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Machine Vision Concept ( review)

qMachine Vision is a multistage process where 
each previous stage affects performance of 
all following stages
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Single Sensor Digital Cameras (review)
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Image Enhancement

The objective of Image Enhancement is to produce an image that is 
more suitable than the original one

The word suitable has different meaning for different applications

Karan Goel
Sticky Note
objective: to produce more image suitable than original one
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Distortion & Criteria of Quality
q Image capturing process inevitably introduces 

distortions that degrade image quality
q Visual quality assessment is not sufficient for 

computer vision applications
q Image quality should be based on quantitative 

characteristics which in the end affect object 
recognition and measurement of parameters

q All distortions can be divided into two categories:
ü those which can be corrected by digital enhancement
ü those which cannot be corrected by digital enhancement and 

require optimisation of the image formation process

Karan Goel
Sticky Note
quality should be based on quantitve characteristic, not human preception
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Sharpness
q Sharpness determine the amount of details that 

image can clearly reproduce
q Sharpness depends on several factors:

- quality of the lens
- focus accuracy
- sensor resolution ( sensor dimension in pixel )
- CFA interpolation algorithm
- blur due to handshaking

q Camera manufacturers are usually advertise only 
sensor resolution 
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Sharpness
q The measurable parameter of sharpness is how many 

black-white lines can be seen in vertical or horizontal 
direction

If a sensor size is 800 
(cols)x600 (rows) pix, how many 
black-white lines can be clearly 
counted at best?
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Sharpness

sensor

Test 
Chart

sensor

Test 
Chart

800 lines

0 lines

0.7*800   
»560 lines

with some 
degradation 
of contrast 
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Image Rescaling ( Resizing )
q Some image analysis and object recognition operations 

do not require high resolution images
q Image size can be reduced through sub-sampling

Can a half size image be 
produced simply by 
discarding every second 
sample?
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Image Rescaling ( Resizing )
q Straightforward sub-sampling of an image will very 

likely violate requirements of the sampling theorem     
( D £ 1/(2*Fmax) ) introducing aliasing

Si

i
take off every second sample

Concepts of frequency and Nyquist sampling rate

Karan Goel
Sticky Note
 sub-sampling
discard rows cols -> not recomended (destroy image quality)
we use alias
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Image Rescaling ( Resizing )
q To satisfy the sampling theorem requirements, Fmax of 

a sequence must be reduced to Fmax/2 before down 
sampling

Si

i
If Fmax = Fmax/2, down-sampling does not cause aliasing

Karan Goel
Sticky Note
solution: reduce frequency
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Image Rescaling ( Resizing )
q Image rescaling by factor of N is a two-stage process

1. Limit the maximum frequency to Fmax/N using an appropriate 
band limiting filter
2. Decimate image by leaving only one sample out of N

Example: N = 2

Fmax

Fmax

f

f

Sin(f)

S1(f)

pass band stop band
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Band Limited Low-Pass Filter
q Band Limited filters are usually implemented as a 

linear operation that uses a weighted sum of input 
samples to produce an output sample

Example: A Low Pass Filter with three weights 0.25 0.5 0.25

12 10 4 20 16 20 8 16 18Input

9

0.25 0.5 0.25

12*0.25 + 10*0.5 + 4*0.25 =9 

Output

+

Karan Goel
Sticky Note
CONVOLUTION
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Band Limited Low-Pass Filter
q Band Limited filters are usually implemented as a 

linear operation that uses a weighted sum of input 
samples to produce an output sample

Example: A Low Pass Filter with three weights 0.25 0.5 0.25

12 10 4 20 16 20 8 16 18Input

9

0.25 0.5 0.25

10*0.25 + 4*0.5 + 20*0.25 =9.5 

9.5Output
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Band Limited Low-Pass Filter
q Band Limited filters are usually implemented as a 

linear operation that uses a weighted sum of input 
samples to produce an output sample

Example: A Low Pass Filter with three weights 0.25 0.5 0.25

12 10 4 20 16 20 8 16 18Input

9

0.25 0.5 0.25

4*0.25 + 20*0.5 + 16*0.25 =15 

9.5Output 15
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Low-Pass Filter + Down-Sampling
q As some samples are to be discarded at the Stage 2, 

filtering and down-sampling processes can be combined 
to skip unneeded positions 

