CSIT882 Data Management Systems

Design Patterns

Subject coordinator: Chen Chen

School of Computing and Information Technology - University of Wollongong

Disclaimer: subject materials are sourced from previous offerings of CSIT882

Design Patterns

e Qutline

e Reification Transformation
* Design Patterns

Reification Transformation

* Reification is the promotion of something that is not an object into an object

* Employees are described by a unique number, name, salary, and names of skills
possessed

EMPLOYEE
e# ID
name
salary
skill-name[1. .%]

* Employees have skills

EMPLOYEE
e# 1D Has » SKILL
name * 1..* [skill-name ID
salary

Reification Transformation

» Students are described by a student number, first name, last name, address, and
name of degree enrolled

STUDENT
s# 1D
fname
lname
degree
e Students enrol degrees
STUDENT
s# 1D Enrols » DEGREE
fname 1. .% name ID
lname

Design Patterns

e Qutline

e Reification Transformation

* Design Patterns

* Simple tree pattern
Complex tree pattern
ltem description pattern
Qualification pattern
Homomorphism pattern

Why are patterns important

Pattern: a model fragment that is profound and recurring

Enriched modeling language. Patterns provide a higher level of building blocks than
modeling primitives. Patterns are prototypical modeling fragments that distill the
knowledge of experts.

Improved documentation. Patterns offer standard forms that improve modeling
uniformity.

Reduced modeling difficulty. Many developers find modeling difficult because of the
intrinsic abstraction. Patterns are all about abstraction and give developers a better place
to start.

Faster modeling. Developers do not have to create everything from scratch and can build
on the accomplishments of others.

Better models. Patterns reduce mistakes and rework. Carefully considered patterns are
more likely to be correct and robust than an untested, custom solution.

Drawbacks of Patterns

* You cannot build a model by just combining patterns. Typically you will use only a
few patterns, but they often embody key insights.

* |t can be difficult to find a pattern, especially if your idea is ill-formed.
* Patterns are an advanced topic and can be difficult to understand.

e There has been a real effort in the literature to cross reference other work and
build on it. However, inconsistencies still happen.

Simple Tree Pattern

* Tree structure has one root node

e Parent node has many child nodes

* Child node has at most one parent node

<Tree>

root

<Node>

0..1
parent

child

Simple tree pattern

* Management structure has one ceo. Manager has many subordinates.
Subordinate has at most one manager.

Ceo
MANAGEMENT 0..1 PERSON

0..1 1..*
subordinate

Is-manger-of P

* Device looks like one part. Part consists of many parts. Part belongs to at most
one other part.

main-component
DEVICE 0..1 PART

Uill 110*
component

Consists-of P

Complex tree pattern

* Tree structure has one root node
* Leaf node is a node
* Branch node is a node

* Branch node has many child nodes

* Child node has at most one parent node which is a branch node

<Tree>

root child
<Node> |-

0.1 1 *

T

<Leaf> <Branch>

0..1 | parent

Complex tree pattern

File hierarchy has one root file

Data file is a file

Directory file is a file

Directory file contains many child files

Child file belongs to at most one directory file

File name is a local identifier of file in a directory file

root child
FILE HIERARCHY 0..1 FILE 0..1
< Belongs-to
Tl Contains a
parent
0..1
file-name

DATA FILE DIRECTORY
FILE

Complex tree pattern

A device has one part which is either elementary or composite
Elementary part is a part

Composite partis a part

Composite part consists of many parts

root child
DEVICE PART 0. .%

< Belongs-to
Ti Consists—of a

parent
0..1

ELEMENTARY PART COMPOSITE PART

'tem description pattern

Item has item description

<Item description>

4 Has-description

Car has assembly specification

CAR MODEL
year ID
make ID
model ID
engine-type
fuel

1||

= Has-specification

*

<Item>

CAR

Course has description

COURSE DESCRIPTION

c#

title

credits
specification

1.

ID

session

.k

4 Has-description

rego# 1D

colour

COURSE

0..

1 lecturer

Qualification pattern

Attribute is a local identifier.

<Item > |<local identifier> Consists-of P

<Item component>

U‘ .1

Room number is a local identifier of a room in a building.

BUILDING rooms# Consists-of P ROON

Branch name is a local identifier of a branch in a bank

Consists-of P
BANK branch-name 0..1 BRANCH

Homomorphism pattern

Iltem-1 has description-1
Item-2 has description-2
Item-1 is related to item-2

Description-1 is related to description-2

Is-related-to-1 »
T

<Item descriptionl>

*

<Item description2>

<Association class
description=>

Has-description a

*
Has-description a

<Association class>

Has—-description a

*

<Iteml>

Is-related-to-2 »

* <I[tem2>

Homomorphism pattern

Course description consists of assessment specification

Course has description

Assessment has assessment specification

Course consists of assessment

COURSE DESCRIPTION

Consists—of »

Has—description a

1..%

Consists-of =

ASSESSMENT
SPECIFICATION

Has—-description a

1. .%

COURSE

ASSESSMENT

Homomorphism pattern

Flight description consists of flight leg descriptions

Flight has description

Flight leg has Flight leg description

Flight consists of flight legs

FLIGHT DESCRIPTION

Consists-of »

Has-description a

Consists-of »

FLIGHT LEG DESCRIPTION

Has-description a

1..%

FLIGHT

FLIGHT LEG

Exercise — Logical design

* A process of logical design transforms a class of objects

ENROLMENT

student-number 1ID
subject-number 1ID
grade

* into:

Exercise — Logical design

* A process of logical design transforms a class of objects

STUDENT
student-number ID1
full-name ID2
dob ID2
degree

* into:

Exercise — Logical design

* A process of logical design transforms a class of objects

* into

ASSIGNMENT

subject-code
assignment-number ID

topic

1D

task-number

Consists—-of »

TASK

0..1

specification
total-marks

Exercise — Logical design

* A process of logical design transforms a class of objects

STUDENT

s# ID1

first-name

last-name

dob
POSTGRADUATE-STUDENT UNDERGRADUATE-STUDENT
thesis project

* Into (using superset method)

21

References

* Blaha M., Pattern of Data Modelling, CRC Press, 2010, chapters 1-7

e Blaha M., PREMERLANI W., Object-Oriented modelling and Design for Database
Applications, Prentice Hall, 1998, chapter 4

	Slide Number 1
	Design Patterns
	Reification Transformation
	Reification Transformation
	Design Patterns
	Why are patterns important
	Drawbacks of Patterns�
	Simple Tree Pattern
	Simple tree pattern
	Complex tree pattern
	Complex tree pattern
	Complex tree pattern
	Item description pattern
	Qualification pattern
	Homomorphism pattern
	Homomorphism pattern
	Homomorphism pattern
	Exercise – Logical design
	Exercise – Logical design
	Exercise – Logical design
	Exercise – Logical design
	References

