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Introduction

@ To provide context, imagine that you are a data scientist charged with the task of capturing
some of the characteristics that describe a person. You may consider measuring height,
weight, circumference of neck, circumference of waist and possibly age.

@ These five quantities (variables) will vary from person to person. Actually they are random
variables.

@ Let us represent them by xq, xo, X3, X4, X5 respectively.

@ A convenient data structure to model these variables for each person we consider is a
vector.

@ When we consider a group of people we can use another data structure, matrix, to model
the information about the group.

Linear algebra provides a mathematical framework to reason about and manipulate vectors
and matrices. This is used extensively in Machine Learning to model and solve problems.
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Vectors

With the context in mind we now consider elementary concepts in linear algebra.
@ A d-dimensional column vector and its transpose (a row vector) can be written as,

Xd.
We assume that all the components can take on real values. The transpose can also be
written as x’.
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With the context in mind we now consider elementary concepts in linear algebra.
@ A d-dimensional column vector and its transpose (a row vector) can be written as,

Xd.
We assume that all the components can take on real values. The transpose can also be
written as x’.

Example (Description of one person (5-dimensional vector))

1.5
75.2
x=|413 and x':[1.5 752 413 8128 35.5]
81.28
35.5
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@ An n x d matrix M and its d x n transpose M! are written as,

My M2 ... Mg myy Moy

mgy M2 ... Mg : M2 Moo
M= . . . . ;o M=

M Mp2 cee Mpg. Mg Mg

Mm
Mp2
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@ An n x d matrix M and its d x ntranspose M! are written as,

myy M2 ... Mg myy M2y ... My

Moy M2 ... Mg : M2 M ... Mp
M= . . . . o M= .

Mp1 Mp2 ... Mpg Mg Mg ... Mpg

Example (Description of five variables for 3 people)

A 3 x 5 matrix M and its 5 x 3 transpose M! are written as,
1.5 1.75 1.82

1.5 752 413 8128 355 752 80.6 693
M= (175 806 467 1025 45| ; M'=|413 467 425
1.82 69.3 425 835 30 81.28 1025 83.5

355 45 30
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Matrices - algebra

@ We can write the entries of a matrix M as mj;; where j and j refer to the row and column
values respectively.

@ The product, C, of two matrices A (with dimension m x n) and B (with dimension n x d) is
given as,
C=AB

and the entries of C are ¢;. Each entry is given by,

J
Cj = Z ajk X bkj
k=1

@ We note that the transpose of the matrix C is,
C!' = (AB)! = B'A!
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Matrices - algebra

Example (Product)
The product, M, of two compatible matrices A and B is given as,

46 57 6.1 55 ?g
M= |24 36 47 49| x 4'1
35 53 95 85 7'5

;’g 90.91 125.23 121.41
7’5 = [69.82 89.18 96.08
9'5 122.90 158.81 172.99

Notice that A is of dimension 3 x 4 while Bis 4 x 3.

The entry my; of M is obtained as,

myy =46x35+57x15+6.1x4.1+55x75=090.91

Similarly, the entry mso,

mgp =3.5x6.2+53x%x37+95x87+85x4.1=158.81
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Matrices - algebra

@ We can multiply a matrix, M, and a vector, X, to obtain a vector, y,

myy M2 ... Mgl [ X1 Y1
Mo Moo ... Moy Xo Xy
Mm Mpp ... Mpg Xd Yn

Each component of the vector, y is given by,

d
Yi= Y mjx
=

@ The number of columns of M must be equal to the number of rows of x
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Matrices - algebra

The product, M, of a matrix A and vector X is given as,

46 57 6.1 55 8.7 122.45
M= |24 36 47 49| x || = | 83.76

35 53 95 85 144.46
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Matrices - algebra

The product A x B is not always equal to B x A. Let A = [1 2] and B = {5 6} . We have

3 4 7 8

19 22

AB = [43 50

a2 2

31 46
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Matrices - algebra

: 1 2 2 4 o o ... [2 4 1 2 14 28
Notice that [3 6] X [_1 _2} = {0 0} while [_1 _2] X [3 6} = {_7 _14]
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Definition

A square matrix M, (with dimension d x d) is called symmetric if the entries have the following
relationship,
m,j = mj,-

Definition

A square matrix M, (with dimension d x d) is called skew-symmetric (or anti-symmetric) if the
entries have the following relationship,

m,-j E] —mj,-
w
1 2 4 5 0o -2 4 -5
. 2 -8 8 1]. . 2 0 8 1.
The matrix, C = 4 8 5 3 is symmetric and D = 4 -8 o0 3 is
5 1 3 7 5 -1 -3 0

skew-symmetric.