Example: A Low Pass Filter and Down-sampling /2

12 10 4 20 16 20 8 16 18Input

9

0.25 0.5 0.25

Output 15

0.25 0.5 0.25

0.25 0.5 0.25

16

9 15 16 …
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Convolution
q The process of filtering is mathematically described 

as a convolution of two sequences
1.  x(n) – an input sequence
2.  h(i) – a sequence of filter weights

q The output sequence y(n)
y(n) = {xÄh}(n) = S x(k)*h(n-k)

k

Example: h(-1) = 0.25  h(0) = 0.5  h(1)=0.25,  other h(i) = 0

x(n) = { 12, 10, 4, 20, 16, 20, … }

y(1) = x(0)*h(1) + x(1)*h(0) + x(2)*h(-1) = 3+5+1 = 9

y(2) = x(0)*h(2) + x(1)*h(1) + . . .

y(3) = 

Karan Goel
Sticky Note
practice some convolution on paper
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2D Low-Pass Filter
q As images are 2D arrays of samples, they are filtered by 2D 

filters
q A 2D filter is a 2D array of weights (filter coefficients)

Example: h(n, m) =
0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

q A 2D filter moves across an image column-by-column, row-by-row 
to produce a processed output image

To get one filtered pixel:

9 multiplication

1 addition
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2D Low-Pass Filter
Example:

50 48 46

52 47 45

54 57 50

50 48 46

52 47 45

54 57 50

50 48 46

52 47 45

54 57 50

50 48 46

52 47 45

54 57 50

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

1. Multiply filter 
coefficients with the 
corresponding pixel 
samples and add the 
results together to 
produce a filtered 
sample

2. Place the filtered 
sample in the output 
image at the position 
corresponding to the 
current position of 
the filter centre

3. Move the filter to 
the next position
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Example
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Example

Down-sampled image 
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Colour Aliasing
q RGB components of image 

sensors with Bayer pattern 
are sampled at different 
rates. Which rate must be 
matched by lens sharpness?

q Camera manufacturers 
usually match the G rate 
even though this results in 
aliasing for R and B

q Aliasing cannot be removed, 
but its visibility can be 
reduced by CFA 
Interpolation
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Focusing
q When a lens is focused on an object, theoretically, all objects 

at other distances S from the camera are out of focus
1/S + 1/s = 1/f

q Practically, objects slightly in front and behind the object in 
focus are also appear reasonably sharp. This extra depth is 
called Depth of Field

object 
in focus

sensor

object with 
permissible 
sharpness

object with 
permissible 
sharpness

Depth of Field

q All other objects will be blurred 

Karan Goel
Sticky Note
high depth field is desirable 
hdr uses multiple df
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Focusing
q Small depth of field is usually a desirable feature of art photos 

to emphasise an object of interest and isolate it from the 
background

q Computer Vision Cameras may require a wide depth of field to 
facilitate analysis of complex scenes 

q The greater F, the greater depth of field
F = f/D , where D can be adjusted by changing Iris 

object 
in focus

sensor

object with 
permissible 
sharpness

object with 
permissible 
sharpness

Depth of Field

Iris

What is a side effect of increasing F ? 
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Out-of-Focus Blur
q Leads to losses in resolution for all objects which are outside 

the depth of field 

q Out-of-Focus Blur affects images in a way similar to low-pass 
filtering 

q Digital image processing can improve image sharpness by 
applying inverse filters, but as a side effect it introduces 
ringing artifacts



16/8/2023 27

Motion Blur
q Leads to losses in resolution in the directions of fast motion

q Digital image processing can improve image sharpness, but as a 
side effect it introduces ringing artifacts
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Saturation

0 255

p(Y)

§ Capturing of high dynamic range scenes may cause saturation

§ Reaching maximum quantisation level 255 samples are clipped producing 
uniform areas with all details lost  

Y
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0 255

p(Y)

• Digital cameras with inefficient Auto-Exposure  and Automatic Gain 
Control may capture images which do not utilise all quantisation levels 
leading to loss of details

Under-Exposure

Y
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0 255

p(Y)

• Simple contrast enhancement changes only visual appearance of 
the image while the same number of quantisation levels is used

