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What is pattern recognition/classifier?

@ We take for granted the fact that we are able to move around in our world and recognize:

cars

people

animals

@ objects in general

despite the variety in their form and existence.
@ What features help in these tasks?

@ In pattern recognition we study how to design machines that can recognize and classify
“"things”.

@ We study the statistics of the features that describe "things”.

@ We study how to measure the performance of pattern recognition systems and select good
systems.
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Basic Model - Pattern Classifier

Feature
Sensor Selector/ Classifier —
Extractor { Decision
Representation Feature
Pattern Pattern

Figure 1: Pattern Classifier Webb (2002)

@ The pattern is a set of numbers or values represented as a p — dimensional vector,
t
X=[x X - X

where t (or sometimes T) denotes vector transpose
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Basic Model - Pattern Classifier

Feature
Sensor Selector/ Classifier —»
/ Extractor { Decision
Representation Feature
Pattern Pattern

Figure 1: Pattern Classifier Webb (2002)

@ The pattern could be:

@ pixels in an image

@ closing prices of a share on the stock market

recordings of a speech signal

measurements on weather variables

group of measurements about a real estate

group of measurements about the behaviour and life style of people
etc.
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Basic Model - Pattern Classifier

Feature
Sensor Selector/ Classifier ——»
/ Extractor ( Decision
Representation Feature
Pattern Pattern

Figure 1: Pattern Classifier Webb (2002)

@ We assume that there are C classes denoted by,
Wi, ...,WC
@ There is a variable, z, that indicates which class, wj, a pattern x belongs. That is,

if z =, then the pattern, x, belongstow;, i€ {1,...,C}
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Basic Model - Pattern Classifier

@ The problem is how to design the pattern classifier.
@ Designing a pattern classifier entails:

@ specifying the classifier model parameters
@ ensuring that response for a given pattern is optimal

@ The design process assumes we have a set of patterns of known class, {(x;, z;)}, called the
training or design set, used to design the classifier.

@ Part of the design process is to evaluate and set optimal operating parameters.

@ The idea is that once we have a designed classifier we can estimate the class membership
of an unknown pattern.

@ There is an assumption that the samples used for training are drawn from the same
probability distribution as the test samples and the operational samples.
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Basic Model - Pattern Classifier

@ A closer look at the simplified classifier model:

Feature
Sensor Selector/ Classifier ——»
Extractor ‘ Decision
Representation Feature
Pattern Pattern

Figure 2: Pattern Classifier Webb (2002)

@ Representation pattern is the raw data we obtain from the sensor e.g. image or video pixels,
price of stock, etc.

6 Feature pattern is a small set of variables obtained through some transformation - feature
selection and/or extraction

© The trained classifier uses the feature pattern to make a decision regarding the pattern
presented at its input.
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Basic Model - Pattern Classifier

@ Further consideration about classifier design:

Problem

Given a training set of patterns of known class, we seek to design a classifier that is optimal for
the expected operating conditions.

@ The given set of training patterns is finite.

@ The classifier model cannot be too complex. In other words it cannot have too many
parameters. This situation may lead to over-fitting.

© ltis not important to achieve optimal performance on the design set.
@ ltis very important to achieve optimal generalization performance.

@ Expected performance on data representative of the true operating condition - the
infinite set from which the design set is drawn.
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Supervised and Unsupervised Classification

There are two main categories of classifiers :

Supervised: The classifier design process has a set of data samples with associated labels
(class type). These are exemplars or training data.

Unsupervised: The given data is not labelled and the idea is to find groups in the data and the
features that distinguish one group from another.

@ There is a third category, namely semi-supervised classifiers, in which both labelled and
unlabelled data are used for the training.

CLASSIFICATION

A Y

SUPERVISED UNSUPERVISED

Figure 3: Main categories of classifiers
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Supervised Classification

Example - from Duda-Hart-Stork Duda et al. (2001)

We are required to design a classifier for a fishing company so as to automate the sorting
process. The company is interested in sorting salmon from bass. The cost of selling a salmon as
bass could be high when misclassified!

