
CSIT882: Data Management Systems

NoSQL Databases

What is NoSQL?
o When people use the term “NoSQL”, they typically use it to

refer to any non-relational database.

o Some say the term “NoSQL” stands for “not only SQL”.

o Either way, most agree that NoSQL databases are

databases that store data in a format other than relational

tables.

o First proposed in 2009 for the projects experimenting with

alternate data storage, like BigTable (Google) and Dynamo

(Amazon)
2

What is NoSQL?
o NoSQL database systems were developed in a response to the

demands for processing big data produced by increasing Internet

usage and mobile geo-location technologies

o Traditional solutions were either too expensive, not scalable, or

required too much time to process data

o Modern NoSQL database systems made significant advances in

scalability and efficient processing of diverse types of data such as

text audio, video, image, and geo-location

o NoSQL database systems include the following types of database

systems categorized by a logical view of data provided: key-value

DB, document DB, column stores, graph DB, etc

3

Big Data
Very large volumes of data being collected

o Driven by growth of web, social media, and more recently internet-of-

things

o Web logs were an early source of data

o Analytics on web logs has great value for advertisements, web site

structuring, what posts to show to a user, etc

Big Data: different from data handled by earlier generation databases

o Volume: much larger amounts of data stored

o Velocity: much higher rates of insertions

o Variety: many types of data, beyond relational data

4

Trends & Requirements
Trends

Volume of data

Velocity of data

Variety of data

5

Requirements

Real database scalability

o massive database distribution

o dynamic resource management

o horizontally scaling systems

Frequent update operations

Massive read throughput

Flexible database schema

o semi-structured data

RDBMS for Big Data
relational schema

o data in tuples

o a priori known schema

schema normalization

o data split into tables (3NF)

o queries merge the data

transaction support

o trans. management with

ACID

o safety first

6

but current data are naturally

flexible

inefficient for large data

slow in distributed environment

full transaction is very inefficient

in distributed environment.

Why NoSQL?
o Flexible data models

◦ A flexible schema allows to easily make changes to database as

requirements change

o Horizontal scaling
◦ SQL: require scale-up vertically (migrate to a larger, more expensive

server)

◦ NoSQL: add cheaper commodity servers whenever needed.

o Fast queries
◦ SQL: data is normalised => join data from multiple tables

◦ NoSQL: usually stored in a way optimised for queries

7

CAP Theorem
At most two of the following three

can be maximized at one time

Consistency

o Each client has the same view

of the data

Availability

o Each client can always read

and write

Partition tolerance

o System works well across

distributed physical networks

8

NoSQL Databases
NoSQL: Database technologies that are (mostly):

o Not using the relational model (nor the SQL language)

o Designed to run on large clusters (horizontally scalable)

o No schema - fields can be freely added to any record

o Open source

o Based on the needs of the current big data era

Other characteristics (often true):

o easy replication support (fault-tolerance, query efficiency)

o eventually consistent (not ACID)

9

The End of RDBMS?
Relational databases are not going away

o are ideal for a lot of structured data, reliable, mature, etc.

RDBMS became one option for data storage

Using different data stores in different circumstances

Two trends

o NoSQL databases implement standard RDBMS features

o RDBMS are adopting NoSQL principles

10

NoSQL Databases

Key-value stores

Document databases

Column-family stores

Graph databases

11

NoSQL database systems include the following types of
database systems categorized by a logical view of data
provided

NoSQL Databases by Data Models

12

Key-Value
Come from a research paper by Amazon (Dynamo)

o Global Distributed Hash Table (Key-Value Stores)

A simple hash table (map), primarily used when all accesses to

the database are via primary key

o key-value mapping

In RDBMS world: A table with two columns:

o ID column (primary key)

o DATA column storing the value (unstructured binary large

object)

13

Key-Value Operations
Key-value stores support

o put(key, value): used to store values with an associated key

o get(key): which retrieves the stored value associated with

the specified key

o delete(key): remove the key and its associated value

Some systems also support range queries on key values

14

Key-Value
Why?

o Simple Data Model: Hash Table is well-studied

o Good Scalability: Small System Cost, via good look-up

locality and caching

Why not?

o Poor to complex (interconnected) data

15

Key-Value Vendors

16

Project
Voldemort

Ranked list: http://db-engines.com/en/ranking/key-value+store

http://db-engines.com/en/ranking/key-value+store

Document Stores
Basic concept of data: Document

Documents are self-describing pieces of data

o Hierarchical tree data structures

o Nested associative arrays (maps), collections

o XML, JSON (JavaScript Object Notation), BSON, …

Documents in a collection should be “similar”

o Their schema can differ

Documents stored in the value part of key-value

o Key-value stores where the values are examinable

o Building search indexes on various keys/fields

17

Document Stores - Example
{ "personID": 3,

"firstname": "Martin",
"likes": ["Biking","Photography"],
"lastcity": "Boston",
"visited": ["NYC", "Paris"] }

{ "personID": 5,
"firstname": "Pramod",
"citiesvisited": ["Chicago", "London","NYC"],
"addresses": [

{ "state": "AK",
"city": "DILLINGHAM" },

{ "state": "MH",
"city": "PUNE" }],

"lastcity": "Chicago“ }

18

MongoDB
humongous => Mongo

Data is organized in collections. A collection stores a set of

documents.

