
Computer Vision

Philip O. Ogunbona

Advanced Multimedia Research Lab
EIS University of Wollongong

Introduction to Classifiers for Computer Vision1

Spring Session 2018

1The materials on Bayes’ Classifier, KNN and SVM are based on the slides from the book by
Kellleher et al. (2015)

PO (AMRL-EIS) Computer Vision Useful Classifiers 1 / 155

Outline

1 Introduction

2 Bayesian Classifiers

3 K-Nearest Neighbour Classifier

4 Support Vector Machine

5 Multi-layer Perceptron

6 References

PO (AMRL-EIS) Computer Vision Useful Classifiers 2 / 155

1 Introduction

2 Bayesian Classifiers

3 K-Nearest Neighbour Classifier

4 Support Vector Machine

5 Multi-layer Perceptron

6 References

PO (AMRL-EIS) Computer Vision Useful Classifiers 3 / 155

Why are classifiers useful in Computer Vision?

Computer Vision can be described as follows (British Machine Vision Association
[http://www.bmva.org/visionoverview]):

Humans use their eyes and their brains to see and visually sense the world around them.

Computer vision is the science that aims to give a similar, if not better, capability to a
machine or computer.

Computer vision is concerned with the automatic extraction, analysis and understanding of
useful information from a single image or a sequence of images.

It involves the development of a theoretical and algorithmic basis to achieve automatic
visual understanding.

Table 1: Some Applications of Computer Vision

Agriculture Augmented Reality Autonomous Vehicles
Biometrics Character Recognition Forensics
Industrial Quality Inspection Face Recognition Gesture Recognition
Geosciences Pollution Monitoring Transport
Medical Image Analysis Image Restoration Remote Sensing
Process Control Security and Surveillance Robotics

Some of these applications will involve solving classification problems.

PO (AMRL-EIS) Computer Vision Useful Classifiers 4 / 155

http://www.bmva.org/visionoverview

1 Introduction

2 Bayesian Classifiers
Bayes’ Theorem
Bayesian Prediction
Conditional Independence and Factorization
Standard Approach: The Naive Bayes’ Classifier
A Worked Example

3 K-Nearest Neighbour Classifier

4 Support Vector Machine

5 Multi-layer Perceptron

6 References

PO (AMRL-EIS) Computer Vision Useful Classifiers 5 / 155

Bayesian Classifiers - Introduction

Table 2: A simple dataset for MENINGITIS diagnosis with descriptive features that
describe the presence or absence of three common symptoms of the disease:
HEADACHE, FEVER, and VOMITING.

ID HEADACHE FEVER VOMITING MENINGITIS
1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false
10 true false true true

PO (AMRL-EIS) Computer Vision Useful Classifiers 6 / 155

Bayesian Classifiers - Introduction

A probability function, P(), returns the probability of a feature taking a specific value.

A joint probability refers to the probability of an assignment of specific values to multiple
different features.

A conditional probability refers to the probability of one feature taking a specific value
given that we already know the value of a different feature

A probability distribution is a data structure that describes the probability of each possible
value a feature can take. The sum of a probability distribution must equal 1.0.

A joint probability distribution is a probability distribution over more than one feature
assignment and is written as a multi-dimensional matrix in which each cell lists the
probability of a particular combination of feature values being assigned.

The sum of all the cells in a joint probability distribution must be 1.0.

PO (AMRL-EIS) Computer Vision Useful Classifiers 7 / 155

Bayesian Classifiers - Introduction

P(H,F,V,M) =



P(h, f , v,m), P(¬h, f , v,m)
P(h, f , v,¬m), P(¬h, f , v,¬m)
P(h, f ,¬v,m), P(¬h, f ,¬v,m)
P(h, f ,¬v,¬m), P(¬h, f ,¬v,¬m)
P(h,¬f , v,m), P(¬h,¬f , v,m)
P(h,¬f , v,¬m), P(¬h,¬f , v,¬m)
P(h,¬f ,¬v,m), P(¬h,¬f ,¬v,m)
P(h,¬f ,¬v,¬m), P(¬h,¬f ,¬v,¬m)



PO (AMRL-EIS) Computer Vision Useful Classifiers 8 / 155

Bayesian Classifiers - Introduction

Given a joint probability distribution, we can compute the probability of
any event in the domain that it covers by summing over the cells in the
distribution where that event is true.
Calculating probabilities in this way is known as summing out.

PO (AMRL-EIS) Computer Vision Useful Classifiers 9 / 155

Bayesian Classifiers - Introduction

Bayes’ Theorem

P(X|Y) =
P(Y|X)P(X)

P(Y)

PO (AMRL-EIS) Computer Vision Useful Classifiers 10 / 155

Bayesian Classifiers - Introduction

Example 1

After a yearly checkup, a doctor informs their patient that he has both bad news and good news.
The bad news is that the patient has tested positive for a serious disease and that the test that
the doctor has used is 99% accurate (i.e., the probability of testing positive when a patient has the
disease is 0.99, as is the probability of testing negative when a patient does not have the
disease). The good news, however, is that the disease is extremely rare, striking only 1 in 10,000
people.

What is the actual probability that the patient has the disease?

Why is the rarity of the disease good news given that the patient has tested positive for it?

PO (AMRL-EIS) Computer Vision Useful Classifiers 11 / 155

Bayesian Classifiers - Introduction

P(d|t) =
P(t|d)P(d)

P(t)

P(t) = P(t|d)P(d) + P(t|¬d)P(¬d)

= (0.99× 0.0001) + (0.01× 0.9999) = 0.0101

P(d|t) =
0.99× 0.0001

0.0101
= 0.0098

PO (AMRL-EIS) Computer Vision Useful Classifiers 12 / 155

Bayesian Classifiers - Introduction

Deriving Bayes theorem
P(Y|X)P(X) = P(X|Y)P(Y)

P(X|Y)P(Y)

P(Y)
=

P(Y|X)P(X)

P(Y)

P(X|Y)��P(Y)

��P(Y)
=

P(Y|X)P(X)

P(Y)

⇒P(X|Y) =
P(Y|X)P(X)

P(Y)

The divisor is the prior probability of the evidence

This division functions as a normalization constant.

0 ≤ P(X|Y) ≤ 1∑
i

P(Xi|Y) = 1.0

PO (AMRL-EIS) Computer Vision Useful Classifiers 13 / 155

We can calculate this divisor directly from the dataset.

P(Y) =
|{rows where Y is the case}|
|{rows in the dataset}|

Or, we can use the Theorem of Total Probability to calculate this divisor.

P(Y) =
∑

i

P(Y|Xi)P(Xi) (1)

PO (AMRL-EIS) Computer Vision Useful Classifiers 14 / 155

Generalized Bayes’ Theorem

P(t = l|q[1], . . . ,q[m]) =
P(q[1], . . . ,q[m]|t = l)P(t = l)

P(q[1], . . . ,q[m])

PO (AMRL-EIS) Computer Vision Useful Classifiers 15 / 155

Chain Rule

P(q[1], . . . ,q[m]) =

P(q[1])× P(q[2]|q[1])×
· · · × P(q[m]|q[m− 1], . . . ,q[2],q[1])

To apply the chain rule to a conditional probability we just add the
conditioning term to each term in the expression:

P(q[1], . . . ,q[m]|t = l) =

P(q[1]|t = l)× P(q[2]|q[1], t = l)× . . .
· · · × P(q[m]|q[m− 1], . . . ,q[3],q[2],q[1], t = l)

PO (AMRL-EIS) Computer Vision Useful Classifiers 16 / 155

ID HEADACHE FEVER VOMITING MENINGITIS
1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false
10 true false true true

HEADACHE FEVER VOMITING MENINGITIS
true false true ?

PO (AMRL-EIS) Computer Vision Useful Classifiers 17 / 155

P(M|h,¬f , v) =?

In the terms of Bayes’ Theorem this problem can be stated as:

P(M|h,¬f , v) =
P(h,¬f , v|M)× P(M)

P(h,¬f , v)

There are two values in the domain of the MENINGITIS feature, ’true’ and
’false’, so we have to do this calculation twice.

PO (AMRL-EIS) Computer Vision Useful Classifiers 18 / 155

We will do the calculation for m first
To carry out this calculation we need to know the following probabilities:
P(m), P(h,¬f , v) and P(h,¬f , v | m).

ID HEADACHE FEVER VOMITING MENINGITIS
1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false
10 true false true true

PO (AMRL-EIS) Computer Vision Useful Classifiers 19 / 155

We can calculate the required probabilities directly from the data. For
example, we can calculate P(m) and P(h,¬f , v) as follows:

P(m) =
|{d5,d8,d10}|

|{d1,d2,d3,d4,d5,d6,d7,d8,d9,d10}|
=

3
10

= 0.3

P(h,¬f , v) =
|{d3,d4,d6,d7,d8,d10}|

|{d1,d2,d3,d4,d5,d6,d7,d8,d9,d10}|
=

6
10

= 0.6

PO (AMRL-EIS) Computer Vision Useful Classifiers 20 / 155

However, as an exercise we will use the chain rule calculate:

P(h,¬f , v | m) =?

ID HEADACHE FEVER VOMITING MENINGITIS
1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false
10 true false true true

PO (AMRL-EIS) Computer Vision Useful Classifiers 21 / 155

Using the chain rule calculate:

P(h,¬f , v | m) = P(h | m)× P(¬f | h,m)× P(v | ¬f , h,m)

=
|{d8,d10}|
|{d5,d8,d10}|

× |{d8,d10}|
|{d8,d10}|

× |{d8,d10}|
|{d8,d10}|

=
2
3
× 2

2
× 2

2
= 0.6666

PO (AMRL-EIS) Computer Vision Useful Classifiers 22 / 155

So the calculation of P(m|h,¬f , v) is:

P(m|h,¬f , v) =

(
P(h|m)× P(¬f |h,m)

× P(v|¬f , h,m)× P(m)

)
P(h,¬f , v)

=
0.6666× 0.3

0.6
= 0.3333

PO (AMRL-EIS) Computer Vision Useful Classifiers 23 / 155

The corresponding calculation for P(¬m|h,¬f , v) is:

P(¬m | h,¬f , v) =
P(h,¬f , v | ¬m)× P(¬m)

P(h,¬f , v)

=

(
P(h|¬m)× P(¬f | h,¬m)

× P(v|¬f , h,¬m)× P(¬m)

)
P(h,¬f , v)

=
0.7143× 0.8× 1.0× 0.7

0.6
= 0.6667

PO (AMRL-EIS) Computer Vision Useful Classifiers 24 / 155

P(m|h,¬f , v) = 0.3333

P(¬m|h,¬f , v) = 0.6667

These calculations tell us that it is twice as probable that the patient does
not have meningitis than it is that they do even though the patient is
suffering from a headache and is vomiting!

