4, b5, b6
• Interpret b1 b6 as a row number, between 0 and 3.
• Interpret b2 b3 b4 b5 as a column number, 0 through 15.



Security of DES

• DES has 256»1017 keys. Given a plaintext block and the corresponding 
ciphertext block, we can try each key to decrypt the ciphertext and 
compare the result with the known plaintext.
• If we tried one key every 10-6 seconds, this would take about 1011 

seconds, or about 3170 years!
• But we can test keys in parallel.
• Michael Wiener (1993) gave a detailed design for a key search machine.
• In 1997, DES was broken  by the  DESCHALL Project, led by Rocke Verser,  Matt 

Curtin, and Justin Dolske, using idle cycles of thousands of computers across 
the Internet.
• In 1998, a custom DES-cracker was built by the Electronic Frontier Foundation 

(EFF), a cyberspace civil rights group, at the cost of approximately 
US$250,000.



The development of AES

• The National Institute of Standards and Technology (NIST) worked with 
the international cryptographic community to develop an Advanced 
Encryption Standard (AES).
• NIST selected Rijndael at the end of a very long and complex evaluation 

process:
• January 2, 1997. NIST announced the initiation of the project.
• September 12, 1997. NIST made a formal call for algorithms.
NIST specified minimum requirements: 

• Implement symmetric key cryptography as a block cipher.
• Block size of 128 bits.
• Key sizes of 128, 192, and 256 bits.



The development of AES

•  August 1998:  NIST announced 15 AES candidate algorithms at the First AES 
Candidate Conference (AES1) and solicited public comments.
• March 1999: A Second AES Candidate Conference (AES2) was held to discuss the 

results of the analysis.
• August 1999: NIST announced its selection of five finalist algorithms from the 

fifteen candidates:
• MARS (IBM; USA): Modified Feistel rounds in which one fourth of the data block is used to 

alter the other three fourths of the data block.
• RC6 (RSA Labs; USA): Feistel structure; 20 rounds.
• Rijndael (Daemen, Rijmen; Belgium): Substitution-linear transformation network with 10, 12 

or 14 rounds, depending on the key size.
• Serpent (Anderson, Biham, Knudsen; UK, Israel, Norway): Substitution-linear transformation 

network consisting of 32 rounds.
• Twofish (Counterpane; USA): Feistel network with 16 rounds, key-dependent S-boxes.



Overview of Rijndael

• Both the key size and the block size may be chosen to be any of 128, 
192, or 256 bits, although the AES only requires key size to be 
selectable in one of these lengths and the block size is fixed to be 128 
bits long.

• Number of rounds is a function of the key length:
– 10 rounds if the key is 128 bits long;
– 12 rounds if the key is 192 bits long;
– 14 rounds if the key is 256 bits long.



Overview of Rijndael



Security of AES
• The full AES is not broken.
• Reduced round versions are broken (theoretically not practically): There are attacks as 

follows.
  7 rounds for 128-bit keys. (Chosen-plaintext)
  8 rounds for 192-bit keys. (Chosen-plaintext)
  
• The best theoretic attack breaks up to 8 rounds with over 2120 complexity for 128-bit keys 

and 2204 for 256-bit keys.



How to use block ciphers
(to construct symmetric-key encryption)



Is a blockcipher a secure symmetric-key encryption

What you will get if you 
use the blockciphers to 
encrypt each block of the 
image.

NO!



Is a blockcipher a secure symmetric-key encryption
• The blockcipher is not secure since it maps the same plaintext block into the 

same ciphertext block.
• This preserves the statistical property of the plaintext.

• To solve the problem, we can randomize the encryption process, i.e., mapping 
each plaintext block to multiple possible ciphertext blocks.
• The problem: The size of the plaintext block is identical to the size of the 

ciphertext block in a blockcipher.
• The solution: Each plaintext block can be encrypted into 2 ciphertext 

blocks.



Solution:“randomize” the encryption process

Randomized Encryption:
1. Choose a random IV.
2. Compute M’=IVÅ M
3. Run C←Enc(K, M’)
4. Output  CT=(IV, C)

Bais Encryption:
1. Run C←Enc(K, M)
2. Output  CT=C



Is the randomized encryption secure
• Propbably yes…
• If we use the randomized encryption to encryt English texts, regarding each letter 

as a block:
• The value of M’ will be different for each block, thus, no statistical property will appear in the 

ciphertext.

• If we use the randomized encryption to encrypt an image, we will get something 
like 

• Can we have some more reliable evidences?
• Yes!

32



Symmetric-Key Encryption

• KeyGen(λ): Taking as input a security parameter λ, the key 
generation algorithms returns a key K

• Encrypt(K, M): Taking as input a message M and a key K, the  
encryption algorithm returns a ciphertext denoted by C.