Under-Exposure

Y



Histogram
q The histogram of an image with gray-levels in the range [0,L-1], 

where L is usually 256, is a discrete function

where rk is the k’th gray level
nk is the number of pixels having gray level rk

q Normalized histogram
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Histogram Equalization/Specification

q Any enhancement eventually change the distribution 
of color or intensity of the images.

q We could modify the image histogram directly to 
achieve the enhancement
4Equalization

o Try to make the histogram of the enhanced image flat, 
i.e. make use of all available color/intensity levels

4Specification/matching
o To modify histogram of the image to a desirable 

histogram that are pleasant to most viewers
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Histogram Equalization



Histogram Equalization

qConsider the gray levels in an image as the 
realizations of a random variable, and let
4rÎ[0,1] - the gray level before equalization
4sÎ[0,1] - the gray level after equalization

qGiven pr(r), histogram equalization is to 
transform r to s

4such that ps(s) is constant or close to 
constant for all s
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)(rTs =



Histogram Equalization…

If T(r) satisfies the following conditions:
a) single-valued and monotonically increasing in the 

interval rÎ[0,1], and
b) 0≤T(r)≤1 for 0≤r≤1
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Histogram Equalization…

q For discrete version of the transform
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Histogram Equalization: Examples



Impact of White Balance
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Lighting
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The effect of a light source on colour appearance is expressed in the colour
rendering index (CRI), on a scale of 0-100. Natural outdoor light has a CRI of
100 and is used as the standard of comparison for any other light source.
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Noise

q Digital camera is an electronic device that besides 
digital, contains analog components

q Receiving and processing target signals they are 
affected by random fluctuation of electric current, 
random variation of electronic circuit  parameters 
and interferences from other electronic components

q Noise is a random process and thus it cannot be 
eliminated in a similar way to other factors affecting 
image quality such as: resolution, defocus, colour 
fidelity, under-exposure,  etc 

q It is not possible to reduce noise without employing 
statistics and the theory of probability
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Sources of Noise

charge-to-
voltage

A/D 
Converter

Array Scanning 
Control

Photon Shot Noise – pixel size is so small that the number of 
absorbed photons fluctuates

Fixed Pattern Noise – different 
pixels have slightly different 
sensitivity

Digital Circuit Switching Noise –
interference from digital circuits

Thermal Noise –
temperature dependent 
fluctuation of electrical 
current 

Quantisation Noise –
rounding errors due to 
quantisation 
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Parameters of Noise 
q Noise is a random process and thus, it can be 

described only statistically

i

n(i)

ni

pi

Probability Density

q Other statistical parameters also characterise noise

The mean:   n =   *S ni

1
n

The standard deviation:  

1
n

s =    *S(ni – n)2

n = S pi*ni

s = S pi*(ni – n)2

or

or
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Noise Probability Density
q Different types of noise have different probability densities
q There are two the most common Probability Densities

P(n) P(n)Uniform Gaussian

Q: A uniform area of a digital image with luminance Y = 200 is affected 
by noise. What is the probability that a luminance sample affected by 
noise is visually different from the uniform background? Consider the 
zero-mean uniform and the Gaussian distributions.

-5 +5 -5 +5

According to Webber’s law the visibility threshold is 2%.  2% of 200 is ±4
Uniform: P( |n|>4 ) = 20%
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q Quantisation noise has a uniform probability density in the range  
[0… D] , or [- D/2… D/2] if rounding used instead of truncation

Quantisation Noise

Quantised 
samples

sq(i)

isq(i) = int(s(i)/q)

i

n(i)

P(n)

0 D



16/8/2023 45

Signal to Quantization Noise Ratio (SQNR)

q For a quantization accuracy of n bits per sample, in 
the worst case, the SQNR is

What should be the bits per sample if SQNR=60db ?
60db => 10bit/sample
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Central Limit Theorem

q The sum of a large number of independent random processes 
will have approximately Gaussian probability density

q As image noise comes from several independent sources its 
distribution is approximately Gaussian with  n = 0

+

P1(n)

P2(n) PS(n)

Pk(n)
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Noise Model

+

n(i, j)
Gaussian noise

q Image quality analysis, image processing and image enhancement 
algorithms are based on the model that noise is additive to 
image samples with 0-mean Gaussian distribution
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Quiz
q Images of Macbeth Colour Checker are used for measuring colour 

fidelity of the colour correction. The images are affected by noise 
with the standard deviation above the visibility threshold. Each colour 
patch is 50x50 pix. Gamma correction is disabled.
Can the noise affect the measurements?