PO (AMRL-EIS) Computer Vision Useful Classifiers 25 / 155

Bayesian MAP Prediction Model

MMAP(q) = argmax
l∈levels(t)

P(t = l | q[1], . . . , q[m])

= argmax
l∈levels(t)

P(q[1], . . . , q[m] | t = l)× P(t = l)
P(q[1], . . . , q[m])

Bayesian MAP Prediction Model (without normalization)

MMAP(q) = argmax
l∈levels(t)

P(q[1], . . . ,q[m] | t = l)× P(t = l)

PO (AMRL-EIS) Computer Vision Useful Classifiers 26 / 155

ID HEADACHE FEVER VOMITING MENINGITIS
1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false
10 true false true true

HEADACHE FEVER VOMITING MENINGITIS
true true false ?

ID HEADACHE FEVER VOMITING MENINGITIS
1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false
10 true false true true

P(m | h, f ,¬v) =?

P(¬m | h, f ,¬v) =?

P(m | h, f ,¬v) =

(
P(h|m)× P(f | h,m)

× P(¬v | f , h,m)× P(m)

)
P(h, f ,¬v)

=
0.6666× 0× 0× 0.3

0.1
= 0

PO (AMRL-EIS) Computer Vision Useful Classifiers 29 / 155

P(¬m | h, f ,¬v) =

(
P(h|¬m)× P(f | h,¬m)

× P(¬v | f , h,¬m)× P(¬m)

)
P(h, f ,¬v)

=
0.7143× 0.2× 1.0× 0.7

0.1
= 1.0

PO (AMRL-EIS) Computer Vision Useful Classifiers 30 / 155

P(m | h, f ,¬v) = 0

P(¬m | h, f ,¬v) = 1.0

There is something odd about these results!

PO (AMRL-EIS) Computer Vision Useful Classifiers 31 / 155

Curse of Dimensionality

As the number of descriptive features grows the number of potential
conditioning events grows. Consequently, an exponential increase is required
in the size of the dataset as each new descriptive feature is added to ensure
that for any conditional probability there are enough instances in the training
dataset matching the conditions so that the resulting probability is reasonable.

PO (AMRL-EIS) Computer Vision Useful Classifiers 32 / 155

The probability of a patient who has a headache and a fever having
meningitis should be greater than zero!
Our dataset is not large enough→ our model is over-fitting to the training
data.
The concepts of conditional independence and factorization can help us
overcome this flaw of our current approach.

PO (AMRL-EIS) Computer Vision Useful Classifiers 33 / 155

If knowledge of one event has no effect on the probability of another
event, and vice versa, then the two events are independent of each
other.
If two events X and Y are independent then:

P(X|Y) = P(X)

P(X,Y) = P(X)× P(Y)

Recall, that when two event are dependent these rules are:

P(X|Y) =
P(X,Y)

P(Y)

P(X,Y) = P(X|Y)× P(Y) = P(Y|X)× P(X)

PO (AMRL-EIS) Computer Vision Useful Classifiers 34 / 155

Full independence between events is quite rare.
A more common phenomenon is that two, or more, events may be
independent if we know that a third event has happened.
This is known as conditional independence.

PO (AMRL-EIS) Computer Vision Useful Classifiers 35 / 155

For two events, X and Y, that are conditionally independent given
knowledge of a third events, here Z, the definition of the probability of a
joint event and conditional probability are:

P(X|Y,Z) = P(X|Z)

P(X,Y|Z) = P(X|Z)× P(Y|Z)

P(X|Y) =
P(X,Y)

P(Y)

P(X,Y) = P(X|Y)× P(Y)

= P(Y|X)× P(X)

X and Y are dependent

P(X|Y) = P(X)

P(X,Y) = P(X)× P(Y)

X and Y are independent

PO (AMRL-EIS) Computer Vision Useful Classifiers 36 / 155

If the event t = l causes the events q[1], . . . ,q[m] to happen then the
events q[1], . . . ,q[m] are conditionally independent of each other given
knowledge of t = l and the chain rule definition can be simplified as
follows:

P(q[1], . . . ,q[m] | t = l)

= P(q[1] | t = l)× P(q[2] | t = l)× · · · × P(q[m] | t = l)

=

m∏
i=1

P(q[i] | t = l)

PO (AMRL-EIS) Computer Vision Useful Classifiers 37 / 155

Using this we can simplify the calculations in Bayes’ Theorem, under the
assumption of conditional independence between the descriptive features
given the level l of the target feature:

P(t = l | q[1], . . . ,q[m]) =

(
m∏

i=1

P(q[i] | t = l)

)
× P(t = l)

P(q[1], . . . ,q[m])

PO (AMRL-EIS) Computer Vision Useful Classifiers 38 / 155

Without conditional independence

P(X,Y,Z|W) = P(X|W)× P(Y|X,W)× P(Z|Y,X,W)× P(W)

With conditional independence

P(X,Y,Z|W) = P(X|W)︸ ︷︷ ︸
Factor1

×P(Y|W)︸ ︷︷ ︸
Factor2

×P(Z|W)︸ ︷︷ ︸
Factor3

×P(W)︸ ︷︷ ︸
Factor4

PO (AMRL-EIS) Computer Vision Useful Classifiers 39 / 155

The joint probability distribution for the meningitis dataset.

P(H,F,V,M) =



P(h, f , v,m), P(¬h, f , v,m)
P(h, f , v,¬m), P(¬h, f , v,¬m)
P(h, f ,¬v,m), P(¬h, f ,¬v,m)
P(h, f ,¬v,¬m), P(¬h, f ,¬v,¬m)
P(h,¬f , v,m), P(¬h,¬f , v,m)
P(h,¬f , v,¬m), P(¬h,¬f , v,¬m)
P(h,¬f ,¬v,m), P(¬h,¬f ,¬v,m)
P(h,¬f ,¬v,¬m), P(¬h,¬f ,¬v,¬m)



PO (AMRL-EIS) Computer Vision Useful Classifiers 40 / 155

Assuming the descriptive features are conditionally independent of each
other given MENINGITIS we only need to store four factors:

Factor1 : < P(M) >

Factor2 : < P(h|m),P(h|¬m) >

Factor3 : < P(f |m),P(f |¬m) >

Factor4 : < P(v|m),P(v|¬m) >

P(H,F,V,M) = P(M)× P(H|M)× P(F|M)× P(V|M)

PO (AMRL-EIS) Computer Vision Useful Classifiers 41 / 155

ID HEADACHE FEVER VOMITING MENINGITIS
1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false
10 true false true true

Calculate the factors from the data.
Factor1 : < P(M) >

Factor2 : < P(h|m),P(h|¬m) >

Factor3 : < P(f |m),P(f |¬m) >

Factor4 : < P(v|m),P(v|¬m) >

Factor1 : < P(m) = 0.3 >
Factor2 : < P(h|m) = 0.6666,P(h|¬m) = 0.7413 >
Factor3 : < P(f |m) = 0.3333,P(f |¬m) = 0.4286 >
Factor4 : < P(v|m) = 0.6666,P(v|¬m) = 0.5714 >

PO (AMRL-EIS) Computer Vision Useful Classifiers 43 / 155

Factor1 : < P(m) = 0.3 >
Factor2 : < P(h|m) = 0.6666,P(h|¬m) = 0.7413 >
Factor3 : < P(f |m) = 0.3333,P(f |¬m) = 0.4286 >
Factor4 : < P(v|m) = 0.6666,P(v|¬m) = 0.5714 >

Using the factors above calculate the probability of MENINGITIS=’true’ for
the following query.

HEADACHE FEVER VOMITING MENINGITIS
true true false ?

PO (AMRL-EIS) Computer Vision Useful Classifiers 44 / 155

P(m|h, f ,¬v) =
P(h|m)× P(f |m)× P(¬v|m)× P(m)∑

i P(h|Mi)× P(f |Mi)× P(¬v|Mi)× P(Mi)
=

0.6666× 0.3333× 0.3333× 0.3
(0.6666× 0.3333× 0.3333× 0.3) + (0.7143× 0.4286× 0.4286× 0.7)

= 0.1948

PO (AMRL-EIS) Computer Vision Useful Classifiers 45 / 155

Factor1 : < P(m) = 0.3 >
Factor2 : < P(h|m) = 0.6666,P(h|¬m) = 0.7413 >
Factor3 : < P(f |m) = 0.3333,P(f |¬m) = 0.4286 >
Factor4 : < P(v|m) = 0.6666,P(v|¬m) = 0.5714 >

Using the factors above calculate the probability of MENINGITIS=’false’ for
the same query.

HEADACHE FEVER VOMITING MENINGITIS
true true false ?

PO (AMRL-EIS) Computer Vision Useful Classifiers 46 / 155

P(¬m|h, f ,¬v) =
P(h|¬m)× P(f |¬m)× P(¬v|¬m)× P(¬m)∑

i P(h|Mi)× P(f |Mi)× P(¬v|Mi)× P(Mi)
=

0.7143× 0.4286× 0.4286× 0.7
(0.6666× 0.3333× 0.3333× 0.3) + (0.7143× 0.4286× 0.4286× 0.7)

= 0.8052

PO (AMRL-EIS) Computer Vision Useful Classifiers 47 / 155

P(m|h, f ,¬v) = 0.1948

P(¬m|h, f ,¬v) = 0.8052

As before, the MAP prediction would be MENINGITIS = ’false’
The posterior probabilities are not as extreme!

PO (AMRL-EIS) Computer Vision Useful Classifiers 48 / 155

Naive Bayes’ Classifier

M(q) = argmax
l∈levels(t)

(
m∏

i=1

P(q[i] | t = l)

)
× P(t = l)

PO (AMRL-EIS) Computer Vision Useful Classifiers 49 / 155

Naive Bayes’ is simple to train!
1 Calculate the priors for each of the target levels
2 Calculate the conditional probabilities for each feature given each target

level.

