Machine Learning: Algorithms and Applications

Philip O. Ogunbona

Advanced Multimedia Research Lab
University of Wollongong

Artificial Neural Networks and Deep Learning: An Introduction (1)
Autumn Session

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 1/54



@ Introduction

e Models of a Neuron

e Common Activation Functions

© Network Architecture

© Learning Process

e Perceptron

Q Multilayer Perceptron and Back-propagation Algorithm

© References

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 2/54



Neural networks

@ A neural network is a machine designed to model the way in which the brain performs a
particular task or function of interest.

@ A neural network is a massively parallel distributed processor made up of simple processing
units that has a natural propensity for storing experiential knowledge and making it available
for use (Haykin 2009).

It resembles the brain in two respects (Haykin 2009):
@ Knowledge is acquired by the network from its environment through a learning process.

@ Inter-neuron connection strengths, known as synaptic weights, are used to store the
acquired knowledge.
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Models of a neuron

@ A neuron is an information-processing
unit fundamental to the operation of a
neural network

@ Consists of:

@ Synapse or connecting links:
each characterized by a weight
(wy;) or strength of its own. Note
a signal x; at the input of
synapse j, connected to neuron
k is multiplied by the synaptic
weight wy;.

@ Adder: sums the input
signals(x;), weighted by the
respective synaptic strengths of
the neuron

© Activation (or squashing)
function: limits the amplitude of
the output of a neuron;
squashes permissible amplitude
range of the output signal to
some finite value.
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Figure 1: Model of a neuron with bias b,
which increases or lowers the net input of
the activation function (Haykin 2009).
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Models of a neuron

Operation of neuron in Figure (1) can be written mathematically as

m

U = Zwijj (1)
j=1

v = @(ux + by) 2
where
@ xi,x2,...xy are the input signals;
@ wi,wy,...,wy are the respective synaptic weights of neuron k;

@ u is the linear combiner output due to the input signals
@ by is the bias;
@ ¢(-) is the activation function;
Bias by applies an affine transformation to the output «; of the linear combiner

Vi = uy + by (3)
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Models of a neuron

Equations (1) - (3) can be
combined into

m
Vk = Z WEjXj (4) Fixed input x, = +1 0
Jj=0
and 1 o ()
Activation
W= (p(‘)k) (5) function

Output
Vi

In combining the equations a
new synapse has been added

Summing
Jjunction

with input U
Synaptic
weights
xo = +1 (6) (including bias)
and weight

Figure 2: Model of neuron with the bias
wro = by (7) absorbed into the neuron (Haykin 2009).

See Figure (2).
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Models of a neuron

@ Signal flow model of a neuron could be useful in some analysis or
visualization

@ Output is given by Equations (4) & (5)

Fl

o(+) Output
> o Vi

Figure 3: Signal flow model of a neuron (Haykin 2009)
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Common Activation Functions

Threshold Function depicted in
Figure (4) can be written as:

it v>0
‘p(v):{o it veo O

Output of neuron, k, using - i
threshold function is

o(v)
_J1if w20 ©) - i
H=N0 if w<0 - .
1 | I L | |
and induced local field of -2 -15 -1 =05 0 05 1 15 2

neuron, vy is N

m Figure 4: Threshold function (Haykin 2009).
Vk = Zwijj- + by (10)
j=1
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Common Activation Functions

Logistic Function (an example
of Sigmoid function) is depicted
in Figure (5) and can be written
as:

o(v)

1
= — 11
1 + exp(—av) (" - o(v)
where induced local field of
neuron, vy is

Increasing
L B .
m L -
Ve = Zwijj + bk (12) 1 /% I | I 1
j=1

-0 -8 -6 -4 -2 0 2 4 6 8 10
and slope parameter a v
determines the shape

Figure 5: Sigmoid function for varying slope

@ Note that the logistic parameter a (Haykin 2009).
function is differentiable

while the threshold
function is not
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Common Activation Functions

@ Rectified Linear Unit (ReLU) has
become very popular since its 10
introduction by Nair & Hinton
(2010).

