
 CSIT115 Data Management and Security

 CSIT882 Data Management Systems

Logical Design

Subject coordinators: Dr Chen Chen, Dr Thanh Le Hoang

Slides created by Dr Janusz R. Getta, School of Computing and Information Technology -

University of Wollongong

Logical Design
Outline

Methodology

Transformations

Example

TOP               Created by Janusz R. Getta,  CSIT115 CSIT882,  Autumn 2024 2/46

Methodology

The logical design transforms a conceptual schema into a set of
relational schemas

The logical design is performed as a sequence of the following steps:

(1) The multivalued attributes are replaced with the classes of objects
and depending on the semantics of multivalued attribute either with
one-to-many or many-to-many associations

(2) The associaton classes and link attributes are replaced with the
triples (one-to-many association:class-of-objects :many-to-one-
association)

(3) Many-to-many associations are replaced with triples (one-to-many
association:class-of-objects:many-to-one association)

(4) The qualifications are replaced with one-to-many associations and
composite identifiers in object classes on "many" side of one-to-many
associations

TOP 3/46

Methodology

(5) The selected identifiers are copied from the classes of objects on
"one" sides of association to the classes of objects on "many" side of the
associationds and such identifierds are tagged with FKn tag (an index "n"
is used to distinguish between different foreign keys)

(6) The triples (class-of-objects:one-to-one asociation:class of objects) are
merged into one class of objects and one-to-one associations are
removed

(7) The superset, subset and association methods are used to transform
the generalizations

(8) The primary and candidate keys are created

(9) The associations are removed

(10) The relational schemas with the referential integrity constraints are
created

TOP 4/46

Logical Design
Outline

Methodology

Transformations

Example

TOP               Created by Janusz R. Getta,  CSIT115 CSIT882,  Autumn 2024 5/46

Multivalued attributes

Case 1: Transformation into a class of objects and many-to-many
association

A multivalued attribute author-name in a class of objects BOOK is

transformed in the following way:

An attribute author-name is promoted to a class of objects AUTHOR (such
step is called as reification)

A single valued attribute author-name is added as an identifier to a class
AUTHOR
A multivalued attribute author-name is removed from a class BOOK
A many-to-many association Is-written-by is created between the classes
BOOK and AUTHOR

-

-

-

-

TOP 6/46

Multivalued attributes

An association Is-written-by is many-to-many because a book can be

written by many authors and an author can write many books

TOP 7/46

Multivalued attributes

Case 2: Transformation into a class of objects and one-to-many
association

A multivalued attribute phone-number in a class of objects PERSON is

transformed in the following way:

An attribute phone-number is promoted to a class of objects PHONE (such
step is called as reification)

A single valued attribute number is added as an identifier to a class PHONE
A multivalued attribute phone-number is removed from a class PERSON
A one-to-many association Has is created between the classes PERSON and
PHONE

-

-

-

-

TOP 8/46

Multivalued attributes

An association Has is one-to-many because a person can have many

mobile phones and a mobile phone is owned by one person

TOP 9/46

Association classes

An association class Enrols is transformed in the following way:

Many-to-many association Enrols is removed

A one-to-many association Performs is added between a class STUDENT and a
class ENROLMENT
A one-to-many association Is-involved-in is added between a class
SUBJECT and a class ENROLMENT
A qualification with an attribute code is added on a STUDENT side of
association Performs and a qualification with an attribute s# is added on
SUBJECT side of association Is-involved-in

-

-

-

-

TOP 10/46

Association classes

A qualification with an attribute code of an association Performs
contributes to an identifier (s#, code) of a class ENROLMENT

A qualification with an attribute s# of an association Is-involved-in
also contributes to an identifier (s#, code) of a class ENROLMENT

TOP 11/46

Qualified association classess

An association class Enrols qualified with an attribute edate is

transformed in the following way:

Many-to-many association Enrols is removed

A one-to-many association Performs is added between a class STUDENT
and a class ENROLMENT
A one-to-many association Is-involved-in is added between a class
SUBJECT and a class ENROLMENT
A qualification with the attributes (code,edate) is added on STUDENT side
of association Performs and a qualification with the attributes
(s#,edate) is added on SUBJECT side of association Is-involved-in

-

-

-

-

TOP 12/46

Qualified association classes

An attribute edate is removed from a class ENROLMENT

TOP 13/46

Link attributes

A link attribute edate is transformed in the following way:

A link attribute edate is promoted to an association class ENROLMENT

An association class ENROLMENT is transformed in a way explained earlier

-

-

TOP 14/46

Many-to-many associations

A many-to-many association Supplies is transformed in the following

way:

A new class of objects SHIPMENT is created

A one-to-many association Performs is added between a class SUPPLIER
and a class SHIPMENT
A one-to-many association Is-involved-in is added between a class
PART and a class SHIPMENT
A qualification with the attributes (p#) is added on SUPPLIER side of
association Performs and a qualification with the attributes (s#) is added
on PART side of association Is-involved-in

