
Introduction to
Transaction Processing
(Serialization graph testing, two-phase locking,
timestamp ordering)
CSIT882: Data Management Systems

Outline

2

• Serialization graph testing protocol
• Two-phase locking protocol
• Timestamp ordering protocol

Principles
Scheduler maintains and tests serialization graph If an operation
issued by a transaction violates conflict serializability (i.e. it creates
a cycle in serialization graph) then such transaction is aborted

Preliminaries
A directed graph G = (V, A) consists of
o a vertex set V
o an edge set A such that each edge connects two vertices.

Cyclic: G is cyclic if G contains a directed cycle.

3

Serialization graph testing protocol (SGT)

Cyclic Graph

Serialization graph

4

Consider some schedule of a set of transactions 𝑇!, 𝑇", ..., 𝑇#
Serialization graph — a directed graph 𝐺 = (𝑉, 𝐸)
• where the vertices (𝑉) are the transactions.

We draw an edge from 𝑇$ to 𝑇%: 	𝑇$ → 𝑇%
• if the two transactions are conflict,
• and 𝑇$ accessed the data item earlier.

A schedule is conflict serializable
• if and only if its serialization graph is acyclic (cycle free).

Serialization graph

T2T1

v=read(x)

w=read(x)

write(x,v-10)

write(x,w+20)

T1

T2

The serialization graph is cyclic (not cycle free)
Above schedule is not conflict serializable

time

5

Serialization graph

T2 T3T1

write(x)

write(x)

write(x)

write(y)

v=read(y)

T1 T2 T3

6

The schedule is not
conflict serializable

time

The graph is cyclic

Outline

7

• Serialization graph testing protocol
• Two-phase locking protocol
• Timestamp ordering protocol

A lock is a mechanism to control concurrent access to a data item

Data items can be locked by requesting locks

To use a data item, a transaction must acquire the relevant locks

A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks

Goal: Locking protocols enforce serializability by restricting the set of
possible schedules

8

Lock

Principle
Each transaction must acquire all locks before releasing any lock

Phase 1: Growing Phase
• Transaction obtains locks
• Transaction does not release any locks

Phase 2: Shrinking Phase
• Transaction releases locks
• Transaction does not obtain new locks

This protocol ensures serializability
• produces conflict-serializable schedules

9

Two-phase locking (2PL) protocol

Time

Lo
ck
s

T1 T2

lock(u)a=read(u)

lock(v) write(v,1)

write(u,a+2)

lock(v)? wait

lock(x) b=read(x)

unlock(v)

write(x,b+2)
...

10

Two-phase locking (2PL) protocol

time

Two-phase locking (2PL) protocol

...
T1 T2

lock(v)

unlock(x)

write(v,a+3)

unlock(v)

unlock(u)

commit

commit

11

time

Deadlock

Deadlock occurs when each transaction T in a set of two or
more transactions is waiting for some item that is locked by
some other transaction T in the set.
In most locking protocols, a deadlock can exist.

12

T2

lock(v) write(v,1)

T1

lock(u)a=read(u)

lock(v)? wait

lock(u)? wait

13

Deadlock

time

Above situation is called a deadlock.
Issue: neither T1 nor T2 can make progress

How to handle deadlocks
There are several techniques for handling deadlocks

• Timeouts: If a transaction waits for a period longer than a
system-defined timeout period, the system assumes that the
transaction may be deadlocked and aborts it.

• Deadlock detection: Use transaction dependencies to construct
a wait-for graph:

 create a vertex for each transaction; and
 an edge from Ti to Tj if Ti is waiting for an item locked by Tj.
 If the wait-for graph has a cycle, then a deadlock has occurred.

• Deadlock prevention: Use transaction timestamps to order
transactions.
14

Outline

15

• Serialization graph testing protocol
• Two-phase locking protocol
• Timestamp ordering protocol

Each transaction obtains a timestamp at the start point

Data items are stamped each time a transaction accesses
data items in a read or write mode

Access to data items is permitted in increasing order of
timestamps

This protocol ensures serializability
• produces conflict-serializable schedules

16

Timestamp ordering (TO) protocol

Principles

T2 x

x:t1

T1

timestamp(t1)

a=read(x)

write(x,a-10)

timestamp(t2)

write(x,3)

b=read(y)

x:t1:t2

y:t2

y:t2:t1write(y,a+5)

abort

Timestamp ordering (TO) protocol

time

17

References

18

Elmasri R., Navathe S., Fundamentals of Database Systems, 6th
edition, chapter 21 Introduction to Transaction Processing
Concepts and Theory, pp. 747-779
Elmasri R., Navathe S., Fundamentals of Database Systems, 6th
edition, chapters 22.1, 22.3 Concurrency Control Techniques, pp.
780-794