PO (AMRL-EIS) Computer Vision Useful Classifiers 50 / 155

Table 3: A dataset from a loan application fraud detection domain.

CREDIT GUARANTOR/
ID HISTORY COAPPLICANT ACCOMODATION FRAUD
1 current none own true
2 paid none own false
3 paid none own false
4 paid guarantor rent true
5 arrears none own false
6 arrears none own true
7 current none own false
8 arrears none own false
9 current none rent false

10 none none own true
11 current coapplicant own false
12 current none own true
13 current none rent true
14 paid none own false
15 arrears none own false
16 current none own false
17 arrears coapplicant rent false
18 arrears none free false
19 arrears none own false
20 paid none own false

P(fr) = 0.3 P(¬fr) = 0.7

P(CH = ’none’ | fr) = 0.1666 P(CH = ’none’ | ¬fr) = 0

P(CH = ’paid’ | fr) = 0.1666 P(CH = ’paid’ | ¬fr) = 0.2857

P(CH = ’current’ | fr) = 0.5 P(CH = ’current’ | ¬fr) = 0.2857

P(CH = ’arrears’ | fr) = 0.1666 P(CH = ’arrears’ | ¬fr) = 0.4286

P(GC = ’none’ | fr) = 0.8334 P(GC = ’none’ | ¬fr) = 0.8571

P(GC = ’guarantor’ | fr) = 0.1666 P(GC = ’guarantor’ | ¬fr) = 0

P(GC = ’coapplicant’ | fr) = 0 P(GC = ’coapplicant’ | ¬fr) = 0.1429

P(ACC = ’own’ | fr) = 0.6666 P(ACC = ’own’ | ¬fr) = 0.7857

P(ACC = ’rent’ | fr) = 0.3333 P(ACC = ’rent’ | ¬fr) = 0.1429

P(ACC = ’free’ | fr) = 0 P(ACC = ’free’ | ¬fr) = 0.0714

Table 4: The probabilities needed by a Naive Bayes prediction model calculated from
the dataset. Notation key: FR=FRAUDULENT, CH=CREDIT HISTORY, GC =
GUARANTOR/COAPPLICANT, ACC = ACCOMODATION, T=’true’, F=’false’.

P(fr) = 0.3 P(¬fr) = 0.7

P(CH = ’none’ | fr) = 0.1666 P(CH = ’none’ | ¬fr) = 0

P(CH = ’paid’ | fr) = 0.1666 P(CH = ’paid’ | ¬fr) = 0.2857

P(CH = ’current’ | fr) = 0.5 P(CH = ’current’ | ¬fr) = 0.2857

P(CH = ’arrears’ | fr) = 0.1666 P(CH = ’arrears’ | ¬fr) = 0.4286

P(GC = ’none’ | fr) = 0.8334 P(GC = ’none’ | ¬fr) = 0.8571

P(GC = ’guarantor’ | fr) = 0.1666 P(GC = ’guarantor’ | ¬fr) = 0

P(GC = ’coapplicant’ | fr) = 0 P(GC = ’coapplicant’ | ¬fr) = 0.1429

P(ACC = ’own’ | fr) = 0.6666 P(ACC = ’own’ | ¬fr) = 0.7857

P(ACC = ’rent’ | fr) = 0.3333 P(ACC = ’rent’ | ¬fr) = 0.1429

P(ACC = ’free’ | fr) = 0 P(ACC = ’free’ | ¬fr) = 0.0714

CREDIT HISTORY GUARANTOR/COAPPLICANT ACCOMODATION FRAUDULENT
paid none rent ?

P(fr) = 0.3 P(¬fr) = 0.7

P(CH = ’paid’ | fr) = 0.1666 P(CH = ’paid’ | ¬fr) = 0.2857

P(GC = ’none’ | fr) = 0.8334 P(GC = ’none’ | ¬fr) = 0.8571

P(ACC = ’rent’ | fr) = 0.3333 P(ACC = ’rent’ | ¬fr) = 0.1429(m∏
k=1

P (q [k] | fr)
)
× P (fr) = 0.0139

(m∏
k=1

P (q [k] | ¬fr)
)
× P(¬fr) = 0.0245

CREDIT HISTORY GUARANTOR/COAPPLICANT ACCOMODATION FRAUDULENT
paid none rent ?

PO (AMRL-EIS) Computer Vision Useful Classifiers 54 / 155

P(fr) = 0.3 P(¬fr) = 0.7

P(CH = ’paid’ | fr) = 0.1666 P(CH = ’paid’ | ¬fr) = 0.2857

P(GC = ’none’ | fr) = 0.8334 P(GC = ’none’ | ¬fr) = 0.8571

P(ACC = ’rent’ | fr) = 0.3333 P(ACC = ’rent’ | ¬fr) = 0.1429(m∏
k=1

P (q [k] | fr)
)
× P (fr) = 0.0139

(m∏
k=1

P (q [k] | ¬fr)
)
× P(¬fr) = 0.0245

CREDIT HISTORY GUARANTOR/COAPPLICANT ACCOMODATION FRAUDULENT
paid none rent ’false’

PO (AMRL-EIS) Computer Vision Useful Classifiers 55 / 155

The model is generalizing beyond the dataset!

CREDIT GUARANTOR/
ID HISTORY COAPPLICANT ACCOMMODATION FRAUD
1 current none own true
2 paid none own false
3 paid none own false
4 paid guarantor rent true
5 arrears none own false
6 arrears none own true
7 current none own false
8 arrears none own false
9 current none rent false

10 none none own true
11 current coapplicant own false
12 current none own true
13 current none rent true
14 paid none own false
15 arrears none own false
16 current none own false
17 arrears coapplicant rent false
18 arrears none free false
19 arrears none own false
20 paid none own false

CREDIT HISTORY GUARANTOR/COAPPLICANT ACCOMMODATION FRAUDULENT
paid none rent ’false’

1 Introduction

2 Bayesian Classifiers

3 K-Nearest Neighbour Classifier
Fundamentals
Feature Space
Distance Metrics
A Worked Example
Data Normalization

4 Support Vector Machine

5 Multi-layer Perceptron

6 References

PO (AMRL-EIS) Computer Vision Useful Classifiers 57 / 155

The year is 1798 and you are Lieutenant-Colonel David Collins of HMS
Calcutta who is exploring the region around Hawkesbury River, in New
South Wales.
After an expedition up the river one of the men tells you that he saw a
strange animal near the river.
You ask him to describe the animal to you and he explains that he didn’t
see it very well but that he did notice that it had webbed feet and a
duck-bill snout, and that it growled at him.
In order to plan the expedition for the next day you decide that you need
to classify the animal so that you can figure out whether it is dangerous to
approach it or not.

PO (AMRL-EIS) Computer Vision Useful Classifiers 58 / 155

Grrrh! Score

3 7 7 1

7 3 7 1

7 3 3 2
Figure 1: Matching animals you remember to the features of the unknown animal described by
the sailor. Note: The images used in this figure were created by Jan Gillbank for the English for
the Australian Curriculum website (http://www.e4ac.edu.au) and are used under the Create
Commons Attribution 3.0 Unported licence
(http://creativecommons.org/licenses/by/3.0). The images were sourced via
Wikimedia Commons.

http://www.e4ac.edu.au
http://creativecommons.org/licenses/by/3.0

The process of classifying an unknown animal by matching the features
of the animal against the features of animals you can remember neatly
encapsulates the big idea underpinning similarity-based learning:

if you are trying to classify something then you should search your
memory to find things that are similar and label it with the same class as

the most similar thing in your memory

One of the simplest and best known machine learning algorithms for this
type of reasoning is called the nearest neighbor algorithm.

PO (AMRL-EIS) Computer Vision Useful Classifiers 60 / 155

The fundamentals of similarity-based learning are:
Feature space
Similarity metrics

PO (AMRL-EIS) Computer Vision Useful Classifiers 61 / 155

Table 5: The speed and agility ratings for 20 college athletes labelled with the
decisions for whether they were drafted or not.

ID Speed Agility Draft
1 2.50 6.00 No
2 3.75 8.00 No
3 2.25 5.50 No
4 3.25 8.25 No
5 2.75 7.50 No
6 4.50 5.00 No
7 3.50 5.25 No
8 3.00 3.25 No
9 4.00 4.00 No
10 4.25 3.75 No

ID Speed Agility Draft
11 2.00 2.00 No
12 5.00 2.50 No
13 8.25 8.50 No
14 5.75 8.75 Yes
15 4.75 6.25 Yes
16 5.50 6.75 Yes
17 5.25 9.50 Yes
18 7.00 4.25 Yes
19 7.50 8.00 Yes
20 7.25 5.75 Yes

PO (AMRL-EIS) Computer Vision Useful Classifiers 62 / 155

Figure 2: A feature space plot of the data in Table 5 [62]. The triangles represent
’Non-draft’ instances and the crosses represent the ’Draft’ instances.

A feature space is an abstract n-dimensional space that is created by
taking each of the descriptive features in the dataset to be the axes of a
reference space and each instance in the dataset is mapped to a point in
the feature space based on the values of its descriptive features.

PO (AMRL-EIS) Computer Vision Useful Classifiers 64 / 155

A similarity metric measures the similarity between two instances
according to a feature space
Mathematically, a metric must conform to the following four criteria:

1 Non-negativity: metric(a,b) ≥ 0
2 Identity: metric(a,b) = 0⇐⇒ a = b
3 Symmetry: metric(a,b) = metric(b, a)
4 Triangular Inequality: metric(a,b) ≤ metric(a, c) + metric(b, c)

where metric(a,b) is a function that returns the distance between two
instances a and b.