.
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Definition

A general matrix M, is called non-negative fif,

mj; > 0, for all i and j

The matrix, B = is non-negative.

w 01 0 O
NWw = o»,

1 2
2 8
4 8
5 0
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Definition

A square matrix I, (with dimension d x d') is the identity matrix and has the diagonal entries equal
to unity (1) and other entries zero (0). The Kronecker delta function or Kronecker symbol, defined
as

s 1 =
U= 0, otherwise.
can serve to define entries of an identity matrix.

The matrix, | = is identity of dimension 4.

o —+00
- O O o

1 0
0 1
0 0
0 0
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Definition

A general diagonal matrix is one that has a zero (0) in all the off-diagonal entries and denoted as
diag(myq, Moz, . . ., Myg)

The matrix D = is diagonal. It can be written as diag(4, 6,2, 1).

4
0
0
0

[eNeNoNa)
onNOoOo
- O O o
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Definition

Addition of vectors and of matrices is component by component.

Example (Sum of matrices)

The sum, M, of two compatible matrices A and

B is given as,
46 57 6.1 35 62 1.0 81 119 7.1
M= |24 36 47|+ |15 37 33[(=1(39 73 80

35 53 95 41 87 75 7.6 14.0 17.0
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Inner product

The inner product (or scalar product) of two vectors, x and y having the same dimensionality, d,
will be denoted as x'y and the result is a scalar,

d
x'y = xyi =y'x
i=1

v

The Euclidean norm or length of a vector x is,

x| = vx'x

The vector is normalized if ||x|| = 1.
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Inner product

The inner product (or scalar product) of two vectors, x and y having the same dimensionality, d,
will be denoted as x'y and the result is a scalar,

d
x'y =Y Xy =y'x
i=1

Definition

The angle, 0, between two d-dimensional vectors x and y is given by,
xly
[yl

Inner product is a measure of the colinearity of two vectors; an indication of similarity (to within a
scale factor).
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Inner product

Example (Inner product)

The inner product of two vectors x = andy =

[oolo) N SO E T
NN O = O
T

1xXx54+3x14+4x0+6%x2+8x7=76
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Inner product

Example (Inner product)

The inner product of two vectors x = andy =

(ool ) B N SO EE
~N NN O = O
T

1xXx54+3x14+4x0+6%x2+8x7=76

Example (Magnitude)

The magnitude of vector Xis [|x|| = V1 x1+3x3+4Xx4+6x6+8x8=1+126 =11.23.
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Inner product

Example (Inner product)

The inner product of two vectors x = andy =

oo o) B N SO E
~N NN O = O
&

1xXx54+3x14+4x0+6%x2+8x7=76

Example (Magnitude)

The magnitude of vector Xis [|x|| = V1 x 1 +3x3+4Xx4+6x6+8x8=1+126 =11.23.

Example (Magnitude)

The magnitude of vectoryis [ly|| = v5x5+1x1+0+2x2+7 x 7 =79 = 8.89.
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Inner product

Example (Inner product)

1
3
The inner product of two vectors x = 4| andy =
6
8

NN O = o
&

1x5483x14+4x0+6%x2+8%x7=76

Example (Angle)

The angle between the vectors x and y is

ty 76

6 = arccos Xi — arccos —
Nyl 11.23 x 8.89

= 0.707 radians
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Orthogonal vectors

Definition

If x'y = 0, the vectors are orthogonal.

Definition

If x'y = ||x||[|y||, the vectors are colinear.

Definition

The Cauchy-Schwartz inequality follows directly from previous definition of an angle between two

vectors. In other words,
x'y < |Ix|lllyll.
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The trace of a square matrix A, denoted Tr{A}, is the sum of its diagonal elements,

d
Tr{A}Y = ai

=

and Tr{CD} = Tr{DC} provided that the product CD is a square matrix. Neither C nor D need be
square.

v

is4+6+2+1=13.

