
30/8/2023 1

CSCI435/CSCI935
Computer Vision: Algorithms & Systems
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Edge detection (review)

4Measurement
41st and 2nd order derivation

4Detection
4Convolution with edge operators (i.e. Sober’s and 

Prewitt’s)
4Laplacian of a Gaussian (LoG) and Difference of 

Gaussians (DoG)
4Edge linking/tracing and thinning

4Canny edge detection
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Machine Vision Concept ( review)

Machine Vision is a multistage process where each 
previous stage affects performance of all following stages

Digital 
Camera

Pre-
Processing

Feature 
Extraction

Object 
Recognition

Low-Level Vision Mid-Level Vision High-Level Vision

Image 

Content
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Intermediate-Level Vision
q In the past decades, it has been found that the corners 

and their spatial arrangement and local intensity/colour 
distribution around the corners carry much information 
about objects 



Harris Corner Detector

4An example
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The Basic Idea
4We should easily localize the point by looking 

through a small window
4Shifting a window in any direction should give a 

large change in intensity
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Harris Detector: Basic Idea

“flat” region:
no change as 
shift window in 
all directions

“edge”:
no change as shift 
window along the 
edge direction

“corner”:
significant change 
as shift window in 
all directions
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Harris Detector: Mathematics

[ ]2
,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + -å

Window-averaged change of intensity induced by 
shifting the image data by [u,v]:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside
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Taylor series approx

 

E(u,v) » w(x,y)[I(x,y) + uIx + vIy - I(x,y)]
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Harris Detector: Mathematics
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Expanding I(x,y) in a Taylor series expansion, we have, for small 
shifts [u,v],  a bilinear approximation:
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where M is a 2´2 matrix computed from image derivatives:

M is also called “structure tensor”
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Harris Detector: Mathematics
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Intensity change in shifting window: eigenvalue analysis

l1, l2 – eigenvalues of M

Ellipse E(u,v) = const

Iso-intensity contour of E(u,v)
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Selecting Good Features

l1 and  l2 are large
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Selecting Good Features

large l1, small l2
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Selecting Good Features

small l1, small l2

30/8/2023 14



Harris Detector: Mathematics

l1

l2

“Corner”
l1 and l2 are large,
 l1 ~ l2;
E increases in all 
directions

l1 and l2 are small;
E is almost constant 
in all directions

“Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification of 
image points using 
eigenvalues of M:
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Harris Detector: Mathematics

Measure of corner response:

( )2det traceR M k M= -

1 2

1 2

det
trace

M
M

l l
l l

=
= +

(k – empirical constant, k = 0.04-0.06)

This 
expression 
does not 
requires 
computing 
the 
eigenvalues.
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Harris Detector: Mathematics

l1

l2 “Corner”

“Edge” 

“Edge” 

“Flat”

• R depends only on 
eigenvalues of M

• R is large for a 
corner

• R is negative with 
large magnitude for an 
edge

• |R| is small for a flat 
region

R > 0

R < 0

R < 0|R| small
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Harris Detector

4The Algorithm:
4Find points with large corner response 

function  R   (R > threshold)
4Take the points of local maxima of R
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Harris Detector: Workflow
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Harris Detector: Workflow

Compute corner response R
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Harris Detector: Workflow

Find points with large corner response: R>threshold
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Harris Detector: Workflow

Take only the points of local maxima of R
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Harris Detector: Workflow
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Harris Detector: Summary

4 Average intensity change in direction [u,v] can be expressed 
as a bilinear form: 

4 Describe a point in terms of eigenvalues of M:
measure of corner response

4 A good (corner) point should have a large intensity change in 
all directions, i.e. R should be large positive

[ ]( , ) ,
u

E u v u v M
v
é ù

@ ê ú
ë û

( )21 2 1 2R kll l l= - +

30/8/2023 24



Use of Corners
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4 Image content is transformed into local feature extracted at 
the detected corners that are invariant to translation, rotation, 
scale, and illumination changes

Object template Image



Scale-Invariant Feature Transform (SIFT)

4SIFT in a brief is
4Histogram of gradients @ Harris-corner-like 

keypoints
4Being invariant to

4Scale
4Rotation
4Illumination changes
4Small degree of viewpoints
4Noise
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SIFT Algorithm Overview