@ OQutput is a non-linear function of
the input 4

ReLU Activation Function

¥ Axis

m
= E wiXj + by (13) max(0,x)
j=1 S S R S S S !
-100 -75 -50 -25 0.0 25 50 15 10.0

v if vy >0 i
yk:{o it v<0 (14)
k Figure 6: Rectified Linear Unit
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Common Activation Functions

@ Softmax activation function
squashes each input to a value
between 0 and 1.

@ Output is equivalent to a
categorical probability distribution

@ Graph similar to logistic but
usually applied to provide
probabilistic interpretation to
outputs in classification task

m
Vi = Z wijj + bk (1 5)
Jj=1

_exp(w) 5
HETE ey O
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Figure 7: Softmax operation for a
3-class classification task
(https://sefiks.com/).
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Common Activation Functions
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Figure 8: Activation Functions (https://towardsdatasience.com)
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Common Activation Functions

— sigmoid (1.0)
10 Derivatives for activation functions| _ sigmoid (2.5)
— tanh
— relu
— softplus
05l gaussian
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Figure 9: Derivative of Activation Functions (https://towardsdatasience.com)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 13/54


https://towardsdatasience.com

Common Activation Functions

What are some nice properties of activation functions?
@ Nonlinear function; otherwise neural net can only solve simple problems;

@ Without activation neural net is equivalent to a linear regression
@ Nice derivatives makes learning easy

@ Activation functions should give a bounded output for a bounded input

Choosing the right activation function is both science and art. For further insight, see the
works of Ramachandran et al. (2017) and Mhaskar & Micchelli (1994)

Together with the right cost function, activation functions make training NN possible.
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Models of a neuron

@ In Figure (10) consider only 3 inputs and
the bias into the neuron;

@ Let the weights be w9 = b; = 0.5,
wi1 = 0.4 wyp = 0.6; w3 = 0.2

@ Letthe inputs be xp = 1; x; = 1.2;
xp =2.0;x3 =1.8

@ Let the activation function be logistic
sigmod with a = 0.2

Activation
function

Output

Summing
junction

weights
(including bias)

3
v = § wW1jX;j - Synaptic
=0

=1x05+04x124+06x20+02x1.8

Figure 10: Model of neuron:
=2.54

Example computation (Haykin
2009).
1
1 + exp(—avy)
B 1
T 14 exp(—0.2 x 2.54)

yi=e)=

= 0.624
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Network Architecture

Single Layer Feedforward Networks

@ Input layer of source nodes project
directly onto an output layer of
neurons

() >
Input layer Output layer
of source of neurons
nodes

Figure 11: Single Layer Feedforward
NN (Haykin (2009))
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Network Architecture

Multilayer Feedforward Networks

@ Input layer of source nodes project
directly onto a set of neurons in a
hidden layer

@ There could be one or more
hidden layers; output of each layer
forming input to the next layer

@ Adding one or more hidden layers
allows network to extract
higher-order statistics from the

input data

@ Network is fully connected if every Input layer Layer of Layer of
node in each layer is connected to of source hidden output
every node in the adjacent forward nodes fewrons flenrons
layer

Figure 12: Multilayer Fully Connected
Feedforward NN (Haykin (2009))
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Network Architecture

Recurrent Networks

@ Unlike feedforward networks P il
recurrent networks introduce
feedback from output to input and
with multilayer feedback could

also be among layers

@ Feedback loops and nonlinear
activation functions allow neural
network to model nonlinear
dynamic systems

Figure 13: Single Layer Recurrent
Neural Network (Haykin (2009))
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Network Architecture

>~ Outputs

J

Unit-time delay
operators

Inputs

Figure 14: Recurrent Neural Network with Hidden Layer (Haykin (2009))
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Learning process

Types of Learning

@ Supervised learning - predict an output when given an input vector
@ Reinforcement learning - select an action to maximize some defined payoff

@ Unsupervised learning - discover a good internal representation of the data
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Learning process

Supervised Learning

@ Each training case consists of an input vector x and a target output 7.
@ Regression: The target output is a real number or a whole vector of real numbers.