@ Possible features of interest

e length
e width
Salmon @ number and shape of fins
@ position of mouth
@ lightness
@ These features will vary because

of measurement errors or
Bass conditions.
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Supervised Classification

@ Interesting observation
may show that bass is
usually longer than
salmon.

@ We take several samples
of the two fishes and
measure their lengths.

Count

@ We may represent our

measurement as a Length L
histogram.

@ We may ask the question, Figure 4: “Histogram” of fishes
"Will this feature lengths; Length marked L* will lead
sufficiently classify the to smallest number of errors.
fishes?"
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Supervised Classification

@ Perhaps the cost of using
length alone to classify is
too high.

Salmon

@ We take several samples Sea bass
of the two fishes and

measure their lightness.

Count

@ We again represent our
measurement as a = -
histogram.

Lightness
@ The answer to the

quf6;§§iont,| "Wli” th_ifs ‘;‘;ature Figure 5: “Histogram” of lightness
sutticiently classily the of fishes; Lightness marked X™ will

fishes?" is more
satisfying. lead to smallest number of errors.

@ The X* or L* is a decision
threshold.
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Supervised Classification

@ Assume that we believe that we
could do better at classifying the
fishes by using two (2) features.

@ We now have a two-dimensional
feature vector,

M E

X = °

Xo =

@ The feature space can be
visualized.

@ How to obtain the “best” decision Lightness
boundary is the classifier design
problem. Figure 6: Feature space with

decision boundary of classifier.
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Supervised Classification

@ As we increase the number of
features there is need to deal with
a high dimensional feature vector.

@ The problem of “too many
features" is referred to as
dimensionality curse.

@ A very complicated model may
also result in over fitting - training
data is separated “perfectly”; new
patterns are poorly classified.
Generalization problem.

Sea bass

Width

Lightness

Figure 7: Feature space with
complex decision boundary of
classifier.
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Supervised Classification

Occam’s Razor

The principle of using as simple as is necessary model to describe systems is captured in the
so-called “Occam’s razor” - favour simpler explanations over those that are needlessly
complicated.

@ The principle underlies the very popular method of sparse representation.
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Bayes decision rule - minimum error

@ This approach to classification (also called discrimination) assumes that we have full
knowledge of the probability density function of each class

@ Let the C classes have known a priori probabilities, P(w), ..., P(wc)
@ We make use of the measurement vector x to assign x to one of the C classes

@ Formulate a decision rule to assign x to class wj if the probability of class w; given the
observation x, (i.e. P(wj|x) - posterior probability), is the highest over all classes

W1y -- e WEs
X € wj if,
P(wjlx) > P(wk|x) k=1,...,C, k#]j
@ Measurement space is partitioned into C regions, Q4,Q»,...,Q¢; X € Q; = Xis in class w;
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Bayes decision rule - minimum error

@ We use Bayes’ theorem to express the a posteriori probabilities P(w;|x) in terms of the a
priori probabilities and the class-conditional density functions p(x|w;)

P(X|wi) P(wi)

Plaibx) = BELS

where

c
p(x) = p(xlw))P(w))

j=1
@ In terms of the class-conditional density we can write the decision rule as, assign x to wj if,

p(x|w)P(w)) > p(x|wi)P(wk) k=1,...,Ck#]
This is the Bayes’ rule for minimum error.
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Bayes decision rule - minimum error

@ In a two-class case we can write @ The plots of p(x|w;)p(w;), i =1,2
the Bayes’ minimum error rule in with P(wq) = P(wg) = 0.5 are
terms of likelihood ratio, L,(x), for shown below;
x € class wq,
" R —
X|w P(w
Lr(x):p( 1) _ Plw2)

p(xjw2) = P(wi)

@ Take as an example a two-class
discrimination problem, with class

wq normally distributed as, 4

p(x|wi) = N(x]0,1) and class w»

as a normal mixture with .
p(X|wz) = :

0.6N(x|1,1) + 0.4N(x| — 1,2) o cT ° ! : : ‘
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Bayes decision rule - minimum error

Plots of the likelihood ratio L,(x) and threshold, P(w2)/P(w1) are shown
below:

g —
pw2)p(wt) ——

L L L L L L L
-4 3 2 -1 0 1 2 3 4

Figure 8: Likelihood function

P . .
If L (x) > (wz), the observed sample is classified as w1,

P(w1)
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Bayes decision rule - minimum risk

@ This decision rule minimizes an expected loss or risk.