Filtered approach 
4 Scale-space extrema detection

4 Identify potential points: invariant to scale & orientation.
4 Difference-of-Gaussian function (DoG)

4 Keypoint localization
4 Improve the estimate for location by fitting a quadratic
4 Extrema threshold for filtering out insignificant or edge 

points.
4 Orientation Assignment

4 Orientation assigned to each keypoint and neighboring 
pixels based on local gradient. 

4 Keypoint Descriptor construction
4 Feature vector based on gradients of local neighborhood
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Keypoint candidates: Scale Space

4We express the image at different scales by 
filtering it with a Gaussian kernel

 



4 Lindeberg(1994) and Mikolajczyk (2002) found that the maxima 
and minima of the scaled Laplacian          provides the most 
stable scale invariant features 

4 We can use the scaled images to approximate this:

4 Efficient to compute
4 Smoothed images L needed later so D can be computed by 

simple image subtraction

Keypoint Candidates: why DoG’s?



Scale-Space Extrema Detection 
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Down sampling

𝝈 𝒐, 𝒔 = 𝝈𝟎𝟐𝒐#𝒔/𝑺

𝒐 ∈ 𝒐𝒎𝒊𝒏 + 𝟎,⋯ ,𝑶 − 𝟏

𝒔 ∈ [𝟎,⋯ , 𝑺 − 𝟏]

𝒐𝒎𝒊𝒏 = 𝟎	𝒐𝒓	 − 𝟏

Typical Settings:
𝜎* = 1.6, 𝑜+,- = 0
𝑂 = 4 ,𝑆 = 5

𝝈 = 𝝈𝟎

𝝈 = 𝝈𝟎𝟐𝟏/𝟓

𝝈 = 𝝈𝟎𝟐𝟐/𝟓

𝝈 = 𝝈𝟎𝟐𝟑/𝟓

𝝈 = 𝝈𝟎𝟐𝟒/𝟓

𝝈 = 𝟐𝝈𝟎

𝝈 = 𝟐𝝈𝟎𝟐𝟏/𝟓
𝝈 = 𝟐𝝈𝟎𝟐𝟐/𝟓
𝝈 = 𝟐𝝈𝟎𝟐𝟑/𝟓
𝝈 = 𝟐𝝈𝟎𝟐𝟒/𝟓

𝝈 = 𝟒𝝈𝟎



4An example of 
scale-spaces in 
SIFT
4Images of the 

same size 
(vertical) form an 
octave. Above are 
four octaves. Each 
octave has 5 
images. The 
individual images 
are formed 
because of the 
increasing "scale" 
(the amount of 
blur).
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Scale-Space Extrema Detection… 

4Maxima and minima in 
a 3*3*3 neighborhood 
are detected as the 
candidates of 
keypoints

30/8/2023 32

DoG within an octave



How Many Octaves ?
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Original Image

Starting Image

Up-sampling

Karan Goel
Sticky Note
usually 4 octaves




How Many Octaves ?...

Octave #0 of L images



How Many Octaves ?...

Octave #1

Octave #2

Octave #3

Down sampled by a factor of 2

Until the image is too small



How Many Octaves ?...

Octave #0 DoGs



How Many Octaves ?...

DoGs of Octave #1

DoGs of Octave #2

DoGs of Octave #3



How Many Scales ? - Scale-space sampling

4 How many fine scales in every octave? 



Accurate Keypoint Localization

4From difference-of-Gaussian local extrema 
detection we obtain approximate locations 
for keypoints

4Originally these approximations were used 
directly

4For an improvement in matching and stability 
fitting to a 3D quadratic function is used



The Taylor Series Expansion
4Take Taylor Series Expansion of scale-space 

function D(x,y,σ)
4Use up to quadratic terms 

4origin shifted to sample point
4                      offset from this sample point
4to find location of extremun, take derivative and set to 0
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Thresholding Keypoints
4The function value at the extrema is used to reject 

unstable extrema
4Low contrast
4Evaluate

4Absolute value less than 0.03 at extrema location results 
in discarding of extrema (assuming image pixel values are 
in the range of [0,1])
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Eliminating Edge Responses
4Difference-of-Gaussian function will be 

strong along edges
4Some locations along edges are poorly determined 

and will become unstable when even small amounts 
of noise are added

4These locations will have a large principal 
curvature across the edge but a small principal of 
curvature perpendicular to the edge