@ Classification: The target output is a class label.

Recall that in general we want to learn a mapping from input vector x to some output y
through a vector of weights w

y=f(w,x) (17)
such that the error (or loss or cost function) incurred in the prediction of the actual
value is minimized.

@ For regression, the cost function
J(w,b) = —Elog pmodel (]x) (18)

is the expectation of negative conditional log-likelihood computed over the training data; the
cross-entropy between the training data and the model distribution
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Learning process

@ Cost function in Equation (18) is usually minimized in an optimization process,
gradient descent.

@ How to understand gradient-based optimization? (Goodfellow et al. 2016, p. 80)

Consider a function y = f(x) where both x and y are real numbers
Derivative of y = f(x), f’(x), gives slope of f(x) at point x

Importantly, it tells us how to scale a small change in the input to obtain corresponding
change in output (this is due to Taylor’s expansion):

fo+e) = f(x) +ef (x) (19)

fx—esign(f'(x))) < f(x) for small enough e
So we reduce f(x) by moving x in small steps with the opposite sign of the derivative

This technique is called gradient descent ! and credited to Louis Augustin Cauchy,
1847 (it's also called steepest descent)

For brief (mathematical) historical account see Lemarechal (2012)
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Learning process

Gradient descent

2.0 T T T T T T T
N /
1.5F N\ Global minimum at z=0. ;A
\ Since f(z)=0, gradient ,
10k \ descent halts here. v |
N ’
S s
0.5 4
~ -
~ -
0.0 R g i
. For z <0, we have f(z) <0, For >0, we have f(a:) >0,
so we can decrease f by, so we can decrease f by
—0.5F  moving rightward. moving leftward. b
—1.0f |
1,2
- fl@)=42
~1.5F
— f@)==

9.0 ! ! ] ! ! T I

-20 15 10 05 0.0 0.5 1.0 1.5 2.0

Figure 15: lllustration of the gradient descent algorithm (Goodfellow et al. 2016, p.80)
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Consider a point x = —1 on the curve
f(x) = $x? (Figure 16) and step size
e=0.1;
F=D) =55/ (x) =xf/(=1) = =1;
Therefore,
A" = x —f(x)
=—1-0.1x(=1)
=-09

and search for minimum takes us to the
right of x = —1;i.e. x = —0.9

f(—0.9) = 0.405; which is less than
(=1 =05

Similarly if we are at x = 1.5;

X" =15-0.1 x 1.5 = 1.35;

which is to the left of x = 1.5 and
towards the minimum point; compare
f(1.5) = 1.125 and £(1.35) = 0.911

Machine Learning

lllustration of gradient descent in 1-dimension

Gradient descent
T T T

2.0 T T T
\ 7
L3N Global minimum at ©=0. 0
\ Since /() =0, gradient ,
Lok \ descent halts here. , ]
N 7
S s
0.5F 4
~ -
~ -
0.0f- e g
For z <0, we have f(z) <0, For @ >0, we have f(x) >0,

50 we can decrease f by so we can decrease f by

0.5f  moving rightward. moving leftward. 4
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20 . . . . . T I
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-

Figure 16: lllustration of the gradient
descent algorithm (Goodfellow et al.
2016, p.80)
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Learning process

@ In general the input to the function f is a vector x, so we consider
generalization of the derivative of f, Vf

o Letx = {x1,x2,...x0};

_for oo Y

Vi) = Ox;” Oxy " Oxy

of

@ Partial derivative P measures how f changes as only the variable x;
X
increases at point x.