R, G, B

G + n = G

q For green plane:

Gn = SSSn(i,j)= 1

2500 50 50

1

2500
SS(S(i,j)+n(i,j))=
50 50

SSn(i,j)G + 1

250050 50
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Quiz
q Images of Macbeth Colour Checker are used for measuring colour 

fidelity of the image processing chain that included Gamma Correction. 
The images are affected by noise with the standard deviation above 
the visibility threshold. Each colour patch is 50x50 pix.
Can the noise affect the measurements?

R, G, B

input

output

After the Gamma Correction stage, noise 
probability density is not symmetrical and 
its mean is not equal to 0. Thus Gn ¹ G
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Gamma Correction and Noise
q Non-linearity of Gamma Correction leads to noise amplification in image 

regions with low illuminance

input

output
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Colour Correction and Noise
q Improving accuracy of colour reproduction Colour Correction amplifies 

noise
R’

G’

B’

=

1.28  -0.11  -0.12

-0.12   1.41  -0.13

-0.14  -0.15   1.36

R

G

B

*

q As Colour Correction T is a linear operation and noise n is additive, we 
can analyse noise propagation independently
I’ = T*(I + n) = T*I + T*n , where n – noise vector

nr’

ng’

nb’

=

1.28  -0.11  -0.12

-0.12   1.41  -0.13

-0.14  -0.15   1.36

nr

ng

nb

*
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Colour Correction and Noise
q To simplify analysis, we make two assumptions:

1.   Noise in three colour channels R, G, B is statistically independent         
( explain why this is not strictly correct for cameras with Bayer pattern sensors)
2.  Noise standard deviation s in R, G, B channels is the same

( explain why this is not strictly correct for cameras with Bayer pattern sensors)

s(ng’) =   (0.12*s(n))2 + (1.41*s(n))2 + (0.13*s(n))2

s(ng’) = 1.42*s(n) noise deviation is 42% higher

Exercise: What is the noise amplification in other colour channels?
Which colour channel noise is more visually noticeable?



Image Spectrum

qBasic steps of image processing in frequency 
domain
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Image Spectrum



Fourier Transform
q A digital image f(x,y) of size MxN, its Fourier Transform is 

defined as
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Fourier Transform
q Fourier spectrum (or magnitude), phase and power spectrum of 

f(x,y)
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Digital Fourier Transform Illustration

https://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm


Fourier Transform

q Centred Fourier Spectrum
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q F(0,0) moved to the centre of the MxN area

q F(0,0) represents the average gravel level of the 
image, known as dc component of the spectrum



An example
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0 50 100 150 200 250

0

50

100

150

200

250

-100 -50 0 50 100

-100

-50

0

50

100

log10P

Centred log10P

q Digital Image Spectrum should not be confused with the spectrum of 
visible light  (400nm – 700nm) !



Properties of Fourier Transform

q If f(x,y) is real, its Fourier Transform is conjugate 
symmetric, i.e.
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q Convolution of f(x,y) with a kernel h(x,y) is equivalent 
the multiplication of their Fourier Transform, i.e.
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Noise Spectral Properties

q Dominant components of natural images have smooth variation of 
luminance and colour, thus low spatial frequencies

q A typical spectrum of natural images

u

v

|F(u,v)| • The dominant frequencies 
are usually low

• High frequencies are 
usually not very powerful

Exercise: How would you explain the fact that diagonal spectrum 
components are usually weaker than horizontal and vertical once?
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Noise Spectral Properties
q Spatial spectrum of image white noise (i.e. zero means, finite 

variance) is 2D ( horizontal – vertical )
e.g. white Gaussian noise

q Spectrum is uniform

u

v

|n(u,v)|
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Image and Noise Spectral Properties
q Linearity of spectral representation

If F(u, v) is the spectrum of image f(x, y)
N(u, v) is the spectrum of noise n(x, y)