@ Define a loss matrix, A, with components,

Aji = cost of assigning a pattern x to w; when x € w;
@ The conditional risk of assigning a pattern x to class wj is defined as

c
li(x) = XiP(wj|x)

j=1

@ The average risk over decision region €; is

= /Q 0P

C
- /Q > AiPwxp(x)dx

i j=1

SCIT-AMRL (University of Wollongong) Machine Learning



Bayes decision rule - minimum risk

@ The overall expected cost or risk is obtained by summing the risks associated with all the
classes

c c c
r=%r= Z/ S AP (wy X)P(X)dx
i=1 i=1 /=
@ The risk is minimized if the regions Q; are chosen such that if

C C
S NPxP() € 3 AP X)p(x) k=1,...,C
j=1 j=1

then x € Q;.
@ This is the Bayes decision rule for minimum risk
@ The Bayes risk, r*, is

x =1,

c
* i i P(w:
r ‘mlnc; jiP(wjlx)p(x)dx
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Bayes decision rule - minimum risk

@ For a two-category classification problem we can write the conditional risks as:
c
li(x) = XiP(wj|x)
j=1

h(x) = M1 P(w1]x) + Aoy P(wz|x)
b(x) = MaP(w1|x) + Ao P(wz|X)

@ The minimum risk decision rule is simply to decide wy if 1 (x) < k(x).

@ This can be expressed in terms of posterior probabilities as: Decide wy if
(M1 = A2) P(wi]x) < (A22 — A21) Pwz|X)

@ In terms of the prior probabilities and conditional densities we decide w; if,

(M1 = M2)p(X|w1)P(w1) < (A2z2 — Ao1)P(X|w2) P(w2)
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Bayes decision rule - minimum risk

@ If we consider the special case of equal cost (also called symmetrical or zero-one) loss
matrix, A, in which,

i #E
v={ o iZ]
a substitution of this condition into the Bayes decision rule for minimum risk, gives,
c c
> Plwjlx)p(x) = P(wilx)p(x) < > P(wjlx)p(x) — P(wk|x)p(x)
j=1 j=1

for k =1,..., C. This is easily simplified as,
p(xwi)p(wi) = p(xlwk)p(wk), k=1,...,C

when x € class wj.
This is the same as Bayes rule for minimum error.
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Bayes decision rule - minimum risk

@ If we consider the special case of zero-one loss matrix, A, in which,
Y i# S
A = { 0, i=j
and a two-category classification the Bayes decision rule for minimum risk, gives,
p(xX|wi)p(wr) > p(x|w2)p(wz),

when x € class wy.
This is the same as Bayes rule for minimum error in the two-category case.

@ The corresponding risks in the case of the zero-one loss matrix are

C
D XiPwjlx)

j=1

= ZP(wj\X)
i

= 1 - P(wjlx)

li(x)
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Discriminant Functions

@ Bayes decision rules requires knowledge of prior class probabilities and class conditional
densities which are often not available in practice and must be estimated from data

@ The class of techniques being introduced makes no assumption about p(x|w;) but rather
assumes a form of the discriminant functions

@ A discriminant function is a function of the feature vector x that leads to a classification rule

@ Consider a two-class problem, a discriminant function h(x) is such that

h(x) > k= X € wy
<k=XEuws

for a constant k
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Discriminant Functions

@ Discriminant functions are not unique. If f(.) is @ monotonic function, then
9(x) = f(h(x)) > K' = x € w;
<k =xe wp

where k' = f(k), gives the same decision as h(x).

@ For classification problem with C classes we define C discriminant functions, g;(x) such
that,

gi(x) > gi(x)=xew j=1,....C j#i
This implies that a feature vector is assigned to the class with the largest discriminant.

@ The discriminant techniques rely on the form of the function being specified and not on the
underlying distribution

@ Parameters of the functional form are adjusted by a training procedure
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Linear discriminant functions

@ Linear discriminant functions are a linear combination of the components of the
t
measurement (or feature) vector, X = [X1, X, ..., Xp] , such that,

p
9(x) = w'x+wy =D wixi +wp
i=1
where we need to specify the weight vector w and threshold weight wq

@ The equation describes a hyperplane with unit normal in the direction of w and a
perpendicular distance, |wg|/|w| from origin.

