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CNN - Convolutional Neural Network
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Figure 1: Fully connected MLP (Haykin 2009)
@ Input-output relationship for hidden layer is
described by convolution (weight matrix

@ |Input-output relationship for a layer can be will have to be Toeplitz)
described by matrix multiplication .
vi=Wr;_1 (1) Vi = Zwixiﬂ'*l; j=1,2,3,4 (2)

Note the use of vector (bold) notation in =t

the multiplication {wi}%_, constitute the same set of weights

shared by all four hidden neurons
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CNN - Convolutional Neural Network

@ CNNs are a special class of multilayer perceptron that are well suited to processing data
with grid-like topology.

@ Examples include

@ Time-series data : 1-D grid taking samples at regular intervals
@ Image data : 2-D grid of pixels

@ CNNs are networks that use convolution in place of general matrix multiplication in at least
one of the layers

@ CNN is a way of building prior information into neural network design (see Figure 2)
@ Network architecture restriction - use local connection a.k.a receptive fields

@ Constrain the choice of synaptic weight - use weight sharing

@ CNNs are sometimes designed to recognize 2-D shapes with high degree of invariance to
translation, scaling, skewing and other distortions
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CNN - Convolutional Neural Network

@ More generally structural constrain in CNN aim to achieve:
e Feature extraction: Each neuron takes its synaptic inputs from a local
receptive filed of neurons forcing it to extract local features

e Feature mapping: Each computational layer has multiple feature maps; they
form planes in which neurons are forced to share same set of synaptic
weights; beneficial effects

@ shift invariance - achieved through convolution followed by activation function

@ reduction in the number of free parameters - achieved through weight sharing

@ Subsampling (a.k.a pooling) - Convolutional layer followed by a
computational layer performing local averaging and subsampling

@ feature map resolution reduction

@ reduction of sensitivity of feature map output to shifts and other distortions
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Typical contemporary CNN architecture

INPUT Feature maps Feature maps Feature maps  Feature maps OUTPUT
28 X 28 4@24 X 24 4@12 X 12 12@8 X 8 12@4 x 4 26@1 X 1

Figure 3: CNN architecture designed for hand-written character recognition (Haykin 2009)

Four (4) hidden layers and an output layer

First hidden layer - convolution; four feature maps of 24 x 24 neurons; each neuron
assigned a receptive field of size 5 x 5

Second hidden layer - subsampling and local averaging; 4 feature maps of 12 x 12; each
neuron has receptive field size 2 x 2

Third hidden layer - convolution; 12 feature maps of 8 x 8 neurons;
Fourth layer - subsampling and local averaging; 12 feature maps of 4 x 4 neurons

Final layer convolution; 26 neurons, each assigned to one of possible 26 characters; each
neuron assigned to receptive field 4 x 4
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What is convolution? A deeper insight

@ Given two functions x(n) and w(n) the convolution of the two functions is written as

s(n) = Zx(k)w(n —k) = Zx(n — k)w(k) (3)

k k

Equation 3 says, flip the function w(n) relative to x(n) and slide it across the function x(n),
each time compute the product of overlapping samples; note commutative property of
convolution

For the purpose of neural networks, x(n) is the input; w(n) is the kernel and s(n) is the
feature map

In the two-dimensional case we have
s(n,m) = Zx(k, NDwn —k,m—1) = Zw(k, Dx(n —k,m — 1) (4)
k,l k,l
Summation is over the non-zero values of the kernel; usually defined to be finite in spatial
extent
Convolution as defined in Equation 4 is rarely used in machine learning; rather use
cross-correlation (but referred to as convolution); See Figure 4

s(n,m) = Zx(k, Nw(n+k,m+1) (5)
kel
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Convolution (without flipping) operation in 2-D

case
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Figure 4: 2-D convolution operation (Goodfellow et al. 2016)
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Convolution benefits revisited

@ Convolution introduces three ideas beneficial for machine learning systems:
@ Sparse interactions

© parameter sharing

© Equivariant representation
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Sparse interactions

@ Sparse weights leads to needing fewer parameters to store and improving statistical
efficiency

@ Indeep CNN deeper layers indirectly interact with a larger portion of the input allowing
network to efficiently describe complicated interactions

Figure 5: Sparse connectivity viewed from input (note how many outputs affected by one
input) (Goodfellow et al. 2016)
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Sparse interactions

@ Sparse weights leads to needing fewer parameters to store and improving statistical
efficiency

@ In deep CNN deeper layers indirectly interact with a larger portion of the input allowing
network to efficiently describe complicated interactions
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Figure 5: Sparse connectivity viewed from output (note how many inputs affect one output)
(Goodfellow et al. 2016)
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Parameter sharing

@ Rather than learn separate set of parameters for every location we learn only one set

@ Since kernel is usually much less than input data size, convolution is more efficient than
dense matrix multiplication
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Figure 6: Parameter sharing; (top) central element in 3-element kernel is used multiple times;
(bottom) Shown central element of weight matrix is used once in the fully connected architecture
(Goodfellow et al. 2016)
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Equivariance

@ Convolution as considered here leads to a form of parameter sharing that generates a
property called equivariance to translation. In signal processing this is the same as linear
time invariance.