4Therefore we need to compute the principal 
curvatures at the location and compare the two

Karan Goel
Sticky Note
edge sometime can be problem in key point detection



Computing the Principal Curvatures

4Hessian matrix (The derivatives are estimated by taking differences of 

neighboring sample points)

4 The eigenvalues of H are proportional to principal curvatures

4 We are not concerned about actual values of eigenvalues, just 
the ratio of the two 
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Eliminating Edge Responses…

4Threshold the ratio to remove the edge 
points
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Stages of keypoint selection

Ref.[3]

Initial 832 
keypoints 

After applying a 
threshold on 
minimum 
contrast, 729 
keypoints remain

The final 536 
keypoints that 
remain following an 
additional
threshold on ratio 
of principal 
curvatures



Assigning an Orientation

4We finally have a keypoint and its scale that 
we are going to keep

4The next step is assigning an orientation for 
the keypoint
4Used in making the matching technique 

invariant to rotation



Assigning an Orientation…

4Gaussian smoothed image, L, with closest scale is 
chosen   (scale invariance)

4Points in region around the keypoint are selected and 
magnitude and orientations of the gradient are 
calculated

22 ))1,()1,(()),1(),1((),( --++--+= yxLyxLyxLyxLyxm

))),1(),1(/())1,()1,(((tan),( 1 yxLyxLyxLyxLyx --+--+= -q



Keypoint Descriptor

2x2 array (subregions) of 
orientation histograms, each has 
8 orientation bins

Keypoint orientation



Keypoint Descriptor…
4To make the descriptor robust to orientation,

4the coordinates of the descriptor and gradient 
orientations are rotated relative to the key point 
orientation

4Each point in the subregions added to the 
histogram is weighted by
4gradient magnitude
4with σ of one half the width of the descriptor 

window 
41 – d , where d is the distance of a specific sample 

to the center of a bin



Keypoint Descriptor…

4Lowe found the best configuration is
44x4 subregions with 8 bins, which results in 

4x4x8=128 elements in the feature descriptor

4Vector normalization
4Done at the end to ensure invariance to 

illumination change (affine)
4Entire vector normalized to 1 
4To combat non-linear illumination (camera 

saturation) changes values in feature vector are 
thresholded to no larger than 0.2 and then the 
vector is re-normalized. 



Summary on SIFT

4SIFT:
4Found rough approximations for features by looking 

at the DoGs
4Localized the keypoint more accurately
4Removed poor keypoints
4Determined the orientation of a keypoint
4Calculated a 128 feature vector for each keypoint
4(x, y, scale, orientation, 128 visual descriptor)



What to do with the features? 

4SIFT:
4Localized the keypoints
4Removed poor keypoints
4Determined the orientation of a keypoint
4Calculated a 128D feature vector for each keypoint
4(x, y, scale, orientation, 128D visual descriptor)

4What do we do now?



Object Detection 

4Two images
4One image is the training sample of the object we 

are looking for
4The other image is the world picture that might 

contain instances of the training sample
4Both images have features associated with them 

across different octaves
4Search and match features between the two

4Many methods are available, See [Lowe2004] for a 
typical one 



Examples



Examples…



Comparison of Images
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Comparison of Images

4Given N images,           , how similar is between 
Ii and Ij ?

4The similarity should be invariant to
4Translation & rotation
4Illumination changes
4Scale
4Some degree of change of viewpoints
4cameras
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Comparison of Images…
4Extract SIFT from each image, for Ii , there are ni

key points, its SIFT is

4In other words, each image is represented by a set of 
features, with each feature being 128 dimensions.

4The similarity or dissimilarity of two images can be 
measured by the distance between two SIFTs, i.e.