PO (AMRL-EIS) Computer Vision Useful Classifiers 65 / 155

One of the best known metrics is Euclidean distance which computes the
length of the straight line between two points. Euclidean distance
between two instances a and b in a m-dimensional feature space is
defined as:

Euclidean(a,b) =

√√√√ m∑
i=1

(a[i]− b[i])2 (2)

PO (AMRL-EIS) Computer Vision Useful Classifiers 66 / 155

Example 2

The Euclidean distance between instances d12 (SPEED= 5.00, AGILITY= 2.5)
and d5 (SPEED= 2.75,AGILITY= 7.5) in Table 5 [62] is:

PO (AMRL-EIS) Computer Vision Useful Classifiers 67 / 155

Example 2

The Euclidean distance between instances d12 (SPEED= 5.00, AGILITY= 2.5)
and d5 (SPEED= 2.75,AGILITY= 7.5) in Table 5 [62] is:

Euclidean(〈5.00, 2.50〉 , 〈2.75, 7.50〉) =

√
(5.00− 2.75)2 + (2.50− 7.50)2

=
√

30.0625 = 5.4829

PO (AMRL-EIS) Computer Vision Useful Classifiers 67 / 155

Another, less well known, distance measure is the Manhattan distance or
taxi-cab distance.
The Manhattan distance between two instances a and b in a feature
space with m dimensions is:2

Manhattan(a,b) =

m∑
i=1

abs(a[i]− b[i]) (3)

2The abs() function surrounding the subtraction term indicates that we use the absolute value,
i.e. non-negative value, when we are summing the differences; this makes sense because
distances can’t be negative.

PO (AMRL-EIS) Computer Vision Useful Classifiers 68 / 155

Figure 3: The Manhattan and Euclidean distances between two points.

PO (AMRL-EIS) Computer Vision Useful Classifiers 69 / 155

Example 3

The Manhattan distance between instances d12 (SPEED= 5.00, AGILITY= 2.5)
and d5 (SPEED= 2.75,AGILITY= 7.5) in Table 5 [62] is:

PO (AMRL-EIS) Computer Vision Useful Classifiers 70 / 155

Example 3

The Manhattan distance between instances d12 (SPEED= 5.00, AGILITY= 2.5)
and d5 (SPEED= 2.75,AGILITY= 7.5) in Table 5 [62] is:

Manhattan(〈5.00, 2.50〉 , 〈2.75, 7.50〉) = abs(5.00− 2.75) + abs(2.5− 7.5)

= 2.25 + 5 = 7.25

PO (AMRL-EIS) Computer Vision Useful Classifiers 70 / 155

The Euclidean and Manhattan distances are special cases of Minkowski
distance
The Minkowski distance between two instances a and b in a feature
space with m descriptive features is:

Minkowski(a,b) =

(
m∑

i=1

abs(a[i]− b[i])p

) 1
p

(4)

where different values of the parameter p result in different distance
metrics
The Minkowski distance with p = 1 is the Manhattan distance and with
p = 2 is the Euclidean distance.

PO (AMRL-EIS) Computer Vision Useful Classifiers 71 / 155

The larger the value of p the more emphasis is placed on the features
with large differences in values because these differences are raised to
the power of p.

PO (AMRL-EIS) Computer Vision Useful Classifiers 72 / 155

Example 4
Manhattan Euclidean

Instance ID Instance ID (Minkowski p=1) (Minkowski p=2)
12 5 7.25 5.4829
12 17 7.25 8.25

The Manhattan and Euclidean distances between instances d12 (SPEED= 5.00, AGILITY= 2.5)
and d5 (SPEED= 2.75, AGILITY= 7.5) and between instances d12 and d17 (SPEED= 5.25,

AGILITY= 9.5).

The Nearest Neighbour Algorithm

Require: set of training instances
Require: a query to be classified

1: Iterate across the instances in memory and find the instance that is
shortest distance from the query position in the feature space.

2: Make a prediction for the query equal to the value of the target feature of
the nearest neighbor.

PO (AMRL-EIS) Computer Vision Useful Classifiers 74 / 155

Table 6: The speed and agility ratings for 20 college athletes labelled with the
decisions for whether they were drafted or not.

ID Speed Agility Draft
1 2.50 6.00 No
2 3.75 8.00 No
3 2.25 5.50 No
4 3.25 8.25 No
5 2.75 7.50 No
6 4.50 5.00 No
7 3.50 5.25 No
8 3.00 3.25 No
9 4.00 4.00 No
10 4.25 3.75 No

ID Speed Agility Draft
11 2.00 2.00 No
12 5.00 2.50 No
13 8.25 8.50 No
14 5.75 8.75 Yes
15 4.75 6.25 Yes
16 5.50 6.75 Yes
17 5.25 9.50 Yes
18 7.00 4.25 Yes
19 7.50 8.00 Yes
20 7.25 5.75 Yes

PO (AMRL-EIS) Computer Vision Useful Classifiers 75 / 155

Example 5

Should we draft an athlete with the following profile:

SPEED= 6.75, AGILITY= 3

PO (AMRL-EIS) Computer Vision Useful Classifiers 76 / 155

Figure 4: A feature space plot of the data in Table 6 [77] with the position in the feature
space of the query represented by the ? marker. The triangles represent ’Non-draft’
instances and the crosses represent the ’Draft’ instances.

PO (AMRL-EIS) Computer Vision Useful Classifiers 77 / 155

Table 7: The distances (Dist.) between the query instance with SPEED = 6.75 and
AGILITY = 3.00 and each instance in Table 6 [77].

ID SPEED AGILITY DRAFT Dist.
18 7.00 4.25 yes 1.27
12 5.00 2.50 no 1.82
10 4.25 3.75 no 2.61
20 7.25 5.75 yes 2.80
9 4.00 4.00 no 2.93
6 4.50 5.00 no 3.01
8 3.00 3.25 no 3.76

15 4.75 6.25 yes 3.82
7 3.50 5.25 no 3.95

16 5.50 6.75 yes 3.95

ID SPEED AGILITY DRAFT Dist.
11 2.00 2.00 no 4.85
19 7.50 8.00 yes 5.06
3 2.25 5.50 no 5.15
1 2.50 6.00 no 5.20

13 8.25 8.50 no 5.70
2 3.75 8.00 no 5.83

14 5.75 8.75 yes 5.84
5 2.75 7.50 no 6.02
4 3.25 8.25 no 6.31

17 5.25 9.50 yes 6.67

PO (AMRL-EIS) Computer Vision Useful Classifiers 78 / 155

(a) Voronoi tessellation (b) Decision boundary (k = 1)

Figure 5: (a) The Voronoi tessellation of the feature space for the dataset in Table 6 [77]

with the position of the query represented by the ? marker; (b) the decision boundary
created by aggregating the neighboring Voronoi regions that belong to the same target
level.

PO (AMRL-EIS) Computer Vision Useful Classifiers 79 / 155

One of the great things about nearest neighbour algorithms is that we
can add in new data to update the model very easily.

PO (AMRL-EIS) Computer Vision Useful Classifiers 80 / 155

Table 8: The extended version of the college athletes dataset.

ID SPEED AGILITY DRAFT
1 2.50 6.00 no
2 3.75 8.00 no
3 2.25 5.50 no
4 3.25 8.25 no
5 2.75 7.50 no
6 4.50 5.00 no
7 3.50 5.25 no
8 3.00 3.25 no
9 4.00 4.00 no

10 4.25 3.75 no
11 2.00 2.00 no

ID SPEED AGILITY DRAFT
12 5.00 2.50 no
13 8.25 8.50 no
14 5.75 8.75 yes
15 4.75 6.25 yes
16 5.50 6.75 yes
17 5.25 9.50 yes
18 7.00 4.25 yes
19 7.50 8.00 yes
20 7.25 5.75 yes
21 6.75 3.00 yes

PO (AMRL-EIS) Computer Vision Useful Classifiers 81 / 155

(a) Voronoi tessellation (b) Decision boundary (k = 1)

Figure 6: (a) The Voronoi tessellation of the feature space when the dataset has been
updated to include the query instance; (b) the updated decision boundary reflecting
the addition of the query instance in the training set.

PO (AMRL-EIS) Computer Vision Useful Classifiers 82 / 155

Handling Noisy Data

Figure 7: Is the instance at the top right of the diagram really noise?
PO (AMRL-EIS) Computer Vision Useful Classifiers 83 / 155

The k nearest neighbors model predicts the target level with the majority
vote from the set of k nearest neightbors to the query q:

Mk(q) = argmax
l∈levels(t)

k∑
i=1

δ(ti, l) (5)

PO (AMRL-EIS) Computer Vision Useful Classifiers 84 / 155

Figure 8: The decision boundary using majority classification of the nearest 3
neighbors.

PO (AMRL-EIS) Computer Vision Useful Classifiers 85 / 155

Figure 9: The decision boundary using majority classification of the nearest 5
neighbors.

PO (AMRL-EIS) Computer Vision Useful Classifiers 86 / 155

Figure 10: The decision boundary when k is set to 15.

PO (AMRL-EIS) Computer Vision Useful Classifiers 87 / 155

In a distance weighted k nearest neighbor algorithm the contribution of
each neighbor to the classification decision is weighted by the reciprocal
of the squared distance between the neighbor d and the query q:

1
dist(q,d)2 (6)

The weighted k nearest neighbor model is defined as:

Mk(q) = argmax
l∈levels(t)

k∑
i=1

1
dist(q,di)2 × δ(ti, l) (7)

PO (AMRL-EIS) Computer Vision Useful Classifiers 88 / 155

Figure 11: The weighted k nearest neighbor model decision boundary.

PO (AMRL-EIS) Computer Vision Useful Classifiers 89 / 155

Data Normalization

Table 9: A dataset listing the salary and age information for customers and whether or
not the purchased a pension plan .

ID Salary Age Purchased
1 53700 41 No
2 65300 37 No
3 48900 45 Yes
4 64800 49 Yes
5 44200 30 No
6 55900 57 Yes
7 48600 26 No
8 72800 60 Yes
9 45300 34 No

10 73200 52 Yes

PO (AMRL-EIS) Computer Vision Useful Classifiers 90 / 155

Data Normalization

The marketing department wants to decide whether or not they should
contact a customer with the following profile:

〈SALARY = 56, 000,AGE = 35〉

PO (AMRL-EIS) Computer Vision Useful Classifiers 91 / 155

Data Normalization

Figure 12: The salary and age feature space with the data in Table 9 [92] plotted. The instances
are labelled their IDs, triangles represent the negative instances and crosses represent the
positive instances. The location of the query 〈SALARY = 56, 000, AGE = 35〉 is indicated by the ?.