@ Equivariant means that if the input changes, the output changes in the same way.
@ For example, let ¢ map an image I to another image I’; I’ = g(I) I’ (x,y) = I(x — 1,y);
applying convolution after the mapping is the same as applying the convolution and then

transforming the result.

@ In a data stream if we delay a feature in time (or spatially) the same representation appears
in the output later (by amount of the delay)
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@ A pooling function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs.

@ Examples:

@ Max pooling operation reports the maximum output within a rectangular
neighbourhood (E.g. see Figure 7)
L?-norm of a rectangular neighbourhood
Weighted average based on distance from central pixel

@ Pooling helps to make the representation approximately invariant to small translations of
input (e.g. see Figure 8)

@ Use of pooling can be interpreted as using a strong prior that the function being learned (in
the layer) must be invariant to small translation

@ Pooling over over spatial regions leads to translation invariance

@ Pooling over separately parametrized convolutions leads to learning transformations that
are invariant (e.g. see Figure 9)
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POOLING STAGE

DETECTOR STAGE

Figure 7: Max pooling of width 3 and stride 1 (Goodfellow et al. 2016)

POOLING STAGE

DETECTOR STAGE

Figure 8: Max pooling of width 3 and stride 1 and input shifted to the right (to show invariance to
translation) (Goodfellow et al. 2016)
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Pooling

Large response Large response
in pooling unit in pooling unit,
Large

Large
response response
in detector, in detector

unit 1 unit 3
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Figure 9: Pooling over multiple features that are learned with separate parameters can learn to
be invariant to transformations of the input. (Goodfellow et al. 2016)
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Figure 10: Pooling with downsampling: max-pooling with a pool width of three and a stride
between pools of two. (Goodfellow et al. 2016)
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Popular Convolutional NN Architectures

LeNet-5 Architecture

@ Created by Yann LeCunn (1998)

Layer Type Maps Size Kernel Stride Activation
Out Fully Connected - 10 - - RBF
F6 Fully Connected - 84 - - tanh
C5 Convolution 120 I x1 5x5 1 tanh
S4 Avg Poling 16 5x5 2x2 2 tanh
C3 Convolution 16 10x10 5x5 1 tanh
S2 Avg Pooling 6 14x14 2x2 2 tanh
C1 Convolution 6 28x28 5x5 1 tanh

In Input 1 32 x 32 - - -

Table 1: LeNet-5 architecture (Géron 2017)
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Popular Convolutional NN Architectures

LeNet-5 Architecture

@ Tested on the MNIST dataset (padding required - 32 x 32)

@ Pooling layer - special average pooling (( X ¢;) + b;); ¢; and b; are
learnable parameters; . is the average of the nodes in the activaton field
of the filter

@ Encouraged to find and read original paper by LeCunn
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Popular Convolutional NN Architectures

AlexNet

@ Created by Alex Krizhevsky, lilya Sutskever and Geoffrey Hinton

@ Won 2012 ImageNet ImageNet Large Scale Visual Recognition
Competition (ILSVRC)

@ Similar to LeNet but larger and deeper

@ Note that it stacked Conv layers atop each other in layers C5, C6, C7,
rather than “Conv-Pool” configuration (see Table 2)
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Popular Convolutional NN Architectures

AlexNet

Layer Type Maps Size Kernel ~ Stride Padding Activation
Out Fully Connected - 1,000 - - - Softmax
F9 Fully Connected - 4096 - - - ReLU
F8 Fully Connected - 4096 - - - RelLU
c7 Convolution 256 13 x 13 3x3 1 SAME RelLU
Cé6 Convolution 384 13x 13 3x3 1 SAME RelLU
C5 Convolution 384 13 x 13 3x3 1 SAME RelLU
S4 Max Pooling 256 13x 13 3x3 2 VALID -

C3 Convolution 256 27 x 27 5%x5 1 SAME RelLU
S2 Max Pooling 96 27 x 27 3x3 2 VALID -

C1 Convolution 96 55 x 55 11 x 11 4 SAME RelLU
In Input 3(RGB) 224 x 224 - - - -

Table 2: AlexNet Architecture (Géron 2017)
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Popular Convolutional NN Architectures