SCIT-AMRL (University of Wollongong) Machine Learning



Linear discriminant functions

w0l A

origin

Figure 9: Geometry of linear discriminant function

@ The value of the discriminant function for a pattern x is the perpendicular distance from the
hyperplane
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Linear discriminant functions

@ Classifiers that use a linear discriminant function are called linear machine.

@ The minimum-distance classifier is an example. It uses the nearest-neighbour decision rule.

@ Let the prototype points of the classifier be py, . .., pc. Each point represents a class, w;.
The minimum distance classifier assigns x to the w; with nearest point p;

lix = pil? = x'x — 2x'p; + plp;
The class assigned to x is

1
wj = m?X(XtP/ - EPfPi)
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Linear discriminant functions

@ We can relate this assignment to the linear discriminant function
i(x) = wix + wig
where
wi = P (1)
wio = =5 lpil? @
to show that it is indeed a linear machine.

@ The prototype points could be chosen as the mean of each class and we have a nearest
class mean classifier.
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Linear discriminant functions

@ Each boundary is the perpendicular bisector of the lines joining the prototype points of
regions that are contiguous.

@ Note also that the decision regions of a linear machine are always convex.

Prototype point
<——  Decision boundary line

Figure 10: Decision regions of minimum distance classifier
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Piecewise linear discriminant functions

@ The linear machine has a simple form but suffers the limitation of not being able to separate
situations where the decision regions have to be non-convex.

@ The examples below show two-class problems where a linear discriminant will fail to
separate. They require piece-wise linear discriminant functions.

®
Y ® @ Decision regions are not convex
L

Figure 11: Groups not separable by linear discriminant functions
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Piecewise linear discriminant functions

MNon-convex set
Convex-sel o

Figure 12: Quick illustration of convex and non-convex regions

SCIT-AMRL (University of Wollongong) Machine Learning



Piecewise linear discriminant functions

@ We may solve the previous two-class problem by using piece-wise linear discriminant
function to generalize the minimum-distance classifier.

@ We allow more than one prototype for each class.
@ Suppose there are n; prototypes in class wj, p} e ,p/.”", i=1,...,C.
@ The discriminant function which assigns pattern x to class, wj, is defined as
9 = max_gl(x)
where g{ is a linear subsidiary discriminant function, given by

. . 1 -t i i
g,l-(X):XII)f—Ep;7 1:17"'7ni;’:17"'7C
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Kernel methods

Main idea

@ Embed given data into a space where the patterns can be discovered as linear relations

@ Two steps:

@ Mapping is defined implicitly by a so-called kernel function (depends on domain
knowledge regarding pattern in data source)
@ Use general purpose algorithm that is robust

@ Algorithm is efficient, requiring computational resource that is polynomial in the size and
number of data items; dimension of the embedding space grows exponentially and does not
affect computational burden
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Kernel methods

'y o)

Figure 13: Function ¢ embeds data into a feature space; nonlinear pattern now appears linear
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Kernel methods

&

‘\

‘N
Wo + W@ + W, 0, = 0

2 2
Wy +WX; +w,x, =0

Figure 13: Example of nonlinear mapping in classification problem
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Ridge regression revisited

@ Formulation is somewhat similar to linear regression;

@ This model gives better theoretical guarantees and improved performance partly because
we constrain the norm of the weight vector The optimization problem is written compactly
as:

min F(W) = X[|W|[? + [ XTW — V|| @®

where X is a positive parameter that determines the trade-off between the regularization
term ||W||2 and the empirical mean squared error; X € RN*™ is the matrix of feature
vectors, X = [xq,...,Xm] and W and Y are as defined previously (see lecture slides on
regression).