Data Normalization

Salary and Age Salary Only Age Only
ID Salary Age Purch. Dist. Neigh. Dist. Neigh. Dist. Neigh.
1 53700 41 No 2300.0078 2 2300 2 6 4
2 65300 37 No 9300.0002 6 9300 6 2 2
3 48900 45 Yes 7100.0070 3 7100 3 10 6
4 64800 49 Yes 8800.0111 5 8800 5 14 7
5 44200 30 No 11800.0011 8 11800 8 5 5
6 55900 57 Yes 102.3914 1 100 1 22 9
7 48600 26 No 7400.0055 4 7400 4 9 3
8 72800 60 Yes 16800.0186 9 16800 9 25 10
9 45300 34 No 10700.0000 7 10700 7 1 1

10 73200 52 Yes 17200.0084 10 17200 10 17 8

PO (AMRL-EIS) Computer Vision Useful Classifiers 93 / 155

Data Normalization

This odd prediction is caused by features taking different ranges of
values, this is equivalent to features having different variances.
We can adjust for this using normalization; the equation for range
normalization is:

a
′

i =
ai − min(a)

max(a)− min(a)
× (high− low) + low (8)

PO (AMRL-EIS) Computer Vision Useful Classifiers 94 / 155

Normalized Dataset Salary and Age Salary Only Age Only
ID Salary Age Purch. Dist. Neigh. Dist. Neigh. Dist. Neigh.
1 0.3276 0.4412 No 0.1935 1 0.0793 2 0.17647 4
2 0.7276 0.3235 No 0.3260 2 0.3207 6 0.05882 2
3 0.1621 0.5588 Yes 0.3827 5 0.2448 3 0.29412 6
4 0.7103 0.6765 Yes 0.5115 7 0.3034 5 0.41176 7
5 0.0000 0.1176 No 0.4327 6 0.4069 8 0.14706 3
6 0.4034 0.9118 Yes 0.6471 8 0.0034 1 0.64706 9
7 0.1517 0.0000 No 0.3677 3 0.2552 4 0.26471 5
8 0.9862 1.0000 Yes 0.9361 10 0.5793 9 0.73529 10
9 0.0379 0.2353 No 0.3701 4 0.3690 7 0.02941 1

10 1.0000 0.7647 Yes 0.7757 9 0.5931 10 0.50000 8

PO (AMRL-EIS) Computer Vision Useful Classifiers 95 / 155

Data Normalization

Normalizing the data is an important thing to do for almost all machine
learning algorithms, not just nearest neighbor!

PO (AMRL-EIS) Computer Vision Useful Classifiers 96 / 155

1 Introduction

2 Bayesian Classifiers

3 K-Nearest Neighbour Classifier

4 Support Vector Machine

5 Multi-layer Perceptron

6 References

PO (AMRL-EIS) Computer Vision Useful Classifiers 97 / 155

ID RPM VIBRATION STATUS

1 498 604 faulty
2 517 594 faulty
3 541 574 faulty
4 555 587 faulty
5 572 537 faulty
6 600 553 faulty
7 621 482 faulty
8 632 539 faulty
9 656 476 faulty
10 653 554 faulty
11 679 516 faulty
12 688 524 faulty
13 684 450 faulty
14 699 512 faulty
15 703 505 faulty
16 717 377 faulty
17 740 377 faulty
18 749 501 faulty
19 756 492 faulty
20 752 381 faulty
21 762 508 faulty
22 781 474 faulty
23 781 480 faulty
24 804 460 faulty
25 828 346 faulty
26 830 366 faulty
27 864 344 faulty
28 882 403 faulty
29 891 338 faulty
30 921 362 faulty
31 941 301 faulty
32 965 336 faulty
33 976 297 faulty
34 994 287 faulty

ID RPM VIBRATION STATUS

35 501 463 good
36 526 443 good
37 536 412 good
38 564 394 good
39 584 398 good
40 602 398 good
41 610 428 good
42 638 389 good
43 652 394 good
44 659 336 good
45 662 364 good
46 672 308 good
47 691 248 good
48 694 401 good
49 718 313 good
50 720 410 good
51 723 389 good
52 744 227 good
53 741 397 good
54 770 200 good
55 764 370 good
56 790 248 good
57 786 344 good
58 792 290 good
59 818 268 good
60 845 232 good
61 867 195 good
62 878 168 good
63 895 218 good
64 916 221 good
65 950 156 good
66 956 174 good
67 973 134 good
68 1002 121 good

Figure 13: A small sample of the generators dataset with two features, RPM and VIBRATION,
and two target levels, ’good’ (shown as crosses) and ’bad’ (shown as triangles). A decision
boundary with a very small margin.

Figure 14: A small sample of the generators dataset with two features, RPM and VIBRATION,
and two target levels, ’good’ (shown as crosses) and ’bad’ (shown as triangles). A decision
boundary with a large margin.

Training a support vector machine involves searching for the decision
boundary, or separating hyperplane, that leads to the maximum margin
as this will best separate the levels of the target feature.
The instances in a training dataset that fall along the margin extents, and
so define the margins, are known as the support vectors and define the
decision boundary.

PO (AMRL-EIS) Computer Vision Useful Classifiers 101 / 155

We define the separating hyperplane as follows:

w0 + w · d = 0 (9)

For instances above a separating hyperplane

w0 + w · d > 0

and for instances below a separating hyperplane

w0 + w · d < 0

PO (AMRL-EIS) Computer Vision Useful Classifiers 102 / 155

We build a support vector machine prediction model so that instances
with the negative target level result in the model outputting ≤ −1 and
instances with the positive target level result in the model outputting
≥ +1.
The space between the outputs of −1 and +1 allows for the margin.

PO (AMRL-EIS) Computer Vision Useful Classifiers 103 / 155

A support vector machine model is defined as

Mααα,w0(q) =

s∑
i=1

(ti ×ααα[i]× (di · q) + w0) (10)

where
q is the set of descriptive features for a query instance;
(d1, t1), . . . , (ds, ts) are s support vectors (instances composed of
descriptive features and a target feature);
w0 is the first weight of the decision boundary;
and ααα is a set of parameters determined during the training process
(there is a parameter for each support vector ααα [1] , . . . ,ααα [s]).3

3These parameters are formally known as Lagrange multipliers.
PO (AMRL-EIS) Computer Vision Useful Classifiers 104 / 155

Training a support vector machine is frames as a constrained quadratic
optimization problem
This type of problem is defined in terms of:

1 a set of constraints
2 an optimization criterion.

PO (AMRL-EIS) Computer Vision Useful Classifiers 105 / 155

The required constraints required by the training process are

w0 + w · d ≤−1 for ti = −1 (11)

and:

w0 + w · d ≥+1 for ti = +1 (12)

We can combine these two constraints into a single constraint (remember
ti is always equal to either −1 or +1):

ti × (w0 + w · d) ≥ 1 (13)

PO (AMRL-EIS) Computer Vision Useful Classifiers 106 / 155

(a)

(b)

Figure 15: Different margins that satisfy the constraint in Equation (13)[108]. The instances that
define the margin are highlighted in each case. (b) shows the maximum margin and also shows
two query instances represented as black dots.

PO (AMRL-EIS) Computer Vision Useful Classifiers 107 / 155

The optimization criterion used is defined in terms of the perpendicular
distance from any instance to the decision boundary and is given by

dist(d) =
w0 + abs(w · d)

||w||

where ||w|| is known as the Euclidean norm of w and is calculated as

||w|| =
√

w [1]
2

+ w [2]
2

+ . . .+ w [m]
2

For instances along the margin extents, abs(w · d + w0) = 1.
So, the distance from any instance along the margin extents to the
decision boundary is 1

||w|| , and because the margin is symmetrical to
either side of the decision boundary, the size of the margin is 2

||w|| .

PO (AMRL-EIS) Computer Vision Useful Classifiers 108 / 155

The goal when training a support vector machine is
1 maximize 2

||w||
2 subject to the constraint

ti × (w0 + w · d) ≥ 1

PO (AMRL-EIS) Computer Vision Useful Classifiers 109 / 155

The optimal decision boundary and associated support vectors for the
example we have been following
In this case ’good’ is the positive level and set to +1, and ’faulty’ is the
negative level and set to −1.

PO (AMRL-EIS) Computer Vision Useful Classifiers 110 / 155

The descriptive feature values and target feature values for the support
vectors in these cases are

(〈−0.225, 0.217〉 ,+1),
(〈−0.066,−0.069〉 ,−1),
(〈−0.273,−0.080〉 ,−1).

The value of w0 is −0.1838,
The values of the ααα parameters are

〈22.056, 6.998, 16.058〉.

PO (AMRL-EIS) Computer Vision Useful Classifiers 111 / 155

The plot shows the position of two new query instances for this problem.
The descriptive feature values for these querys are

1 q1 = 〈−0.314,−0.251〉
2 q2 = 〈−0.117, 0.31〉.

PO (AMRL-EIS) Computer Vision Useful Classifiers 112 / 155

For the first query instance, q1 = 〈−0.314,−0.251〉, the output of the
support vector machine model is:

Mααα,w0 (q1)

= (1× 23.056× ((−0.225×−0.314) + (0.217×−0.251))− 0.1838)

+ (−1× 6.998× ((−0.066×−0.314) + (−0.069×−0.251))− 0.1838)

+ (−1× 16.058× ((−0.273×−0.314) + (−0.080×−0.251))− 0.1838)

=− 2.145

The model output is less than −1, so this query is predicted to be a
’faulty’ generator.
For the second query instance, the model output is 1.592, so this instance
is predicted to be a ’good’ generator.

PO (AMRL-EIS) Computer Vision Useful Classifiers 113 / 155

Basis functions can be used with support vector machines to handle
data that is not linearly separable
To use basis functions we update Equation (13)[108] to

ti × (w0 + w ·φφφ (d)) ≥ 1 for all i (14)

where φφφ is a set of basis functions applied to the descriptive features d,
and w is a set of weights containing one weight for each member of φφφ.

PO (AMRL-EIS) Computer Vision Useful Classifiers 114 / 155

Typically, the number of basis functions in φφφ is larger than the number of
descriptive features, so the application of the basis functions moves the
data into a higher-dimensional space.
The expectation is that a linear separating hyperplane will exist in this
higher-dimensional space even though it does not in the original feature
space.