AlexNet

@ Two regularization schemes adopted to reduce overfitting
e Dropout (during training) applied in layers F8 and F9
e Data augmentation: random shift offsets applied to training images; flipping
horizontally and varying lighting conditions
@ Competitive normalization - Local Response Normalization - applied after
RelLU step of layers C1 and C3;
e Strongly activating neurons inhibit neurons in similar location but in
neighbouring feature maps;
e Encourages maps to specialize and immprove generalization

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 21/28



Popular Convolutional NN Architectures

GooglLeNet

@ Developed (2014) by Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, Andrew Rabinovich

@ Won the 2014 ImageNet Large Scale Visual Recognition
Competition(ILSVRC) (top-5 error rate less than 7%)

@ Performance attributed to deeper architecture than previous CNNs
@ Introduced the use of Inception Module

@ Used fewer parameters than previous architectures (10 times fewer
parameters than AlexNet; ~ 6 million instead of 60 million)
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Popular Convolutional NN Architectures

GooglLeNet
e ? )
Inception Depth
module Concat
Convolution Convolution Convolution Convolution
1x1 + 1(S) 3x3 + 1(S) 5x5 + 1(S) 1x1 + 1(S)
Convolution Convolution Max Pool
1x1 + 1(S) 1x1 + 1(S) 3x3+1(S)
v,

Figure 11: Inception module of GoogLeNet (Géron 2017)

SCIT-AMRL (University of Wollongong)

Machine Learning

ANNDL

23/28



Popular Convolutional NN Architectures

GooglLeNet

@ In Figure 11, notation 3 x 3 + 1(S) implies 3 x 3 convolution with stride of 1 and “SAME”
padding

@ “SAME” padding means: add zero padding to input data if required to obtain number of
output neurons equal to ROUND(# Input Neurons /Stride)

@ All outputs of convolution layer have same height, width and depth and can be
concatenated along depth axis

@ 1 x 1 convolution is a way of collapsing the feaure maps

padding="VALID"
(i.e., without padding)

Ignored

padding="SAME"
(i.e., with zero padding)

Figure 12: Padding options: input width=13; width=6; stride=5 (Géron 2017)
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Popular Convolutional NN Architectures

GooglLeNet
[ [ Softmax
Max Pool 112 288 64 64 FUIConnected
192, 3x3 + 2(S) b 144 32 1000 units
Local Response 128 256 64 64 Dropout
Norm b 128 24 40%
Convolution 160 224 64 64 Avg Pool
192, 3x3 + 1(S) b 112 24 1024, 77 + 1(V)
Convolution 192 208 48 64 384 384 128 128
64, 11 + 1(S) b 96 16 b 192 48
Local Response Max Pool 256 320 128 128
Norm 480, 3x3 + 2(S) <t 160 32
Max Pool 128 192 96 64 Max Pool
64, 3x3 + 2(S) & 128 32 832, 3x3 + 2(S)
Convolution 64 128 32 32 256 320 128 128
64, 7x7 + 2(S) b 96 16 b 160 32
Input ? ?
f b= inception module

Figure 13: GooglLeNet Architecture (Géron 2017)

@ Please refer to the GooglLeNet paper by Szegedy et al. (2014) for detailed description and
the book by Auréien Géron (Géron 2017, pp. 373-376)
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Popular Convolutional NN Architectures

ResNet

@ Developed by Kaiming He, Xiangyu Zhang, Shaoging Ren and Jian Sun (Microsoft
Research) (Kaiming He 2015); Won 2015 ILSVRC

@ Motivated by: “increased network depth leads to saturated accuracy and then rapid
degradation. ... degradation is not caused by overfitting, and adding more layers ... leads to
higher training error” - paraphrased from Kaiming He (2015)

@ Degradation problem addressed by “Residual Learning Framework”

@ Stacked layers fit a residual mapping (F(x)) rather the desired underlying mapping, H(x):

F(x) :==H(x) —x

h(x)

h(x)

h(x) f(x) = h(x) - x

Skip connection

Figure 14: Residual learning framework(Géron 2017)
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ResNet
Softmax Convolution
128, 3x3 + 1(S)
Fully Connected Convolution
1000 units 128, 3x3 + 1(S) r
Avg Pool Convolution
1024, 7x7 + 1(V) |/ 128, 3x3 + 1(S) ) Rod
Convolution skip Batch
—— Deep! — 128, 3x3 + 2(S) - Norm
— — Convolution ] ol
64, 3x3 + 1(S) B Rl BN +
Max Pool \ ; ; C luti RelLU
\ Convolution onvolution
64, 3x3 + 2(S) 64, 3x3 + 1(S) 64, 3x3 + 1(S)
Convolution Convolution - A
64, 7x7 + 2(S) 64, 33 + 1(S) Residual Unit
Convolution
Input
1 64, 3x3 + 1(S)
Figure 15: ResNet Architecture
Machine Learning ANNDL
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