@ Optimization problem of Equation is convex and differentiable with a global minimum if and
only if
VF(W)=0< (XXT +XNW = XY & W = (XXT + X))~ XY (4)
XXT + M is always invertible !
@ The form of the solution weight vector

W= (XX"T +x)"'XY

is the primal solution

"because its eigenvalues are sum of non-negative eigenvalues of positive semi-definite matrix XX and
A>0
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Ridge regression revisited

@ The solution,
W= (XXT £ AD)~'XY
can be written as:

W= Xa (5)
where « is
(G+AN)'Y (6)
and G = X7 X is called the Gram matrix. Each component of G is an inner product,
(xj, x;). Thus
Gi, = (Xi, X))

@ The prediction function is

m m
g(x) =< W,x >= <Z a1x;,x> =Y o <x,x>=Y(G+ ) 'k
P

i=1

where kj =< xj, x >
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Ridge regression revisited

@ We have two forms of solution for the ridge regression (similarly for other regression):

W= (XX" +An~'XY: Primal form
W = Xa: Dual form (7)

Primal form computes explicitly while the dual expresses solution as linear combination of
training samples.

@ In primal form we solve an (N x N) system of equations while in the dual form we solve an
(m x m) system.

@ If dimension of features is N > m (the number of samples) the computational advantage is
obvious

@ Key observation: Ridge regression algorithm can be solved in a form that only requires
inner products between sample points
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Kernel-defined nonlinear mapping

@ Consider an embedding map
¢:xeRN— ¢(x) e FC RV (8)

@ Choose the map ¢ so that it aims to convert the nonlinear relations into linear ones.

@ Map ¢ recodes the given dataset, S, into {(¢(x;), i), .. (¢(Xm), ym)} for the m samples in
the dataset.

@ Recall that the efficient dual form of the solution to ridge regression entails the Gram matrix
which is made up inner products

Gij = (#(x;), 9(X})) (9)

@ Computational cost of a is O(m® + m?N) and that of evaluating the predictor on a new
sample is O(mN)

@ [t turns out that the inner product can be computed directly in the input space rather than
first computing ¢(x) using a kernel function
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Kernel-defined nonlinear mapping

Definition:

A Kernel is a function, x, that for all x, z € S satisfies
K(X, 2) = (8(X), ¢(2)) ,
where ¢ is a mapping from S to an inner product feature space F

¢:x— d(x)€eF
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Kernel-defined nonlinear mapping

Consider a two-dimensional input space x C R? together with the feature map
b X = (X1, %) — p(x) = (X2, x2,V2x1%) € F =R5.
Hypothesis of linear functions in F are of the form

g(X) = W11X12 + W22X22 + W12\/§X1X2

(p(x), #(2)) = <(X1aX27fX1X2) (21,22,f2122)>
= X222 4 XEXE + 2x1Xp21 22

= (X121 + X2)? = (x,2)?

@ Hence x(x, z) = (x, 2)? is a kernel function with F its corresponding feature space
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Kernel-defined nonlinear mapping

Consider a two-dimensional input space x C R? together with the feature map

b1 X = (X1, %) — ¢(X) = (X2, X5, X1 X2, XoX1) € F =R*.

(6(x), 9(2)) = <(X12,X22,X1X2,X2X1), (22,25,2120, 2p 24 )>

2.2 2,2
= X{2Z7 T Xo X5 + X1 X22Z12Z2 + XoX1222Z4

= (X121 + X225)? = (X, Z>2

@ The same kernel computes the inner product of this feature space
@ Hence feature space is not uniquely determined by the kernel function
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Kernel-defined nonlinear mapping

Table 1: Commonly used kernels (v, r, and d are parameters)

Nonlinearity Mathematical form: x(X;, X;) =
Linear (x;, X;)

Polynomial (v{x,x)y+n% ~v>0
Gaussian (Radial Basis Function - RBF)  exp (—v||x; — Xj]|2); ~ >0
Sigmoid tanh (v (Xi, X)) + 1)

Letx=[1 4 6] andz=[3 5 2] be two feature vectors that we need to map through
the mapping function ¢(-) to some feature space F. Further, let the kernel associated with the
feature space be the RBF with parameter v = 0.2222. The value of the inner product of the two
vectors, (¢(X), $(2)), in the feature space is easily computed as x(x, Z) = exp(—||x — z|[?)
(¢(x), $(2)) = r(x,2)
= exp(—0.2222 x ||x — 2||?)
= exp(—4.667) = 9.4 x 1073

Try this simple example yourself to ensure you understand the concept
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Kernel-defined nonlinear mapping

@ Recall Equations (5) and (6) and the comments that followed; each entry of the Gram matrix
that appeared in the solution of the ridge regression is an inner product of the data in the
input space.