PO (AMRL-EIS) Computer Vision Useful Classifiers 115 / 155

The prediction model in this case becomes

Mααα,φφφ,w0(q) =

s∑
i=1

(ti ×ααα [i]× (φφφ(di) ·φφφ(q)) + w0) (15)

This equation requires a dot product calculation between the result of
applying the basis functions to the query instance and to each of the
support vectors which is repeated multiple times during the training
process.

PO (AMRL-EIS) Computer Vision Useful Classifiers 116 / 155

A dot product is a computationally expensive operation,
We can use a clever trick is used to avoid it:

the same result obtained by calculating the dot product of the descriptive
features of a support vector and a query instance after having applied the
basis functions can be obtained by applying a much less costly kernel
function, kernel, to the original descriptive feature values of the support
vector and the query.

PO (AMRL-EIS) Computer Vision Useful Classifiers 117 / 155

The prediction equation becomes

Mααα,kernel,w0(q) =

s∑
i=1

(ti ×ααα[i]× kernel (di,q) + w0) (16)

A wide range of standard kernel functions can be used with support
vector machines including:

Linear kernel kernel(d,q) = d · q + c
where c is an optional constant

Polynomial kernel kernel(d,q) = (d · q + 1)
p

where p is the degree of a polyno-
mial function

Gaussian radial basis kernel kernel(d,q) = exp(−γ||d− q||2)

where γ is a manually chosen tun-
ing parameter

PO (AMRL-EIS) Computer Vision Useful Classifiers 118 / 155

1 Introduction

2 Bayesian Classifiers

3 K-Nearest Neighbour Classifier

4 Support Vector Machine

5 Multi-layer Perceptron
Models of a Neuron
Common Activation Functions
Network Architecture
Learning Process

6 References

PO (AMRL-EIS) Computer Vision Useful Classifiers 119 / 155

Multi-layer Perceptron is a Neural Network

A neural network is a machine designed to model the way in which the brain performs a
particular task or function of interest.

A neural network is a massively parallel distributed processor made up of simple processing
units that has a natural propensity for storing experiential knowledge and making it available
for use (Haykin 2009).

It resembles the brain in two respects (Haykin 2009):
1 Knowledge is acquired by the network from its environment through a learning process.
2 Inter-neuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

PO (AMRL-EIS) Computer Vision Useful Classifiers 120 / 155

Models of a neuron

A neuron is an information-processing
unit fundamental to the operation of a
neural network

Consists of:
1 Synapse or connecting links:

each characterized by a weight
(ωkj) or strength of its own. Note
a signal xj at the input of
synapse j, connected to neuron
k is multiplied by the synaptic
weight ωkj.

2 Adder: sums the input
signals(xi), weighted by the
respective synaptic strengths of
the neuron

3 Activation (or squashing)
function: limits the amplitude of
the output of a neuron;
squashes permissible amplitude
range of the output signal to
some finite value.

Figure 16: Model of a neuron with bias bk
which increases or lowers the net input of
the activation function (Haykin 2009).

PO (AMRL-EIS) Computer Vision Useful Classifiers 121 / 155

Models of a neuron

Operation of neuron in Figure (16) can be written mathematically as

uk =
m∑

j=1

ωkjxj (17)

yk = ϕ(uk + bk) (18)

where

x1, x2, . . . xm are the input signals;

ω1, ω2, . . . , ωm are the respective synaptic weights of neuron k;

uk is the linear combiner output due to the input signals

bk is the bias;

ϕ(·) is the activation function;

Bias bk applies an affine transformation to the output uk of the linear combiner

vk = uk + bk (19)

PO (AMRL-EIS) Computer Vision Useful Classifiers 122 / 155

Models of a neuron

Equations (17) - (19) can be
combined into

vk =
m∑

j=0

ωkjxj (20)

and
yk = ϕ(vk) (21)

In combining the equations a
new synapse has been added
with input

x0 = +1 (22)

and weight

ωk0 = bk (23)

See Figure (17).

Figure 17: Model of neuron with the bias
absorbed into the neuron (Haykin 2009).

PO (AMRL-EIS) Computer Vision Useful Classifiers 123 / 155

Common Activation Functions

Threshold Function depicted in
Figure (18) can be written as:

ϕ(v) =

{
1 if v ≥ 0
0 if v < 0

(24)

Output of neuron, k, using
threshold function is

yk =

{
1 if vk ≥ 0
0 if vk < 0

(25)

and induced local field of
neuron, vk is

vk =
m∑

j=1

ωkjxj + bk (26)
Figure 18: Threshold function (Haykin 2009).

PO (AMRL-EIS) Computer Vision Useful Classifiers 124 / 155

Common Activation Functions

Logistic Function (an example
of Sigmoid function) is depicted
in Figure (19) and can be
written as:

ϕ(v) =
1

1 + exp(−av)
(27)

where induced local field of
neuron, vk is

vk =
m∑

j=1

ωkjxj + bk (28)

and slope parameter a
determines the shape

Note that the logistic
function is differentiable
while the threshold
function is not

Figure 19: Sigmoid function for varying slope
parameter a (Haykin 2009).

PO (AMRL-EIS) Computer Vision Useful Classifiers 125 / 155

Common Activation Functions

Rectified Linear Unit (ReLU) has
become very popular since its
introduction by Nair & Hinton
(2010).

Output is a non-linear function of
the input

vk =
m∑

j=1

ωkjxj + bk (29)

yk =

{
vk if vk > 0
0 if vk < 0

(30)

Figure 20: Rectified Linear Unit

PO (AMRL-EIS) Computer Vision Useful Classifiers 126 / 155

Common Activation Functions

Softmax activation function
squashes each input to a value
between 0 and 1.

Output is equivalent to a
categorical probability distribution

Graph similar to logistic but
usually applied to provide
probabilistic interpretation to
outputs in classification task

vk =
m∑

j=1

ωkjxj + bk (31)

yk =
exp(vk)∑K

k=1 exp(vk)
(32)

Figure 21: Softmax operation for a
3-class classification task
(https://sefiks.com/).

PO (AMRL-EIS) Computer Vision Useful Classifiers 127 / 155

https://sefiks.com/

Common Activation Functions

What are some nice properties of activation functions?

Non-linear function; otherwise neural net can only solve simple problems;

Without activation neural net is equivalent to a linear regression

Nice derivatives makes learning easy

Activation functions should give a bounded output for a bounded input

Choosing the right activation function is both science and art. For further insight, see the
works of Ramachandran et al. (2017) and Mhaskar & Micchelli (1994)

Together with the right cost function, activation functions make training NN possible.

PO (AMRL-EIS) Computer Vision Useful Classifiers 128 / 155

Models of a neuron

In Figure (22) consider only 3 inputs and
the bias into the neuron;

Let the weights be ω10 = b1 = 0.5,
ω11 = 0.4 ω12 = 0.6; ω13 = 0.2

Let the inputs be x0 = 1; x1 = 1.2;
x2 = 2.0; x3 = 1.8

Let the activation function be logistic
sigmod with a = 0.2

v1 =

3∑
j=0

ω1jxj

= 1× 0.5 + 0.4× 1.2 + 0.6× 2.0 + 0.2× 1.8

= 2.54

y1 = ϕ(v1) =
1

1 + exp(−av1)

=
1

1 + exp(−0.2× 2.54)
= 0.624

Figure 22: Model of neuron:
Example computation (Haykin
2009).

PO (AMRL-EIS) Computer Vision Useful Classifiers 129 / 155

Network Architecture
Single Layer Feedforward Networks

Input layer of source nodes project
directly onto an output layer of
neurons

Figure 23: Single Layer Feedforward
NN (Haykin (2009))

PO (AMRL-EIS) Computer Vision Useful Classifiers 130 / 155

Network Architecture

Multilayer Feedforward Networks

Input layer of source nodes project
directly onto a set of neurons in a
hidden layer

There could be one or more
hidden layers; output of each layer
forming input to the next layer

Adding one or more hidden layers
allows network to extract
higher-order statistics from the
input data

Network is fully connected if every
node in each layer is connected to
every node in the adjacent forward
layer

Figure 24: Multilayer Fully Connected
Feedforward NN (Haykin (2009))

PO (AMRL-EIS) Computer Vision Useful Classifiers 131 / 155

Learning process

Types of Learning

Supervised learning - predict an output when given an input vector

Reinforcement learning - select an action to maximize some defined payoff

Unsupervised learning - discover a good internal representation of the data

PO (AMRL-EIS) Computer Vision Useful Classifiers 132 / 155

Learning process

Supervised Learning

Each training case consists of an input vector x and a target output t.
1 Regression: The target output is a real number or a whole vector of real numbers.

2 Classification: The target output is a class label.

Recall that in general we want to learn a mapping from input vector x to some output y
through a vector of weights ω

y = f (ω, x) (33)

such that the error (or loss or cost function) incurred in the prediction of the actual
value is minimized.

For regression, the cost function

J(ω, b) = −E log pmodel(y|x) (34)

is the expectation of negative conditional log-likelihood computed over the training data; the
cross-entropy between the training data and the model distribution

PO (AMRL-EIS) Computer Vision Useful Classifiers 133 / 155

Learning process

Cost function in Equation (34) is usually minimized in an optimization process,
specifically gradient descent because of the non-convexity of objective function.