C←Encrypt(K,M)

• Decrypt(K,C): Taking as input a ciphertext C and a key K, the 
decryption algorithm returns a message M.

• The security parameter λ is denoted by security strength.



Symmetric-Key Encryption: Correctness

• Correctness: For all generated K and all C←Encrypt(K,M), we have 
Pr[Decrypt(K,C)=M]=1

• Correctness (with correctness error): For all generated K and all 
C←Encrypt(K,M), we have 

Pr[Decrypt(K,C)=M] ≥ 1-negl(λ)

• We use negl to denote a negligible function, which is smaller than all inverse 
polynomial.



1. Run KeyGen to get k

3.3 Send c* to the Attacker

Algorithms KeyGen, Enc, Des are public.

5. Attacker returns a guess bit b’Attacker wins if b = b’!

3.1 Attacker sends m0, m1 to challenger
3.2 Randomly choose a bit b, 

run Enc(k, mb) to get c*

2.1 Attacker sends m to challenger

2.3 Send c to the Attacker
2.2 Run Enc(k, m) to get c

Symmetric-Key Encryption: IND-CPA Security

4.1 Attacker sends m to challenger

4.3 Send c to the Attacker
4.2 Run Enc(k, m) to get c An Encryption Scheme is Secure if 

NO efficient attacker can win with 
a probability of ½+1/poly(λ).
Alternatively, that means,

We assume that 
(|m0|=|m1|)



Security Model of Symmetric-Key Encryption (IND-CPA)

Setup: The challenger chooses a random key K.

Phase 1:  The adversary can choose any M for encryption queries and learns the 

encrypted result.
Challenge: The adversary can choose any two different messages M_0 and M_1.  The 
challenger chooses a random b and computes the challenge ciphertext CT*=Enc(M_b, 
K), which is given to the adversary.

Phase 2:  The adversary can choose any M for encryption queries.

Guess: The adversary returns the guess b’ and wins if b’=b.

We say that the encryption is secure if no P.P.T adversary can win with a probability of 
½+1/poly(λ).



Setup: The challenger chooses a random key K.
Phase 1: The adversary can choose any M for encryption queries and learns the 
encrypted result; it can also choose any CT for decryption queries and learns the 
decryption result.
Challenge: The adversary can choose any two different messages M_0 and M_1.  The 
challenger chooses a random b and computes the challenge ciphertext CT*=Enc(M_b, 
K), which is given to the adversary.
Phase 2:  The adversary can choose any M for encryption queries and choose any CT 
different from CT* for decryption queries.
Guess: The adversary returns the guess c’ and wins if b’=b.

We say that the encryption is secure if no P.P.T adversary can win with a probability of 
½+1/poly(λ).

Security Model of Symmetric-Key Encryption (IND-CCA)



A secure symmetric-key encryption scheme

Randomized Encryption:
1. Choose a random IV.
2. Compute M’=IVÅ M
3. Run C←Enc(K, M’)
4. Output  CT=(IV, C)

Bais Encryption from blockcipher:
1. Run C←Enc(K, M)
2. Output  CT=C

Why the solution is secure:
• The underlying blockcipher is assumed to be a 

pseudorandom function (PRF), i.e., outputs of the 
blockcipher is indistinguishable from random values.

• If M’ has never repeated, then the ciphertexts will 
just be some random values, i.e., no one could learn 
any information about the encrypted message from 
the ciphertext.

• The probability that M’ will repeat is negligible since 
IV is randomly sampled.

Can we fix IV in every encryption?



Another secure symmetric-key encryption 
scheme

Randomized Encryption:
1. Choose a random IV.
2. Run W←Enc(K, IV)
3. Compute C=WÅ M 
4. Output  CT=(IV, C)

Bais Encryption from blockcipher:
1. Run C←Enc(K, M)
2. Output  CT=C

Why the solution is secure:
• The underlying blockcipher is assumed to be a 

pseudorandom function (PRF), i.e., outputs of the 
blockcipher is indistinguishable from random values.

• If IV never repeats, then M will be masked with 
random values. This will completely hide M.
• We will show why it is secure to xor M with 

random values later.
• The probability that IV will repeat is negligible since it 

is randomly sampled.



Secure symmetric-key encryption scheme

Compare the left two encryptions. 