@ Directional derivative in the direction of a unit vector u is the slope of f in
the direction of u
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Learning process

@ Directional derivative is derivative of f(x + au) with respect to « evaluated
ata=0
LOf _Ouodf

@ Chain rule says that given a function f(u), and u(x); il therefore,

0
S+ aa) = wVF(x) = [Jul2 | 9 ()] | cos

@ Minimize f by finding the direction in which f decreases fastest; Do this by
minimizing the directional derivative

min #'Vf(x) = min |u|2]|Vf(x)||2cosb
u,u'u=I uu'u=1

Minimum is achieved when u points in the opposite direction to Vf(x); i.e.
180° apart;

@ We can decrease f by moving in the direction of negative gradient,
choosing a new point as

x' =x —eVf(x); where ¢ is step size (20)
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@ Consider the perceptron shown in Figure (17);
weights w;;i = {1,...m}; inputs x;;i = {1,...m};

external bias, b

@ Correctly classify externally applied inputs into two

classes C; or C;

@ If y = +1 classify to class C;; if y = —1 classify to C,

SCIT-AMRL (University of Wollongong)
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Figure 17: Signal flow model of the
perceptron Haykin (2009)
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@ Simple perceptron creates a hyperplane separating

the two regions (see Figure(18))

m
Zwix[ +b=0
i=1

@ Weights of perceptron adapted at each iteration of

training sample presentation

@ Use error-correction rule - perceptron convergence

algorithm
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2

Class €,
Class €,

Decision boundary
wyxy +wyxy +b =0

Figure 18: Hyperplane as decision
boundary of 2-D, 2-class classification
Haykin (2009)
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Perceptron

Decision
,~" Boundary

(b)

Figure 19: (a) Linearly separable patterns; (b) Linearly non-separable patterns Haykin (2009)
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Multilayer Perceptron

Basic features of multilayer perceptrons (Haykin 2009) (See Figure 20):

@ Each neuron in the network includes a nonlinear activation function that
is differentiable

@ Network contains one or more layers that are hidden from both the input
and output nodes

@ Network exhibits a high degree of connectivity determined by synaptic
weights of the network

Training method

Multilayer perceptron is usually trained using the back-propagation algorithm:
@ Forward phase: Weights of the network are fixed and input signal is propagated layer-wise
through the network and transformed signal appears at the output

@ Backward phase: Error signal is computed by comparing generated output and desired
response; error signal is propagated backward and layer-wise through the network;
successive adjustments made to weights of the network
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Multilayer Perceptron

Input

Output
signal

signal

<

Input First Second Output
layer hidden hidden layer
layer layer

Figure 20: Architectural graph of the Multilayer Perceptron (Haykin 2009)
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Multilayer Perceptron

@ Each hidden or output neuron performs two computations:

@ Output of each neuron expressed as continuous nonlinear function of input
signals and associated weights

@ Estimate of the gradient vector (gradient of error surface) required in the
backward phase of the training

@ Hidden neurons act as feature detectors, discovering the salient features
characterising the training data;

@ Hidden neurons perform nonlinear transformation on input data into a
new space; feature space

@ The training is a form of error-correction learning that assigns blame or
credit to each of the internal neurons; this is a case of the credit
assignment problem

@ Back-propagation solves the credit assignment problem for the multilayer
perceptron
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Back-propagation Algorithm

Key points leading to overall strategy
@ Multilayer perceptron is a universal function approximator

@ It can be trained using error-correction learning to obtain optimum approximation
@ The optimum can be obtained if we can minimize the approximation error
o

This is equivalent to modifying the weights so that the network minimizes the error between
desired output and response of the network

@ Gradient descent algorithm can be used to find the minimum of an objective function by
iteratively computing the adjustment that leads to the minimization of the objective function

@ Back-propagation is an efficient implementation of the gradient descent
@ Strategy is to compute the adjustment, Aw to be applied to each weight, w

@ From Equation (20) the adjustment is proportional to the gradient of the objective function;
in this case VE (E is error signal energy) with respect to the parameters w
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Back-propagation Algorithm