How to understand gradient-based optimization? (Goodfellow et al. 2016, p. 80)
Consider a function y = f (x) where both x and y are real numbers

Derivative of y = f (x), f ′(x), gives slope of f (x) at point x

Importantly, it tells us how to scale a small change in the input to obtain corresponding
change in output (this is due to Taylor’s expansion):

f (x + ε) ≈ f (x) + ε f ′(x) (35)

f (x− ε sign(f ′(x))) < f (x) for small enough ε

So we reduce f (x) by moving x in small steps with the opposite sign of the derivative

This technique is called gradient descent 4 and credited to Louis Augustin Cauchy,
1847 (it’s also called steepest descent)

4For brief (mathematical) historical account see Lemarechal (2012)
PO (AMRL-EIS) Computer Vision Useful Classifiers 134 / 155

Learning process

Figure 25: Illustraion of the gradient descent algorithm (Goodfellow et al. 2016, p.80)

PO (AMRL-EIS) Computer Vision Useful Classifiers 135 / 155

Multilayer Perceptron

Basic features of multilayer perceptrons (Haykin 2009) (See Figure 26):

Each neuron in the network includes a nonlinear activation function that
is differentiable

Network contains one or more layers that are hidden from both the input
and output nodes

Network exhibits a high degree of connectivity determined by synaptic
weights of the network

Training method
Multilayer perceptron is usually trained using the back-propagation algorithm:

Forward phase: Weights of the network are fixed and input signal is propagated layer-wise
through the network and transformed signal appears at the output

Backward phase: Error signal is computed by comparing generated output and desired
response; error signal is propagated backward and layer-wise through the network;
successive adjustments made to weights of the network

PO (AMRL-EIS) Computer Vision Useful Classifiers 136 / 155

Multilayer Perceptron

Figure 26: Architectural graph of the Multilayer Perceptron (Haykin 2009)

PO (AMRL-EIS) Computer Vision Useful Classifiers 137 / 155

Multilayer Perceptron

Each hidden or output neuron performs two computations:

1 Output of each neuron expressed as continuous nonlinear function of input
signals and associated weights

2 Estimate of the gradient vector (gradient of error surface) required in the
backward phase of the training

Hidden neurons act as feature detectors, discovering the salient features
characterising the training data;

Hidden neurons perform nonlinear transformation on input data into a
new space; feature space

The training is a form of error-correction learning that assigns blame or
credit to each of the internal neurons; this is a case of the credit
assignment problem

Back-propagation solves the credit assignment problem for the multilayer
perceptron

PO (AMRL-EIS) Computer Vision Useful Classifiers 138 / 155

Back-propagation Algorithm

Key points leading to overall strategy
Multilayer perceptron is a universal function approximator

It can be trained using error-correction learning to obtain optimum approximation

The optimum can be obtained if we can minimize the approximation error

This is equivalent to modifying the weights so that the network minimizes the error between
desired output and response of the network

Gradient descent algorithm can be used to find the minimum of an objective function by
iteratively computing the adjustment that leads to the minimization of the objective function

Back-propagation is an efficient implementation of the gradient descent

Strategy is to compute the adjustment, ∆ω to be applied to each weight, ω

The adjustment is proportional to the gradient of the objective function; in this case ∇E (E is
error signal energy) with respect to the parameters ω

PO (AMRL-EIS) Computer Vision Useful Classifiers 139 / 155

Back-propagation Algorithm

Error signal of the output neuron is given by

ej(n) = dj(n)− yj(n) (36)

where yj is the output of neuron j when stimulus x(n) is applied at the input; dj(n) is the
desired output

Instantaneous error energy can be written as

Ej(n) =
1
2

e2
j (n) (37)

Total instantaneous error (summed over all neurons in the output layer) is

E(n) =
∑
j∈C

Ej(n) =
1
2

∑
j∈C

e2
j (n) (38)

Computation of the error could be in batch mode or on-line mode leading to either batch
mode (presentation of all training samples) or on-line (presentation of training sample
one-at-a-time) training

PO (AMRL-EIS) Computer Vision Useful Classifiers 140 / 155

Back-propagation Algorithm

Consider Figure (27):
Induced local field of
neuron j at iteration n is:

vj(n) =

m∑
i=0

ωji(n)yi(n)

(39)
m is the total number of
inputs

Function signal yj(n)
appearing at the output of
neuron j at iteration n is

yj(n) = ϕj(vj(n)) (40)

Figure 27: Signal flow highlighting neuron j being fed by
the outputs from the neurons to its left; induced local field
of neuron is vj(n) and this is the input to activation function
ϕ(·) (Haykin 2009)

PO (AMRL-EIS) Computer Vision Useful Classifiers 141 / 155

Back-propagation Algorithm

We need to compute the adjustment (or correction) ∆ωji(n) to be applied
to weight ωji(n)

This is proportional to the partial derivative
∂E(n)

∂ωji(n)
and determines the

direction of search in the weight space for ωji

Chain rule tells us how to compute
∂E(n)

∂ωji(n)
from a set of known quantities

∂E(n)

∂ωji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂ωji(n)
(41)

Recall Equation (37) : Ej(n) = 1
2 e2

j (n); therefore

∂E(n)

∂ej(n)
= ej(n) (42)

PO (AMRL-EIS) Computer Vision Useful Classifiers 142 / 155

Back-propagation Algorithm

We need to compute the adjustment (or correction) ∆ωji(n) to be applied
to weight ωji(n)

This is proportional to the partial derivative
∂E(n)

∂ωji(n)
and determines the

direction of search in the weight space for ωji

Chain rule tells us how to compute
∂E(n)

∂ωji(n)
from a set of known quantities

∂E(n)

∂ωji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂ωji(n)
(41)

Recall Equation (37) : Ej(n) = 1
2 e2

j (n); therefore

∂E(n)

∂ej(n)
= ej(n) (42)

PO (AMRL-EIS) Computer Vision Useful Classifiers 142 / 155

Back-propagation Algorithm

We need to compute the adjustment (or correction) ∆ωji(n) to be applied
to weight ωji(n)

This is proportional to the partial derivative
∂E(n)

∂ωji(n)
and determines the

direction of search in the weight space for ωji

Chain rule tells us how to compute
∂E(n)

∂ωji(n)
from a set of known quantities

∂E(n)

∂ωji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂ωji(n)
(41)

Recall Equation (37) : Ej(n) = 1
2 e2

j (n); therefore

∂E(n)

∂ej(n)
= ej(n) (42)

PO (AMRL-EIS) Computer Vision Useful Classifiers 142 / 155

Back-propagation Algorithm

We need to compute the adjustment (or correction) ∆ωji(n) to be applied
to weight ωji(n)

This is proportional to the partial derivative
∂E(n)

∂ωji(n)
and determines the

direction of search in the weight space for ωji

Chain rule tells us how to compute
∂E(n)

∂ωji(n)
from a set of known quantities

∂E(n)

∂ωji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂ωji(n)
(41)

Recall Equation (37) : Ej(n) = 1
2 e2

j (n); therefore

∂E(n)

∂ej(n)
= ej(n) (42)

PO (AMRL-EIS) Computer Vision Useful Classifiers 142 / 155

Back-propagation Algorithm

Recall Equation (36): ej(n) = dj(n)− yj(n)

∂ej(n)

∂yj(n)
= −1 (43)

Recall Equation (40): yj(n) = ϕj(vj(n))

∂yj(n)

∂vj(n)
= ϕ′

j(vj(n)); where ()′ indicates differentiation (44)

Recall Equation(39): vj(n) =
∑m

i=0 ωji(n)yi(n)

∂vj(n)

∂ωji(n)
= yi(n) (45)

Equation (41) becomes (using Equations (42) - (45))

∂E(n)

∂ωji(n)
= −ej(n)ϕ′

j(vj(n))yi(n) (46)

PO (AMRL-EIS) Computer Vision Useful Classifiers 143 / 155

Back-propagation Algorithm

Recall Equation (36): ej(n) = dj(n)− yj(n)

∂ej(n)

∂yj(n)
= −1 (43)

Recall Equation (40): yj(n) = ϕj(vj(n))

∂yj(n)

∂vj(n)
= ϕ′

j(vj(n)); where ()′ indicates differentiation (44)

Recall Equation(39): vj(n) =
∑m

i=0 ωji(n)yi(n)

∂vj(n)

∂ωji(n)
= yi(n) (45)

Equation (41) becomes (using Equations (42) - (45))

∂E(n)

∂ωji(n)
= −ej(n)ϕ′

j(vj(n))yi(n) (46)

PO (AMRL-EIS) Computer Vision Useful Classifiers 143 / 155

Back-propagation Algorithm

Recall Equation (36): ej(n) = dj(n)− yj(n)

∂ej(n)

∂yj(n)
= −1 (43)

Recall Equation (40): yj(n) = ϕj(vj(n))

∂yj(n)

∂vj(n)
= ϕ′

j(vj(n)); where ()′ indicates differentiation (44)

Recall Equation(39): vj(n) =
∑m

i=0 ωji(n)yi(n)

∂vj(n)

∂ωji(n)
= yi(n) (45)

Equation (41) becomes (using Equations (42) - (45))

∂E(n)

∂ωji(n)
= −ej(n)ϕ′

j(vj(n))yi(n) (46)

PO (AMRL-EIS) Computer Vision Useful Classifiers 143 / 155

Back-propagation Algorithm

Recall Equation (36): ej(n) = dj(n)− yj(n)

∂ej(n)

∂yj(n)
= −1 (43)

Recall Equation (40): yj(n) = ϕj(vj(n))

∂yj(n)

∂vj(n)
= ϕ′

j(vj(n)); where ()′ indicates differentiation (44)

Recall Equation(39): vj(n) =
∑m

i=0 ωji(n)yi(n)

∂vj(n)

∂ωji(n)
= yi(n) (45)

Equation (41) becomes (using Equations (42) - (45))

∂E(n)

∂ωji(n)
= −ej(n)ϕ′

j(vj(n))yi(n) (46)

PO (AMRL-EIS) Computer Vision Useful Classifiers 143 / 155

Back-propagation Algorithm

Correction, ∆ωji(n), applied to ωji(n) is defined by the delta rule

∆ωji(n) = −η ∂E(n)

∂ωji(n)
; η is the learning rate parameter

= η ej(n)ϕ′
j(vj(n)) yi(n)

= η δj(n) yi(n) (47)

where δj(n) = ej(n)ϕ′
j(vj(n)) is defined as the local gradient for neuron j

Local gradient for neuron j is the product of corresponding error ej(n) and
the derivative of associated activation function, ϕ′

j(vj(n))

Error ej(n) is easily computed for the output neurons; we have access to
dj(n) and yj(n). How to compute error for hidden neurons? These have no
given dj(n).

PO (AMRL-EIS) Computer Vision Useful Classifiers 144 / 155

Back-propagation Algorithm

Correction, ∆ωji(n), applied to ωji(n) is defined by the delta rule

∆ωji(n) = −η ∂E(n)

∂ωji(n)
; η is the learning rate parameter

= η ej(n)ϕ′
j(vj(n)) yi(n)

= η δj(n) yi(n) (47)

where δj(n) = ej(n)ϕ′
j(vj(n)) is defined as the local gradient for neuron j

Local gradient for neuron j is the product of corresponding error ej(n) and
the derivative of associated activation function, ϕ′

j(vj(n))

Error ej(n) is easily computed for the output neurons; we have access to
dj(n) and yj(n). How to compute error for hidden neurons? These have no
given dj(n).