-

-

-

-

TOP 15/46

Many-to-many associations

A qualification with an attribute p# of an association Performs

contributes to an identifier (p#, s#) of a class SHIPMENT

A qualification with an attribute s# of an association Is-involved-in also

contributes to an identifier (p#, s#) of a class SHIPMENT

TOP 16/46

Qualifications

A qualification with the attribute room# is transformed in the following

way:

The attributes (bldg#, room#) are copied to a class ROOM
A pair of attributes (bldg#, room#) is tagged with IDn in a class ROOM (it
becomes an identifier)

An attribute bldg# is tagged with FKn to denote a foreign key referencing an
identifier bldg# in a class BUILDING
A multiplicity on a class ROOM side of qualified association has is changed to *
or 1..*
A qualification with an attribute room# is removed

-

-

-

-

-

TOP 17/46

Qualifications

The attributes (bldg#, room#) form an identifier of a class ROOM

A attribute bldg# becomes a foreign key referencing an attribute bldg#
in a class BUILDING

TOP 18/46

Qualifications

A double qualification with the attributes (code, edate) and (s#,
edate) is transformed in the following way:

The attributes (code, edate) and the attributes (s#, edate) are copied
to a class ENROLMENT
A triple of attributes (code, s#, edate) is tagged with IDn in a class
ENROLMENT (it becomes an identifier)

An attribute code is tagged with FKn to denote a foreign key referencing an
identifier code in a class SUBJECT
An attribute s# is tagged with FKm to denote a foreign key referencing an
identifier s# in a class STUDENT
Both 0..1 multiplicities on the left and right side of a class ENROLMENT are
changed to * or 1..*

-

-

-

-

-

TOP 19/46

Qualifications

Both qualifications with the attributes (code, edate) and (s#, edate)
are removed

-

TOP 20/46

Foreign keys

Foreign keys are created in the following way:

An identifier (bldg#, room#) from "one" side of an association Is-
located-in is copied to a class EQUIPMENT on "many" side of the
association

A pair of attributes (bldg#, room#) is tagged with FKn in a class
EQUIPMENT (it becomes a composite foreign key) referencing (bldg#,
room#) in a class ROOM

-

-

TOP 21/46

One-to-one associations

One-to-one associations are transformed in the following way:

A triple (CHAIRMAN:Is-head-of:SCHOOL) is merged into one class of
objects SCHOOL
The attributes (emp#, first-name, last-name, dob) that come from an
optional 0..1 side of association Is-head-of are tagged with [0..1] as optional
attributes

An attribute like name, that was an identifier of a class on mandatory side (1..1) of
and association obtains a tag IDn
An attribute like emp#, that was an identifier of a class on an optional side of
association obtains a tag CKn
One-to-one association is removed

-

-

-

-

-

TOP 22/46

One-to-one associations

Note, that a candidate key emp# may have no value, it means, that it can

be NULL

TOP 23/46

Generalizations - superset method

A superset method transforms entire generalization hierarchy into a
single class of objects in the following way:

All attributes from the classes of objects at the lowest level of generalization
hierarchy are copied to an immediate higher level and become optional
attributes ([0..1] tag) there, e.g. the attributes project and thesis are
copied from the classes UNDERGRADUATE-STUDENT and
POSTGRADUATE-STUDENT to a class STUDENT
An attribute type-of-superclass is added to a superclass, e.g. and
attribute type-of-students is added to a class STUDENT

-

-

TOP 24/46

Generalizations - superset method

All classes at the lowest level are removed-

The steps above are repeated until only one class of objects is left-

TOP 25/46

Generalizations - subset method

A subset method transforms entire generalization hierarchy into a
number of classes of objects in the following way:

All attributes from the classes of objects at the higher levels of generalization
hierarchy are copied to the classes of objects at the lowest levels of
generalization hierarchy e.g. the attributes s# and first-name last-name,
dob are copied from a class STUDENT to the classes POSTGRADUATE-
STUDENT and UNDERGRADUATE-STUDENT

-

TOP 26/46

Generalizations - subset method

All classes of objects except those at the lowest levels of generalization hierachy
are removed, e.g. a class STUDENT is removed

-

TOP 27/46

Generalizations - association method

An association method transforms entire generalization hierarchy into a
number of classes of objects in the following way:

One of the identifiers from a superclass is copied to subclasses one level below
a superclass, e.g. an attribute s# is copied from a class STUDENT to the classes
UNDEGRADUATE-STUDENT and POSTGRADUATE-STUDENT

The copied identifier obtains a tag FKn in the subclasses

-

-

TOP 28/46

Generalizations - association method

A generalization level is removed from a diagram-

TOP 29/46

Primary keys and candidate keys

primary keys and candidate keys are created in the following way:

In each class one of the identifiers (identifier or composite identifier), e.g. s#
attribute is tagged with PK tag

All other identifiers like ssno, (first-name, last-name, dob) are tagged
with Ckn tags

-

-

TOP 30/46

Associations

In this step association are eliminated and FKn tags are extended with

REFERENCE clauses in the following way:

Each time "on-to-many" association is removed a respective FKn tag is
extended with REFERENCE clause refering PKn on the other side of the
removed association, for example when an association Is-located-in is
removed FK1:(bldg#, room#) is extened with a clause REFERENCES
ROOM(blgd#, room#)

-

TOP 31/46

Chen Chen
PK1

Chen Chen
FK1

Relational schemas

In the final step the relational schemas are created in the following way:

A relational schema is created from each object class left such that in each class
the attributes tagged with PKn become a primary key, the attributes tagged
with CKn become a candidate key and attributes tagged with FKn become a
foreign key

-

ROOM(bldg#, room#, area)
PRIMARY KEY = (bldg#, room#)

Relational schema ROOM

EQUIPMENT(serialnum, name, installation-date, bldg#, room#)
PRIMARY KEY = (serialnum)
FOREIGN KEY = (bldg#, room#) REFERENCES ROOM(bldg#, room#)

Relational schema EQUIPMENT

TOP 32/46

Chen Chen
PK1

Chen Chen
FK1

Logical Design
Outline

Methodology

Transformations

Example

TOP               Created by Janusz R. Getta,  CSIT115 CSIT882,  Autumn 2024 33/46

Example

The following conceptual schema represents a simple database domain
that contains information about parts, customers, orders submitted by
customers, contents of each order, suppliers and parts shipped by
suppliers

First, we transform multivalued attributes

TOP 34/46

Example - multivalued attributes

The following conceptual schema is obtained after transformation of
multivalued attributes

Next, we transform association classes and link attributes

TOP 35/46

Example - Association classes and link attributes

The following conceptual schema is obtained after transformation of
association classes

Next, we transform many-to-many associations

TOP 36/46

Example - Many-to-many associations

The following conceptual schema is obtained after transformation of
many-to-many-associations

Next, we transform qualifications

TOP 37/46

Example - Qualifications

The following conceptual schema is obtained after transformation of
qualifications

Next, we create foreign keys

TOP 38/46

Chen Chen

Example - Foreign keys

The following conceptual schema is obtained after creation of foreign
keys

Next, we transform one-to-one asociations

TOP 39/46

Example - One-to-one associations

The following conceptual schema is obtained after transformation of
one-to-one associations

Next, we transform generalizations

TOP 40/46

Example - Generalizations

The following conceptual schema is obtained after transformation of
generalizations with an association method

Next, we create primary keys and candidate keys

TOP 41/46

Example - Primary keys and Candidate keys

The following conceptual schema is obtained after creation of primary
keys and candidate keys

Next, we transform associations

TOP 42/46

Example - Associations

The following conceptual schema is obtained after transformation of
associations

Next, we create relational schemas

TOP 43/46

Example - Relational schemas (1)

At the end we obtain the following collection of relational schemas:

CUSTOMER(name, phone, address)
PRIMARY KEY = (phone)

Relational schema CUSTOMER

FREQUENT-CUSTOMER(phone, points)
PRIMARY KEY = (phone)
FOREIGN KEY = (phone) REFERENCES CUSTOMER(phone)

Relational schema FREQUENT-CUSTOMER

ORDERS(order#, odate, phone)
PRIMARY KEY = (order#)
FOREIGN KEY = (phone) REFERENCES CUSTOMER(phone)

Relational schema ORDERS

SUPPLIER(sname, fax)
PRIMARY KEY = (sname)

Relational schema SUPPLIER

PHONE(number, sname)
PRIMARY KEY = (number)
FOREIGN KEY = (sname) REFERENCES SUPPLIER(sname)

Relational schemas phone

TOP 44/46

Example - Relational schemas (2)

At the end we obtain the following collection of relational schemas:

PART(p#, name, price)
PRIMARY KEY = (p#)

Relational schema PART

PART-SHIPPED-BY(sname, p#, shipment-date)
PRIMARY KEY = (sname, p#, shipment-date)
FOREIGN KEY1 = (sname) REFERENCES SUPPLIER(sname)
FOREIGN KEY2 = (p#) REFERENCES PART(p#)

Relational schema PART-SHIPPED-BY

LINEITEM(order#, line#, sname, p#, shipment-date)
PRIMARY KEY = (order#, line#)
FOREIGN KEY1 = (order#) REFERENCES ORDER(order#)
FOREIGN KEY2 = (sname, p#, shipment-date)
 REFERENCES PART-SHIPPED-BY(sname, p#, shipment-date)

Relational schema LINEITEM

TOP 45/46

References

C. Coronel, S. Morris, A. Basta, M. Zgola, Data Management and Security,
Chapter 2 Cengage Compose eBook, 2018, eBook: Data Management
and Security, 1st Edition

T. Connoly, C. Begg, Database Systems, A Practical Approach to Design,
Implementation, and Management, Chapter 17 Methodology - Logical
Database Design for the Relational Model, Pearson Education Ltd, 2015

TOP               Created by Janusz R. Getta,  CSIT115 CSIT882,  Autumn 2024 46/46