Bais Encryption:
1. Run C←Enc(K, M)
2. Output  CT=C

Security Efficiency
Basic Not Secure Short Cipher

I Secure Long Cipher
II Secure Long Cipher

The operation modes can reduce the cipher length

Randomized Encryption I:
1. Choose a random IV.
2. Compute M’=IVÅ M
3. Run C←Enc(K, M’)
4. Output  CT=(IV, C)

Randomized Encryption II:
1. Choose a random IV.
2. Run W←Enc(K, IV)
3. Compute C=WÅ M 
4. Output  CT=(IV, C)



How to encrypt a long message using blockcipher:
Securely and Efficiently

(Operation Modes)



Before you encrypts…
• First, we need to divide the long message into blocks.
• What if the length of the message is not a multiple of the block length? 

Then one needs to pad the message.
• Padding example: Add a string 1000…0 to fill out the last block to the correct 

length. For decryption take the plaintext as being read back to the least 
significant 1.
• Can we pad the message with 000….0?

• may have to add a new block if the plaintext is already a multiple of the blocksize 
to avoid ambiguity.

• Next, we encrypt the blocks. We can choose the following different 
modes to encrypt the blocks.



Electronic Codebook (ECB) Mode

The ECB mode is not secure!



ECB Mode Decryption

The ECB mode is not secure!



Cipher Block Chaining (CBC) Mode

• IV is chosen uniformly at random
• This is built on the aforementioned randomized encryption I. But we use the ciphertext of 

each block as the IV of the next block.



CBC Mode Decryption



Cipher Feedback (CFB) Mode

• IV is chosen uniformly at random
• This is built on the aforementioned randomized encryption II. But we use the ciphertext of 

each block as the IV of the next block.



CFB Mode Decryption



Output Feedback (OFB) Mode

• IV is chosen uniformly at random
• This is built on the aforementioned randomized encryption II. But we use the blockcipher 

output of each block as the IV of the next block.
• It is possible to conduct pre-computation for encryption.



OFB Mode Decryption



Counter (CTR)  Mode

• Counter i is typically defined as IV ∥ i, where IV is a randomly chosen initialization vector.
• This is built on the aforementioned randomized encryption II. But we use (non-uniform) and related IV for the 

blocks. This will not compromise security of the encryption scheme if the counters never repeat.
• Pre-computation for Encryption is possible.



CTR Mode Decryption

• Counter i is typically defined as IV ∥ i, where IV is a randomly chosen initialization vector.
• This is built on the aforementioned randomized encryption II. But we use (non-uniform) and related IV for the 

blocks. This will not compromise security of the encryption scheme if the counters never repeat.
• Pre-computation for Encryption is possible.
• Both Encryption and Decryption can be done in parallel.
• Random access is supported (i.e., it is easy to decrypt any block without the need to decrypt other blocks).



• In the OFB mode and the CTR mode, the plaintext are xored with a key stream generated by the 
blockcipher, they are also called stream ciphers.

• A stream cipher simulates the one-time pad by xoring the message with a key stream of equal length. But 
the key stream is generated from a shorter secret key. In addition, the encryption is randomized since a 
random IV will be used in each encryption.
• Is a stream cipher secure if we do not use the randomized IV?

• People design stream ciphers from sctratch in the beginning (e.g., RC4), but now, stream ciphers are 
usually constructed from a blockcipher via the OFB/CTR mode (e.g., Chacha 20).

Stream cipher



Stream cipher
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How to implement a SKE in practice
import os
from cryptography.hazmat.primitives.ciphers import 
Cipher, algorithms, modes
from PIL import Image

# Read the plaintext
img = Image.open("plaintext.png")
data= img.tobytes()

# Generate the secret key
key = os.urandom(32)

# Encrypt using ECB
cipherE = Cipher(algorithms.AES(key), modes.ECB())
encryptorE = cipherE.encryptor()
ctE = encryptorE.update(data) + encryptorE.finalize()

# Write the ciphertext
imageE = Image.frombytes(img.mode, img.size, ctE)
imageE.save('ciphertextE.png')

# Encrypt using CBC
iv = os.urandom(16)
cipherC = Cipher(algorithms.AES(key), modes.CBC(iv))
encryptorC = cipherC.encryptor()
ctC = encryptorC.update(data) + encryptorC.finalize()

# Write the ciphertext
imageC = Image.frombytes(img.mode, img.size, ctC)
imageC.save('ciphertextC.png’)

# Decrypt using ECB
decryptorE = cipherE.decryptor()
pE=decryptorE.update(ctE) + decryptorE.finalize()
imagepE = Image.frombytes(img.mode, img.size, pE)
imagepE.save('pE.png’)

# Decrypt using CBC
decryptorC = cipherC.decryptor()
pC=decryptorC.update(ctC) + decryptorC.finalize()
imagepC = Image.frombytes(img.mode, img.size, pC)
imagepC.save('pC.png')

The codes are implemented using the pyca/cryptography library (https://cryptography.io/).
• This is a python library depending on OpenSSL

https://cryptography.io/
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