The trace of the matrix D =

N A= BN
NO o
[V \C RN (o)
- W =0
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Definition

The determinant of a square (d x d) matrix M, written as |M| is the sum,

d
M| => " mMjfori=1....d
j=1
where the cofactor, Mj;, is the determinant of the matrix formed by deleting the ith row and the jth
column of M, multiplied by (—1)*/.

Definition

The transpose of the matrix of the cofactors, C(c;j = M), is called the adjoint of M, Adj[M].
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Definition

The inverse of a d x d matrix, M is that unique matrix M—" of dimension d x d, with entries such
that,
M- 'TM=MM—" =1

Definition

We can obtain the inverse of a matrix from,
—1 _ AdjM]
M- =l
M|

Definition

If the inverse exists the matrix is said to be nonsingular otherwise it is singular and |M| = 0

Note that, (M)~ = (M~")! and (AB)~' =B~ 'A~".
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Consider the matrix A = {— ] The determinant is,
1 4 9

2Xx(2%x9—-8%x4)—4x(—1x9-1x3)+6x(-1x4—-2x1)=24

| \

12 -6 6 —12
The adjoint of A is —2 12 -4 =|12 12 —12.

0 —-12 8

A,

The inverse of A is

-6 -4 8

1[6 —12 o0
A—1:ﬂ 12 12 —12].

A\
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Linear independence and rank

Definition

A set of k vectors of equal dimension are linearly dependent if there exists a set of scalars
¢y, Co, ..., Ck, Not all zero, such that,

CiXy+ -+ Xk =0
If it is impossible to find such a set of ¢q, ¢y, . . ., Ck, then the vectors, x4, .. ., X, are said to be

linearly independent.

Definition

| \

The rank of a matrix is the maximum number of linearly independent rows (or equivalently, the
maximum number of linearly independent columns).

Definition

| A\

A d x d matrix is of full rank if the rank is equal to d. It will also be true that the determinant is
non-zero and it will possess an inverse.
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Linear independence and rank

Definition

For a rectangular matrix (i.e. non-square) M of dimension d x n, the rank of M, denoted rank (M)
is such that rank (M) < min(d, n).

We have that,
rank(M) = rank(M) = rank(M'M) = rank(MM')
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Orthogonal matrix

Definition

A square matrix M, is orthogonal if,
MM = MM = |

@ The rows and columns are orthonormal, x'y = 0 and x!x = 1, y'y = 1 for any two different
columns x and y.

@ An orthogonal matrix represents a linear transformation that preserves distances and
angles, consisting of a rotation and/or reflection

@ An orthogonal matrix is nonsingular and the inverse is its transpose, M—1 = M!

@ The determinant of an orthogonal matrix is +1, with —1 indicating a reflection and +1
indicating pure rotation.
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Positive definiteness

Definition

A square matrix M is positive definite if the quadratic form, xtMx > 0 for all vectors x # 0.

Definition

A square matrix M is positive semidefinite if the quadratic form, xtMx > 0 for all vectors x # 0. A
positive definite matrix will have a full rank.
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Eigenvalue problem

@ Given a d x d matrix M, an important class of linear equations is of the form,
Mx = A\x

or
(M — A)x =0

for a scalar .
@ The solution to the characteristic equation,

IM— | =0

gives the eigenvalues or characteristic roots of the d x d matrix.
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Eigenvalue problem

@ The characteristic equation is a dth order polynomial in A. There are d solutions,
A1, A2,..., Ag. They are not necessarily distinct and may be real or complex.

@ Associated with each eigenvalue, )\; is an eigenvector, u;, such that,

MU,‘ = \ju;

@ The eigenvectors are not unique because any scalar multiple of u; satisfies Mu; = \;u;.
Eigenvectors are usually normalized so that, u}u, =1.
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Eigenvalue problem

Properties of eigenvalues and eigenvectors

@ The product of the eigenvalues is equal to the determinant of M. ]'[,‘»’:1 i = det(M). For a
given matrix, if the eigenvalues are all non-zero, then the inverse of M exists.

@ The sum of the eigenvalues is equal to the trace of the matrix. 2?21 Ai = Tr(M).
Q If M is a real symmetric matrix, the eigenvalues and eigenvectors are all real.
o If M is positive definite, the eigenvalues are all greater than zero.

© If Mis positive semidefinite of rank m, then there will be m non-zero eigenvalues and d — m
eigenvalues with the value of zero.
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Eigenvalue problem

Properties of eigenvalues and eigenvectors (continued)
© Every real symmetric matrix has a set of orthonormal characteristic vectors. The matrix, U,
whose columns are the eigenvectors of the real symmetric matrix is orthogonal.
U= {uy,...,ug}. We have U'U = UU! = I.