@ Error signal of the output neuron is given by

ej(n) = dj(n) — y;(n) (21)

where y; is the output of neuron j when stimulus x(n) is applied at the input; d;(n) is the
desired output
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Back-propagation Algorithm

@ Error signal of the output neuron is given by

ej(n) = dj(n) — y;(n) (21)

where y; is the output of neuron j when stimulus x(n) is applied at the input; d;(n) is the
desired output

@ Instantaneous error energy can be written as

Ei(n) = 360 2)
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Back-propagation Algorithm

@ Error signal of the output neuron is given by

ej(n) = dj(n) — y;(n) (21)

where y; is the output of neuron j when stimulus x(n) is applied at the input; d;(n) is the
desired output

@ Instantaneous error energy can be written as
1 2
E(n) = 26} (n) (22)
@ Total instantaneous error (summed over all neurons in the output layer) is

En) = 3 Bin) = 5 3 () (23)

Jjec Jjec
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Back-propagation Algorithm

@ Error signal of the output neuron is given by

ej(n) = dj(n) — y;(n) (21)

where y; is the output of neuron j when stimulus x(n) is applied at the input; d;(n) is the
desired output

@ Instantaneous error energy can be written as

Ei(n) = 360 2)

@ Total instantaneous error (summed over all neurons in the output layer) is

En) = 3 Bin) = 5 3 () (23)

Jjec Jjec

@ Computation of the error could be in batch mode or on-line mode leading to either batch
mode (presentation of all training samples) or on-line (presentation of training sample
one-at-a-time) training (stochastic)
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Back-propagation Algorithm

Consider Figure (21):

@ Induced local field of o
neuron j at iteration n is:

m
wp(n) = by(n) an
vi(n) = Y wilm)yi(n) AN
i=0 (2 4) o << w;(n) un) o) w1 e
m is the total number of
inputs

Ynln)

Figure 21: Signal flow highlighting neuron j being fed by
the outputs from the neurons to its left; induced local field

of neuron is v;(n) and this is the input to activation function
@(-) (Haykin 2009)
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Back-propagation Algorithm

Consider Figure (21):

@ Induced local field of
neuron j at iteration n is:

waln) = by(m) 4

vi(n) =D wii(n)yi(n)
i=0

(2 4) - << w,(n) vn) ¢l yi(n) -1 oo
m is the total number of
inputs
@ Function signal y;(n) 50

appearing at the output of

neuron j at iteration # is Figure 21: Signal flow highlighting neuron j being fed by
the outputs from the neurons to its left; induced local field
_ of neuron is v;(n) and this is the input to activation function
Yi(n) = @j(vi(n))  (25) )" (Haykin 2009)
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Back-propagation Algorithm

@ We need to compute the adjustment (or correction) Aw;;(n) to be applied
to weight wj;(n)
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Back-propagation Algorithm

@ We need to compute the adjustment (or correction) Aw;;(n) to be applied
to weight wj;(n)

OE(n)
Owji(n)

direction of search in the weight space for wj;

@ This is proportional to the partial derivative and determines the
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Back-propagation Algorithm

@ We need to compute the adjustment (or correction) Aw;;(n) to be applied
to weight wj;(n)

OE(n)
8wj,-(n)
direction of search in the weight space for wj;

OE(n)
Owji(n)
OE(n) _ OE(n) Oe;(n) dy;(n) Ov;(n)
Buy(n) ~ Dei(n) () By () Doy (1) it

@ This is proportional to the partial derivative and determines the

@ Chain rule tells us how to compute

from a set of known quantities
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Back-propagation Algorithm

@ We need to compute the adjustment (or correction) Aw;;(n) to be applied

to weight wj;(n)
I . : . .. OE(n) .
@ This is proportional to the partial derivative Doy () and determines the
ji
direction of search in the weight space for wj;

OE(n) from a set of known quantities

@ Chain rule tells us how to compute Do ()
OE(n) _ OE(n) Oe;(n) dy;(n) Ov;(n)
Buy(n) ~ Dei(n) () By () Doy (1) it