Then, the spectrum of f(x, y) + n(x, y) is equal to F(u, v) + N(u, v)

u

|F(u,v) + N(u,v)|

q Once the spectrums are 
added, their separation 
is not a trivial task

0



Filtering in Frequency Domain

q Filtering in the Frequency domain is straightforward:
4Compute F(u,v) of image f(x,y)
4Design filter function H(u,v)
4Calculate

4Calculate inverse Fourier Transform of G(u,v) to 
obtained filtered (processed image)
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Types of Filters
q Depending what part of the image spectrum is passed and what 

part of the spectrum is suppressed all filters can be divided into 
several groups

q 1D examples of possible frequency responses

u

H(u)

u

H(u)

u

H(u)

u

H(u)

Low Pass Filter
High Pass Filter

Band Pass Filter Band Stop Filter



An example
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Ideal Lowpass Filters
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An Example
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An image of size 500x500 pixels and its Fourier spectrum. 
The superimposed circles have radii values of 5, 15, 30,80 
and 230, which enclose 92.0, 94.6, 96.4, 98.0 and 99.5% of 
the image power, respectively



An Example …
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Ringing
artefacts



Butterworth Lowpass filters
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Gaussian Lowpass Filters
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Results of filtering with 
Gaussian LPF with 
D0=5,15,30,80,235, 
respectively



Highpass Filter

q In general,
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Low Pass Filter ( LPF) in Spatial Domain 
(review)

q As a typical natural image spectrum is dominated by low frequency 
components

q There are several commonly used LPF kernels which combine 
reasonable noise suppression properties with low implementation 
complexity

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.07 0.12 0.07

0.12 0.25 0.12

0.07 0.12 0.07

q As the sum of all filter weights is equal to 1, the filters do not 
affect the average luminance

q Other odd size filters (5x5, 7x7) can also be used



Spatial vs frequency domain filtering
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Low Pass Filter ( LPF)

Image corrupted by noise

SNR = 20db

LP filtered image

SNR=26db



16/8/2023 75

Low Pass Filter ( LPF)
q Suppressing noise, LPF also affects the image
q If an image contains sharp edges of objects, they are blurred

i

i

s(i)

h(i)

slpf(i)

i
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Anisotropic Difusion
q An ideal noise suppression filter must 

1. Efficiently reduce noise level especially in uniform areas
2. Do not blur object edges

q Anisotropic Diffusion is an adaptive filter that avoids LP filtering 
across object boundaries

hu

hl 1.0 hr

hd

where weights h are calculated based upon the 
difference between the adjacent image pixels in 
corresponding directions

Quiz: the greater 

| s(i,j) – s(i, j-1) | the smaller/larger hl?

q There are several Anisotropic Defusion filters that employ 
different equations to calculate h



Image Pyramids

q An image may look quite 
different at different 
scales. A powerful and 
simple structure often used 
in Computer Vision Image 
Pyramid which represents 
the image at more than one 
resolution
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Gaussian Image Pyramids

qApply Gaussian 
Lowpass filtering to an 
image I and down 
sampling the filtered 
image by a factor of 
2,
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Suggested Reading

qE. R Davies, Computer Vision: Principles, 
Algorithms, Applications, Learning, Academic 
Press; 5th edition; 2017
42.2, 3.1-3.3

qD Forsyth, Computer Vision. A Modern Approach
4Chapter 4



OpenCV 4.6.0

qTutorials – Python
4 https://docs.opencv.org/4.6.0/d2/d96/tutorial_py_table_of_contents_imgproc.html

4Image Thresholding
4Smoothing Images
4Image Pyramids
4Histograms in OpenCV
4Image Transforms in OpenCV
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https://docs.opencv.org/4.6.0/d2/d96/tutorial_py_table_of_contents_imgproc.html
https://docs.opencv.org/4.4.0/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.4.0/d4/d13/tutorial_py_filtering.html
https://docs.opencv.org/4.4.0/dc/dff/tutorial_py_pyramids.html
https://docs.opencv.org/4.4.0/de/db2/tutorial_py_table_of_contents_histograms.html
https://docs.opencv.org/4.4.0/dd/dc4/tutorial_py_table_of_contents_transforms.html