PO (AMRL-EIS) Computer Vision Useful Classifiers 144 / 155

Back-propagation Algorithm

Correction, ∆ωji(n), applied to ωji(n) is defined by the delta rule

∆ωji(n) = −η ∂E(n)

∂ωji(n)
; η is the learning rate parameter

= η ej(n)ϕ′
j(vj(n)) yi(n)

= η δj(n) yi(n) (47)

where δj(n) = ej(n)ϕ′
j(vj(n)) is defined as the local gradient for neuron j

Local gradient for neuron j is the product of corresponding error ej(n) and
the derivative of associated activation function, ϕ′

j(vj(n))

Error ej(n) is easily computed for the output neurons; we have access to
dj(n) and yj(n). How to compute error for hidden neurons? These have no
given dj(n).

PO (AMRL-EIS) Computer Vision Useful Classifiers 144 / 155

Back-propagation Algorithm

What do we know so far?
1 Training a multilayer perceptron involves using the training data set in an error-correction

learning paradigm to adjust the weights
2 The error-correction learning is essentially equivalent to solving a function minimization

problem
3 The function to be minimized is the error surface corresponding to the mismatch between

the response of the network and the desired response
4 This can be solved by the gradient descent algorithm
5 The back-propagation algorithm is an efficient implementation of the gradient descent

algorithm for the multilayer perceptron
6 The correction (or update) to the weight at each iteration is (cf. Equation (47)):

∆ωji(n) = η ej(n)ϕ′
j (vj(n)) yi(n)

= η δj(n) yi(n) (48)

This is the product of the learning rate η, local gradient of the associated neuron, δj(n) and the
input to the neuron, yi(n). See Figure (27)

PO (AMRL-EIS) Computer Vision Useful Classifiers 145 / 155

Back-propagation Algorithm

Weights connected to the output neurons are updated as

ωnew
ji (n) = ωold

ji (n) + ∆ωji(n)

= ωold
ji (n) + η δj(n) yi(n)

= ωold
ji (n) + η ej(n)ϕ′

j (vj(n)) yi(n) (49)

Using chain rule similarly to how we derive the update for the weight of output neurons we
will show that the weight update for hidden neurons is given as

ωnew
ji (n) = ωold

ji (n) + ∆ωji(n)

= ωold
ji (n) + η δj(n) yi(n)

= ωold
ji (n) + η ϕ′

j (vj(n))
∑

k

δk(n)ωkj(n) yi(n) (50)

where neuron j is hidden; ϕ′
j (vj(n)) is derivative of associated activation function; δk(n) are

associated with neurons k which are to the immediate right of neuron j and connected to it;
ωkj(n) are the associated weights of these connections (see Figure (28))

PO (AMRL-EIS) Computer Vision Useful Classifiers 146 / 155

Back-propagation Algorithm

Figure 28: Signal flow showing hidden neuron j connected to an output neuron k to its
immediate right; Diagram used to show the derivation of weight update for hidden neuron (Haykin
2009)

PO (AMRL-EIS) Computer Vision Useful Classifiers 147 / 155

Back-propagation Algorithm

For the sake of completeness we now derive

δj(n) = ϕ′
j (vj(n))

∑
k

δk(n)ωkj(n)

of Equation (50)

Recall from Equation(41)

∂E(n)

∂ωji(n)
=

∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂ωji(n)

and Equation(47)

∆ωji(n) = η ej(n)ϕ′
j (vj(n)) yi(n)

= η δj(n) yi(n)

we infer that the local gradient, δj(n), can be written as

δj(n) =
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
(51)

PO (AMRL-EIS) Computer Vision Useful Classifiers 148 / 155

Back-propagation Algorithm

Use Figure (28) and Equation (51) to write local gradient as:

δj(n) = −
∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)

= −
∂E(n)

∂yj(n)
ϕ′

j (vj(n)) (52)

From Figure (28)

E(n) =
1
2

∑
k∈C

e2
k(n); neuron k is an output node (53)

Differentiating both sides of Equation (53) with respect to yj:

∂E(n)

∂yj(n)
=
∑

k

ek(n)
∂ek(n)

∂yj(n)
(54)

Use chain rule to write
∂ek(n)

∂yj(n)
=
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)

and

∂E(n)

∂yj(n)
=
∑

k

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
(55)

PO (AMRL-EIS) Computer Vision Useful Classifiers 149 / 155

Back-propagation Algorithm
Observe from Figure (28) that

ek(n) = dk(n)− yk(n)

= dk(n)− ϕk(vk(n)); neuron k is an output node (56)

and we can write
∂ek(n)

∂vk(n)
= −ϕ′

k(vk(n)) (57)

Also note that the induced local field for neuron k

vk(n) =
m∑

j=0

ωkj(n)yj(n); m is number of inputs applied to neuron k (58)

Upon differentiation we have
∂vk(n)

∂yj(n)
= ωkj(n) (59)

Combining these component partial derivatives we obtain

∂E(n)

∂yj(n)
= −

∑
k

ek(n)ϕ′
k(vk(n)) ωkj(n)

= −
∑

k

δk(n)ωkj(n) (60)

PO (AMRL-EIS) Computer Vision Useful Classifiers 150 / 155

Back-propagation Algorithm

Substituting Equation (60) into Equation (52) to obtain

δj(n) = ϕ′
j (vj(n))

∑
k

δk(n)ωkj(n) (61)

and when combined with Equation (47) we can write the correction as

∆ωji(n) = ηδj(n)yi(n)

= ηϕ′
j (vj(n))

∑
k

δk(n)ωkj(n)yi(n) (62)

and the update rule as

ωnew
ji (n) = ωold

ji (n) + ∆ωji(n)

= ηδj(n)yi(n)

= ωold
ji (n) + ηϕ′

j (vj(n))
∑

k

δk(n)ωkj(n)yi(n) (63)

which is the same expression we provided in Equation (50)

PO (AMRL-EIS) Computer Vision Useful Classifiers 151 / 155

Back-propagation

Summary of Back-propagation Algorithm for Multilayer Perceptron
1 Training could be Online (weight update after presentation of each sample) or Batch (weight

update after presentation of all samples)
2 Back-propagation comprises two phases namely Forward pass and Backward pass
3 Forward pass: Weights of the network are fixed and input signal is propagated layer-wise

through the network and transformed signal appears at the output; each neuron computes
(see Figure (27))

vj(n) =
m∑

j=0

ωji(n)yi(n); yj(n) = ϕj(vj(n)) (64)

4 In the Backward pass error is propagated backward through the network to compute weight
updates (see Figure (28) and Equation (60)):

ωnew
ji (n) = ωold

ji (n) +


η ej(n)ϕ′

j (vj(n)) yi(n) for output neurons

η ϕ′
j (vj(n))

∑
k

δk(n)ωkj(n) yi(n) for hidden neurons
(65)

PO (AMRL-EIS) Computer Vision Useful Classifiers 152 / 155

1 Introduction

2 Bayesian Classifiers

3 K-Nearest Neighbour Classifier

4 Support Vector Machine

5 Multi-layer Perceptron

6 References

PO (AMRL-EIS) Computer Vision Useful Classifiers 153 / 155

Bibliography I

Alpaydin, E. (2010), Introduction to Machine Learning, second edn, The MIT Press, Cambridge
Massachusetts.

Duda, R. O., Hart, P. E. & Stork, D. G. (2001), Pattern Classification, Second edn, John Wiley and
Sons.

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT Press.

Hastie, T., Tibshirani, R. & Friedman, J. (2001), The Elements of Statistical Learning - Data
Mining, Inference and Prediction, Springer Science+Business Media LLC.

Haykin, S. (2009), Neural Networks and Learning Machines, Third edn, Pearson Education.

Izenman, A. J. (2008), Modern Multivariate Statistical Techniques - Regression, Classification and
Manifold Learning, Springer Science+Business Media LLC.

Kellleher, J. D., Namee, B. M. & D’Arcy, A. (2015), Fundamentals of Machine Learning for
Predictive Data Analytics - Algorithms, Worked Examples and Case Studies, The MIT Press,
Cambridge Massachusetts.

Lemarechal, C. (2012), ‘Cauchy and the gradient method’, Documenta Mathematica Extra
Volume ISMP, 251–254.

Mhaskar, H. N. & Micchelli, C. A. (1994), How to choose an activation function, in J. D. Cowan,
G. Tesauro & J. Alspector, eds, ‘Advances in Neural Information Processing Systems 6’,
Morgan-Kaufmann, pp. 319–326.
URL: http://papers.nips.cc/paper/874-how-to-choose-an-activation-function.pdf

Mitchell, T. M. (1997), Machine Learning, WCB McGraw-Hill.

PO (AMRL-EIS) Computer Vision Useful Classifiers 154 / 155

Bibliography II

Mohri, M., Rostamizadeh, A. & Talwalkar, A. (2012), Foundations of Machine Learning, MIT
Press.

Nair, V. & Hinton, G. (2010), Rectified linear units improve restricted boltzmann machines, in
‘Proceedings of 27th International Conference on Machine Learning’, Haifa, Israel.

Ramachandran, P., Zoph, B. & Le, Q. V. (2017), Searching for activation functions, Technical
Report arXiv:1710.05941v2 [cs.NE], ArXiV.
URL: https://arxiv.org/pdf/1710.05941.pdf

Webb, A. (2002), Statistical Pattern Recognition, Second edn, John Wiley and Sons.

PO (AMRL-EIS) Computer Vision Useful Classifiers 155 / 155

	Introduction
	Bayesian Classifiers
	Bayes' Theorem
	Bayesian Prediction
	Conditional Independence and Factorization
	Standard Approach: The Naive Bayes' Classifier
	A Worked Example

	K-Nearest Neighbour Classifier
	Fundamentals
	Feature Space
	Distance Metrics
	A Worked Example
	Data Normalization

	Support Vector Machine
	Multi-layer Perceptron
	Models of a Neuron
	Common Activation Functions
	Network Architecture
	Learning Process

	References