@ Recall Equation (22) : E;(n) = 3¢} (n); therefore
OE(n)
ej(n)

= ¢j(n)

ANNDL 36/54
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Back-propagation Algorithm

@ Recall Equation (21): ¢;(n) = d;(n) — y;(n)

de;j(n)
dy;(n)

— 1 (28)
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Back-propagation Algorithm

@ Recall Equation (21): ¢;(n) = d;(n) — y;(n)

S -1 (28)
@ Recall Equation (25): y;(n) = ¢;j(v;(n))
gzjgni = ¢i(vj(n)); where ()" indicates differentiation (29)
j n
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Back-propagation Algorithm

@ Recall Equation (21): ¢;(n) = d;(n) — y;(n)

S -1 (28)
@ Recall Equation (25): y;(n) = ¢;j(v;(n))
gzjgni = ¢i(vj(n)); where ()" indicates differentiation (29)
j n

@ Recall Equation(24): vj(n) = >, w;i(n)yi(n)

Ovi(n) _
8&)]','(”) o yl(n)
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Back-propagation Algorithm

@ Recall Equation (21): ¢;(n) = d;(n) — y;(n)

S -1 (28)
@ Recall Equation (25): y;(n) = ¢;j(v;(n))
gzjgni = ¢i(vj(n)); where ()" indicates differentiation (29)
j n

@ Recall Equation(24): vj(n) = >, w;i(n)yi(n)
dvj(n)

8&)]','(”) - yl(n) (30)
@ Equation (26) becomes (using Equations (27) - (30))
OE(n) . . .
duwi(n) —ej(n)g;(vj(n))yi(n) (31)
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Back-propagation Algorithm

@ Correction, Awj(n), applied to wj(n) is defined by the delta rule

OE(n)

Awji(n) = —Umv
ji

n is the learning rate parameter

= 1| ej(n)p(vi(n)) | yi(n)

= 1| 5(n) | i(n) (32)

where 0;(n) = ¢;(n)¢;(v;(n)) is defined as the local gradient for neuron j
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Back-propagation Algorithm

@ Correction, Awj(n), applied to wj(n) is defined by the delta rule

OE(n) .
- 8wj,-(n) ’ n

= 1| ej(n)p(vi(n)) | yi(n)

= 1| 5(n) | i(n) (32)

where 0;(n) = ¢;(n)¢;(v;(n)) is defined as the local gradient for neuron j

Awji(n) = is the learning rate parameter

@ Local gradient for neuron j is the product of corresponding error ¢;(n) and
the derivative of associated activation function, ¢;(v;(n))

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 38/54



Back-propagation Algorithm

@ Correction, Awj(n), applied to wj(n) is defined by the delta rule

OE . .
Awji(n) = —naw%; n is the learning rate parameter
Jl

= 1| ej(n)p(vi(n)) | yi(n)

= 1| 5(n) | i(n) (32)

where 0;(n) = ¢;(n)¢;(v;(n)) is defined as the local gradient for neuron j

@ Local gradient for neuron j is the product of corresponding error ¢;(n) and
the derivative of associated activation function, ¢;(v;(n))

@ Error ¢;(n) is easily computed for the output neurons; we have access to

d;(n) and y;(n). How to compute error for hidden neurons? These have no
given dj(n).
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Back-propagation Algorithm

What do we know so far?

