
1 of 5

SCIT, University of Wollongong

CSCI435/CSCI935

Computer Vision: Algorithms and Systems
Spring 2023

Assignment One (15%)

Due Date: See Moodle site

Objectives

 Getting familiar with OpenCV 4.6.0

 Reading, processing and displaying images using OpenCV 4.6.0

 Understanding color spaces

Task One

Many color spaces are available to represent pixel values of a color image. Some are perceptually

uniform and others are not. This task is to read an image and display the original color image and its

components of a specified color space, such as CIE-XYZ, CIE-Lab, YCrCb and HSB. The color

components must be displayed in gray-scale. The original image and its three components must be

display in a single viewing window as arranged below.

Original Image
C1 (e.g. X, L, Y or B)

C2 (e.g. Y, a, Cr or H)
C3 (e.g. Z, b, Cb, or S)

Note that

a) RGB color space is commonly used to represent a digitized images and each color

component, also known as a color channel, is digitized into unsigned 8 bits, i.e. the possible

values for each component ranges from 0 to 255. (See Appendix: Digital Representation of

Images)

b) a JPG image file is often decoded into a RGB image, RGB values of each pixel may be

packed together with an alpha channel into 32 bits for efficient access by CPU. The value of

alpha channel may be ignored or may be used for transparency as needed. When a JPG

image is loaded by an OpenCV function, such as imread(…), please check OpenCV

online reference to understand how the RGB values of each pixel is packed and stored,

and make sure you access these values correctly. (See Appendix: Digital Representation of

SCIT, University of Wollongong

2 of 5

Images)

c) For a color space other than RGB, check the range of its valid values for each component

and you may need to scale the color component values properly so as to display the

components in gray-scale images whose pixel values are between 0 to 255, i.e. 8 bits; Note

that a gray-scale image means that the RGB values are same for each pixel.

Images are provided to test/debug your code. It is highly recommended that you create testing cases

by yourself.

Task Two

A Chroma key is a technique used in film, television studio and photography to replace a portion of

an image with a new image or to place a person, such as a newsreader, on a scenic background.

Below shows an example:

(a) A green screen photo with subjects (b) Subjects extracted from the green screen

photo are blended with a scenic photo

Source: http://mediacollege.com

You are provided with a few photos of a single person in front of a green screen, referred to as green

screen photos, and a few scenic photos. This task is to extract the person in a green screen photo

using appropriate Chroma information, e.g. hue and/or other Chroma information, and place the

person in a scenic photo according to the following:

a) The combined photo should be of the same size as the scenic photo, and

b) The person should be aligned horizontally to the middle of the scenic photo

The program should display in a single viewing window the photo of a person in front of a green

screen, person extracted from the green screen photo with white background, scenic photo, photo

with the person being in the scenic in a single viewing window as illustrated below.

Photo of a person

with green screen
Photo of the same

person with white

background

Scenic photo

The same person in

the scenic photo

http://mediacollege.com/

SCIT, University of Wollongong

3 of 5

Requirements on implementation

1. The program should be named as “Chromakey” and shall take

a. one filename and one of the options –XYZ, -Lab,-YCrCb or -HSB as the
command argument for Task One, e.g.

Chromakey –XYZ|-Lab|-YCrCb|-HSB imagefile # task one or

b. two filename as the command arguments for Task Two, e.g.

Chromakey scenicImageFile greenScreenImagefile # task two

2. The size of the viewing window for both tasks should not be over the size of 1280 × 720
(width x height pixels) on either dimension, but should not be too small.

3. There should not be any gap between images in the viewing window. One way is to
combine the four images to be displayed into a single one then display the combined one
using imshow() in OpenCV

4. Aspect ratios of all images must be kept unchanged while they are being displayed in the
viewing window.

5. No other third-party libraries should be used in the program except OpenCV 4.6.0. The code
has to be in Python (with OpenCV 4.6.0, assuming numpy and matplotlib packages
exist).

6. The code should be modularized with detail comments AND all source code should be
placed in a single file named as “Chromakey.py”.

Marking Scheme

1. Zero marks may be graded if your code cannot run as specified in the requirements.

2. Program usability (2%)

3. Correct display of the raw image and color components as required (6%)

4. Extraction and display of the person from a green screen photo (4%)

5. Combination of the scenic photo with the extracted person and display of the combined

photo (3%)

Submission

Zip the Chromakey.py file to your_login_name.zip. The zip file must be submitted via Moodle.

IMPORTANT:

a) The zip file name MUST be your UOW login name

b) Submission through email WILL NOT be accepted

SCIT, University of Wollongong

4 of 5

Appendix: Digital Representation of Images

SCIT, University of Wollongong

5 of 5