Collection is like a table and document is like a record

o but: each document can have a different set of attributes

even in the same collection

o Semi-structured schema

Only requirement: every document should have an “_id” field

19

MongoDB Example

{ "_id”:ObjectId("4efa8d2b7d284dad101e4bc9"),
"Last Name": ” Cousteau",
"First Name": ” Jacques-Yves",
"Date of Birth": ”06-1-1910" },

{ "_id": ObjectId("4efa8d2b7d284dad101e4bc7"),
"Last Name": "PELLERIN",
"First Name": "Franck",
"Date of Birth": "09-19-1983",
"Address": "1 chemin des Loges",

"City": "VERSAILLES" }

20

MongoDB vs RDBMS

21

RDBMS MongoDB Equivalent

database database

table collection

row document

attributes fields (field-name:value pairs)

primary key the ‘_id’ field, which is the key
associated with the document

Relationships in MongoDB
Two options:

o store references to other documents using their _id values

o embed documents within other documents

22

{
"_id":ObjectId("52ffc33cd85242f436000001"),
"contact": "987654321",
"dob": "01-01-1991",
"name": "Tom Benzamin",
"address": [

{
"building": "22 A, Indiana Apt",
"pincode": 123456,
"city": "Los Angeles",
"state": "California"

},
{

"building": "170 A, Acropolis Apt",
"pincode": 456789,
"city": "Chicago",
"state": "Illinois"

}
]

}

{
"_id":ObjectId("52ffc33cd85242f436000001"),
"contact": "987654321",
"dob": "01-01-1991",
"name": "Tom Benzamin",
"address_ids": [

ObjectId("52ffc4a5d85242602e000000"),
ObjectId("52ffc4a5d85242602e000001")

]
}

MongoDB - Queries
Query language expressed via JSON

clauses: where, sort, count, sum, etc.

23

Document Stores - Vendors

24

MS Azure
DocumentDB

Ranked list: http://db-engines.com/en/ranking/document+store

http://db-engines.com/en/ranking/document+store

Column-Family Stores
Origin from Google’s BigTable

Also known as wide-column

Column families are groups of related data (columns) that are

often accessed together

25

Column-Family Stores - Main Idea
Each table tends to have many attributes (from thousands ~

millions)

In most applications (in OLAP) we are only interested in a few

attributes

Traditional row-based

o Store each record in a sequential file

o We need to read the whole record to access only one attribute

Column-based

o Store the data by putting the same attribute in a sequential file

o Faster access and better compression

26

Column-Family Stores - Example

27

Column-Family Stores
Why?

o Optimized for OLAP

o Semi-Structured Data: Each column can define its own

schema

Why not? Not good for

o OLTP

o Row-specific Queries

28

Column-Family Stores - Vendors

29

Ranked list: http://db-engines.com/en/ranking/wide+column+store

http://db-engines.com/en/ranking/wide+column+store

Graph Database
Data Model

o Vertices (Nodes) -> Entities

o Edges -> Relations

30

Graphs are Everywhere

31

Internet

Social Networks

Road Networks

Knowledge GraphsBiological Networks

Information vs Knowledge

32

Advantages
Performance

o Traditional Joins are inefficient

o Billion-scale data are common, e.g., Facebook social network, Google

Web graph

Flexibility

o Relationships among entities can be arbitrary. It is not feasible to use

1000 tables to model 1000 types of relationships.

Agility

o Business requirements changes over time

33

Property Graph Model
Nodes (Entities)

Relationships

Properties

Labels

34

Neo4j
The most popular Graph Database at present

Cypher query language

Developed in Java and open-source

Resources:

o Neo4j Cypher Manual: https://neo4j.com/docs/cypher-

manual/4.0/

o Neo4j Developer Resources:

https://neo4j.com/developer/resources/

35

Graph vs Relational Model - Example

36

36

netId FirstName

abc1 Albert

def2 Danielle

ghi3 Gary

stu7 Sandeep

yz10 Yusin

netId Major

ghi3 STAT

ghi3 COMP

abc1 COMP

def2 ECE

stu7 STAT

netId Course

abc1 COMP 430

def2 COMP 430

abc1 COMP 431

Student

Majors

Enrolls

Types of Graph Queries
Graph Pattern Matching

o Given a graph pattern, find subgraphs in the database graph that match the query.

o Can be augmented with other (relational-like) features, such as projection.

Graph Navigation

o A flexible querying mechanism to navigate the topology of the data.

o Called path queries, since they require to navigate using paths (potentially variable

length).

37

MATCH (p:Person)-[:LIKES]->(:Language {name = "SQL"})
RETURN p.name

MATCH (p:Person)-[:KNOWS*1..2]->(:Person {name = "Alice"})
RETURN p.name

Cypher Query Language

38

38

An example of Cypher:
Find Sushi restaurants in New York

that my friend Philip like

Graph Algorithms
The real power of graph databases

Can save huge amounts of programming effort

Include

o Centrality - node importance

o Community detection – node connectivity and partitions

o Path finding – routes through the network

o Similarity – of nodes

o Link prediction – closeness of nodes

https://neo4j.com/docs/graph-data-science/current/

39

Advantages/Disadvantages of NoSQL
o Which available data model to use should be decided on your data

requirements.

o Not all NoSQL solutions are equal – i.e., different models serve

different data requirements

o Generally, NoSQL solutions are considered lightweight and easy to

implement (e.g., no schema required) – and could have high read/write

throughput due to the relaxation in data consistency requirement

o However, NoSQL technologies are relatively new still – not as well

optimised/developed as RDBMS

o Schema-less data storage could lead to less manageable database

overtime.

40