@ Training a multilayer perceptron involves using the training data set in an error-correction
learning paradigm to adjust the weights

@ The error-correction learning is essentially equivalent to solving a function minimization
problem

© The function to be minimized is the error surface corresponding to the mismatch between
the response of the network and the desired response

o This can be solved by the gradient descent algorithm

© The back-propagation algorithm is an efficient implementation of the gradient descent
algorithm for the multilayer perceptron

@ The correction (or update) to the weight at each iteration is (cf. Equation (32)):

() = 1| (n) ] () |3:()
= | 8(n) |yi(n) (33)

This is the product of the learning rate 7, local gradient of the associated neuron, ¢;(r) and the
input to the neuron, y;(n). See Figure (21)
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Back-propagation Algorithm

@ Weights connected to the output neurons are updated as
wi(n) = w®(n) + Aw;i(n)

Ji
= wfn) +n | 3,(m) | ()
°"’(n>+n ei(n)g] (vi(n) | yi(n) (34)

@ Using chain rule similarly to how we derive the update for the weight of output neurons we
will show that the weight update for hidden neurons is given as

wi™(n) = OId(") + Awji(n)

Ji
= W) + ] 8(n) | ()

= w¥n) +n| @ (v() D S (n)wig(n) |yi(n) (35)

k

where neuron j is hidden; ¢/ (v;(n)) is derivative of associated activation function; d;(n) are
associated with neurons k which are to the immediate right of neuron j and connected to it;
wyj(n) are the associated weights of these connections (see Figure (22) )
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Back-propagation Algorithm

Neuron j Neuron k

yo=+1 +1

wjo(n) = by(n) di(n)

. %: wy(n) vm) o)y %{ wiy(n) v(n) o() y(n) 1 o)

Figure 22: Signal flow showing hidden neuron j connected to an output neuron & to its
immediate right; Diagram used to show the derivation of weight update for hidden neuron (Haykin
2009)
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Back-propagation Algorithm

For the sake of completeness we now derive
8i(n) = @} (vj(n)) D _ 8i(n)wyi(n)
k
of Equation (35)
@ Recall from Equation(26)

OE(n) _ | OE(n) 9¢j(n) Oy;(n) | dv;(n)
Owji(n) Oej(n) Ayj(n) Ovj(n) |Owji(n)

and Equation(32)

Awji(n) = 1| ¢j(n)g; (vi(n)) |yi(n)

=n|9j(n) | yi(n)
we infer that the local gradient, §;(n), can be written as

OE(n) Oej(n) Oyj(n
0ej(n) dyj(n) Ovj(n

=
Nl
Nl

dj(n) =

(36)

=
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Back-propagation Algorithm

@ Use Figure (22) and Equation (36) to write local gradient as:
_ OE(n) 9yj(n)

0i(n) =
i) om ) uy(n)
_ OE(n) |, o
= onn) ©;j (vj(n)) (37)
@ From Figure (22)
Zek n); neuron k is an output node (38)
2

Differentiating both sides of Equation (38) with respect to y;:

OE(n) e(n Oey(n)
win) > el )ayj(n) (39)

Use chain rule to write
Oex(n) _ Oex(n) Ovi(n)

Ayj(n) — Ovi(n) Ay;(n)

and

(40)
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Back-propagation Algorithm

@ Observe from Figure (22) that
ex(n) = dip(n) — yi(n)

= dr(n) — pr(v(n)); neuron k is an output node (41)
and we can write
Oex(n) _ o
Do) = PHOx ) (42)

@ Also note that the induced local field for neuron &
m
vi(n) =Y wyi(n)y;(n); m is number of inputs applied to neuron k (43)
Jj=0
Upon differentiation we have
ovi(n
i) _ wy () (44)

Ayj(n)
@ Combining these component partial derivatives we obtain

OE(n) — .
D) = D=L i)

== Si(n)wy(n) (45)
k
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Back-propagation Algorithm

@ Substituting Equation (45) into Equation (37) to obtain

8j(n) = @j(vj(n )Z5k(")Wk/(") (46)

and when combined with Equation (32) we can write the correction as

Aw;i(n) = nd;j(n)yi(n)
= 1] ((n)) D Se(m)ewsg(n)yi(n) “7
k

and the update rule as

Wi (n) = w¥(n) + Aw;(n)
= w¥(n) + g} (vi(n) Zak(n wig(n)yi(n) (48)

which is the same expression we provided in Equation (35)
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Back-propagation