@ The matrix U diagonalizes M,
U'MU = A
where A = diag(\1, . .., A\g) is a diagonal matrix whose entries are the eigenvalues of M.

d
M =UAU' = >  Nuu!
i=1
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Eigenvalue problem

Properties of eigenvalues and eigenvectors (continued)

Q@ If Mis positive definite, then M—" = UA—'U". Here, A=" = diag(1/A1,...,1/Aq)
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Singular value decomposition

SVD - singular value decomposition

The compact singular value decomposition of matrix M € R™*" with
r = rank(M) < min(m, n) can be written as follows:

M = UySy Vi,

@ The r x r matrix, 3y = diag(o1, . .., o), is diagonal and contains the
non-zero singular values of M sorted in decreasing order, that is
o1 >00>---0,>0.

@ The matrices Uy € R™*" and Vy € R™" have orthonormal columns that
contain the left and right singular vectors of M corresponding to the
sorted singular values.

@ U, € R™k are the top k < r left singular vectors of M.
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An application of SVD

@ An important application of SVD in machine learning is dimensionality reduction.
@ Principal Component Analysis (PCA) is one such dimensionality reduction technique.

Statement of PCA

@ Let us assume we are given a mean-centred data matrix X € RVN*™, thatis >-7, x; = 0.
@ Let k € [1, N] be a given parameter.
0 Define Py as the set of N -dimensional rank-k orthogonal projection matrices.

0 PCA consists of projecting the N -dimensional input data onto the k-dimensional linear
subspace that minimizes reconstruction error.

© The reconstruction error is the sum of the squared L,-distances between the original data
and the projected data.

Q The PCA algorithm is completely defined by the orthogonal projection matrix solution P* of
the following minimization problem:

in ||PX — X||2
Pn;;gkll IIE
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PCA theorem

Theorem (PCA)

Let P* € Py be the PCA solution, i.e. the orthogonal projection matrix solution of the
minimization problem:

: _ y2
Jmin [IPX — X[
Then P* = Uy U,'(, where U, € RNXK js the matrix formed by the top k singular vectors of

C= lmXX t, the sample covariance matrix of coresponding to X. Moreover, the associated
k-dimensional representation of X is given by Y = UL X.
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lllustrative Example

In an experiment, four features were measured from a random sample of 10,000 human subjects.
The sample covariance matrix was computed and the four eigenvalues were found to be 16.5,
5.4, 1.5 and 0.4. The eigenvectors corresponding to the first two eigenvalues were

u/ =039 042 044 0.69]
ul = [0.40 039 042 -0.72]

0 What is the percentage of the variance in the original data explained by the first two
principal components?

© Assume that we decided to reduce the feature set to two (2). We need to transform (project)
any new incoming 4-vector feature into a 2-vector corresponding to the two principal vectors
we discovered in our eigen-analysis. The formula for this transformation is

Xnew = UXoiq

o-

What is the transformed vector corresponding to an input feature

where
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@ The four given eigenvalues (16.5,5.4, 1.5 and 0.4.) provide the amount of variance in the
data explained by each of the principal components. Hence this is a straightforward
question. We simply add the first two values and divide by the sum of the four values.

. 16.5+5.4
Percent explained = 100%
xpia 165+54+15+04 0

—@moo%

" 238
=92.01%

@ The transformation matrix is given by the the eigenvectors corresponding to the largest two
eigenvalues. We were given the vectors in the question;

ul =[039 042 044 0.69]
u] =[040 039 042 -072]

Hence our matrix U can be written as

U= 0.39 042 044 0.69
1040 039 042 -0.72

ML 32/34
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The transformation of the given 4-vector into a 2-vector is accomplished by

0.5
x. _[039 042 044 069] |06
"eW = 10.40 0.39 042 -—0.72| |1.6

0.9
_ [ 1772
—1.0412
The new 2-vector is the best projection of the given 4-vector into a 2-dimensional subspace.

We can say the we have learned a 2-subspace that best represents our 4-vector space of
features.
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There are more linear algebraic results and they will
be introduced as we need them!

SCIT-AMRL (University of Wollongong) Machine Learning



	Outline
	Introduction
	Vectors and matrices