4dist(.) measures the distance between two sets, 
e.g. hausdorff distance
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},,,{ 21 iiniii fffSIFT =

),( jiij SIFTSIFTdistd =



4 𝐼" = 𝑓"#, 𝑓"$, ⋯ 𝑓"%! 	and 𝐼& = {𝑓&#, 𝑓&$, ⋯ , 𝑓&%"}

4Hausdorff distance

𝐻 𝐼= , 𝐼> = max(ℎ 𝐼= , 𝐼> , ℎ 𝐼> , 𝐼= )

 ℎ 𝐼,, 𝐼.  ranks each interest point of 𝐼, based on its nearest 
interest point of 𝐼. and uses the most mismatched point

ℎ 𝐼= , 𝐼> = max
A!"∈B!

min
A#$∈B#

𝑓=C − 𝑓>D

Hausdorff Distance
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Bag-of-Visual-Words (BoW) Model

30/8/2023 60



Image Comparison Using BoW
4Represent images using a Bag-of-features, 

such as SIFT
4Learning visual vocabulary

4Cluster the features into K clusters, each cluster 
representing a visual word

4K-means is often used
4Build a histogram of the visual words for each 

image
4Normalize the histogram

4Compare the histograms of images
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Note
4K-means

4http://en.wikipedia.org/wiki/K-means_clustering

4Chi-squared (c2) distance.
4Given two normalized histogram h1 and h2,

𝜒$ ℎ#, ℎ$ =
1
2
7

"

(ℎ# 𝑖 − ℎ$ 𝑖 )$

ℎ# 𝑖 + ℎ$(𝑖)

where ∑" ℎ#(𝑖) = 1.0, ∑" ℎ$ 𝑖 = 1.0
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Other Descriptors

4HoG - Histogram of Gradients (CVPR’05)
4LBP - Local binary Patterns (ICPR’00, PAMI’02)

4SURF – speeded up robust features (Bay et al. 2006)
4BRIEF - Binary Robust Independent Elementary 

Features (ECCV’10)
4BRISK - Binary Robust Invariant Scalable Keypoints

(ICCV’11)
4FREAK - Fast Retina Keypoint (CVPR’12)
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Suggested Readings
Ø E. R Davies, Computer Vision: Principles, Algorithms, Applications, Learning, 

Academic Press; 5th edition; 2017 - Chapter 6

Ø David Forsyth and Jean Ponce, Computer Vision A Modern Approach, 2012, 
Chapter 5

Ø C. Harris, M. Stephens. “A Combined Corner and Edge Detector”, Proceedings of 
the Fourth Alvey Vision Conference, pp. 147-151, 1998

Ø David G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, 
International Journal of Computer Vision 60(2), 91–110, 2004

Ø H. Bay, T. Tuytelaars, and L. V. Gool, SURF: Speeded Up Robust Features, ECCV 
2006

Ø H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, SURF: Speeded Up Robust 
Features (SURF), Computer Vision and Image Understanding (CVIU), Vol. 110, 
No. 3, pp. 346–359, 2008



OpenCV 4.6.0
4Module – features2d

4cv::cornerharris(…)

4Module – non-free features2d
4cv:xfeatures2d::SiftFeatureDetector(…)

4cv::xfeatures2d::SurfFeatureDetector(…)

4Tutorials – Python
4 https://docs.opencv.org/4.6.0/db/d27/tutorial_py_table_of_contents_feature2d.html

4Harris Corner Detection
4Introduction to SIFT (Scale-Invariant Feature Transform)
4FAST Algorithm for Corner Detection
4Introduction to SURF (Speeded-Up Robust Features)

30/8/2023 65

https://docs.opencv.org/4.6.0/db/d27/tutorial_py_table_of_contents_feature2d.html
https://docs.opencv.org/4.6.0/dc/d0d/tutorial_py_features_harris.html
https://docs.opencv.org/4.6.0/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/4.5.2/df/d0c/tutorial_py_fast.html
https://docs.opencv.org/4.6.0/db/d27/tutorial_py_table_of_contents_feature2d.html


OpenCV 4.6.0

4Module – Machine Learning
4cv::kmeans(….)
4htps://docs.opencv.org/4.6.0/d5/d38/group__cor

e__cluster.html#ga9a34dc06c6ec9460e90860f15
bcd2f88

4 Example code on how to use
https://docs.opencv.org/4.6.0/d9/dde/samples_
2cpp_2kmeans_8cpp-example.html#a17 

30/8/2023 66

https://docs.opencv.org/4.6.0/d5/d38/group__core__cluster.html
https://docs.opencv.org/4.6.0/d5/d38/group__core__cluster.html
https://docs.opencv.org/4.6.0/d5/d38/group__core__cluster.html
https://docs.opencv.org/4.6.0/d9/dde/samples_2cpp_2kmeans_8cpp-example.html
https://docs.opencv.org/4.6.0/d9/dde/samples_2cpp_2kmeans_8cpp-example.html