Summary of Back-propagation Algorithm for Multilayer Perceptron

@ Training could be Online (weight update after presentation of each sample) or Batch (weight
update after presentation of all samples)

© Back-propagation comprises two phases namely Forward pass and Backward pass

© Forward pass: Weights of the network are fixed and input signal is propagated layer-wise
through the network and transformed signal appears at the output; each neuron computes
(see Figure (21))

vi(n) = wiln)yi(n);  yj(n) = @;(vi(n)) (49)
j=0

@ |n the Backward pass error is propagated backward through the network to compute weight
updates (see Figure (22) and Equation (45)):

n | ¢i(n); (vi(n)) | yi(n) for output neurons

Wi (n) = ) + (50)
n| ¢ (vi(n)) Z Ok (n)wyj(n) | yi(n) for hidden neurons
k
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Extensions of basic gradient descent

@ To improve the performance of a learning system:

@ improve structure of model e.g. add more layers
@ improve initialization of the model; build large amounts of sparsity
© use a more powerful learning algorithm; e.g. improve gradient descent

@ Several extension of the basic gradient descent algorithm (an optimizer)
provide faster convergence
@ Popular optimizers include:

@ Adam
e RMSProp
o AdaGrad

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 47/54



Extension of the basic gradient descent

@ Recall from Eqn. 20 that the gradient descent update rule is simply (we
have used notation consistent with our development of backpropagation):

Wy = Wr—1 — UVf(wH)

where Vf(wt — 1) is the gradient at previous iteration

Stochastic gradient descent

1: gt <— Vf(OJz_l)
2] Wy & Wi—1 — N8

@ Gradient descent can suffer slow convergence problems
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Extension of the basic gradient descent

@ The addition of a momentum term can provide considerable
improvements

Classical momentum

1: g  Vf(wi—1)
2: my <— umi—1 + & {momentum term accumulated}
3. Wy < w1 — My

@ Advantages:
@ Accelerates GD learning along dimensions where gradient remains relatively
consistent across training steps

@ Slows GD learning along turbulent dimensions where gradient is oscilating
wildly
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Extension of the basic gradient descent

@ Nesterov’s accelerated gradient method add the momentum term to the
vetcor of parameters (i.e. weights) before computing the gradient.

@ Empirically, it is superior to basic GD, classical momentum for difficult
optimization objectives (No mathematical proof is provided)

Nesterov’s accelerated gradient (NAG)

1: g+ Vf(wi—1 — num;_y)
20 My = Py + &
3 Wy & w1 — My
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Extension of the basic gradient descent

@ L, norm-based methods divide the learning rate, n by the L, norm of all
previous gradients and can provide improvements (AdaGrad):
e Slows down learning along dimensions that have alsready changed
significantly
@ Speeds up learning along dimensions that have only changed slightly
e Stabilizes model’s representation of common features
@ Quckly learn representation of rare features

@ Gradient can become too large and cause learning to halt

AdaGrad

1: 8t <— Vf(w,_l)
2: ny < ny_g —}—gtz

3wy W — N

n—+e
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Extension of the basic gradient descent

@ The problem of growing gradient is solved by weighting the gradient term
@ this gives the RMSProp

RMSProp

1: gt — vf(wt_l)
2: v+ (1 —v)g?
3: w,(—w,_l—n\/’%
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Extension of the basic gradient descent

@ Combinantion of momentum-based and norm-based extensions
motivated the adaptive moment estimation (Adam algorithm)
@ Decaying mean replaces decaying sum in classical momentum

1: 8t “— Vf(wt_l)

20 my < pmy—y + (1 — p)g;
3: "ht — lr—n’[_L’

4 n—vm + (1 —v)g?
5: i’\lt — 1711/,

6: Wy < wi_q —77\/;%

v,

@ Rather than use /; norm, the L., could be used as well; replace r, in step
4 and w; in step 6 and remove 7, in step 5; new updates (this is AdaMax
algorithm):

ny < max(vn._1, |gl)
y
ng+ e
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