@ A mapping, ¢(-), into a high dimensional feature space F, implies that each entry of the
Gram matrix can be computed with the appropriate kernel of the feature space

Gij = (p(xi), o(x;))
= K(X,‘,X/‘) (10)

@ Kernalization provides a way of dealing with nonlinear relationships that may exist in the
problem (e.g. regression, classification, dimensionality reduction, etc.)
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Support vector machine

@ Consider a binary classification task with data points x;(i = 1,..., m) having corresponding
labels y; = £1 and decision function

g(x) = sign({w, x) + b) (11)

@ For a separable dataset all data will be correctly classified if y;({(w, x) + b) > 0; Vi

@ Define canonical hyperplane such that (w, x) + b = 1 for closest points on one side of
separating plane and (w, x) + b = —1 for closest points on the other

@ Separating plane : (w, x) + b = 0 and normal vector is HTWIH

@ Margin is given by projection of x; — X2 onto the separating plane

@ (w,x1)+b=1and (w, x2) + b= —1; marginis v = 1/||w|| (see Fig 14 on next slide)
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Support vector machine

Maximize the margin v = 1/||w||, by

min [1HWH21|
2

subjectto  y;({w, x) + b) > 1;Vi.

Figure 14: SVM separating Figure 15: SVM separating
hyperplane hyperplane in detail
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Support vector machine

@ Learning task reduces to minimizing the primal objective function:

1
Lf

= (W, W) = 3" ayly((w, x) + b) — 1) (12

i=1
«; are Lagrange multipliers and «; > 0
@ After taking derivatives with respect to b and w and appropriate substitution into Equ. 12,
we obtain the dual objective function

m

m

1

W(a) = ai— > > aiyyivi(Xi, x;) (13)
i=1 i,j=1

to be maximized with respect to the «; subject to

m
aj>0 D ay=0 (14)
i=1

@ The quadratic program represented by Equ.13 gives optimal separating hyperplane with
maximal margin for separable data
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Support vector machine

Equ.13 indicates how we can incorporate the kernel that computes inner product in the
feature space after applying a mapping ¢(-); case of inseparable data

Mapping achieved by

(Xi, ;) — (o(X:), d(x;)) (15)
Note that the functional form of ¢(x;) need not be known since choice of kernel implicitly
defines it:

w(Xiy X7) = ($(X;), D(X}))

Kernalized version of Equ. 13 becomes

m m
1
W(a) =3 ai— 5 > aiejyiyn(Xi, %) (16)

i=1 i,j=1
to be maximized with respect to the «; subject to

m
aj >0 E ajyi =0
i—1

@ For example the kernel could be chosen as «(X;j, X;) = exp(—||X; — x,-HZ)
@ Decision function for a new test data z is

f(z) = sign <Z yiojr(X;, 2) + b) (17)

i=1
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Support vector machine with soft margin

Noisy data and outliers can lead to poor generalization
Reduce the effect by introducing soft margin
Recall (Equ. 16) that for a given kernel (x(-, -)), the learning task is:

m m
e 1
maximize  W(a) = aj— > > " aigyiyis(Xis X;)
i=1 ij=1 (18)

m
subjectto ;>0 Y a;y;=0.
=1

Two ways of accounting for noisy data and outlier with
@ Use Ly norm error and introduce box constrain 0 < «; < Cin Equ (18)

@ Use L, norm error and add a small positive constant to the leading diagonal of kernel
matrix «(X;, X;) becomes (X;, X;) + A in Equ (18)
Parameters C and X are chosen to trade-off between training error and generalization
ability; achieve this with validation set; well-known library libsvm exposes interface to
determine C
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Using SVM

Beginners are advised to use the following procedure (see Hsu et al. (2003-2016)):
Transform data to the format of an SVM package

@ Conduct simple scaling on the data
@ Consider the RBF kernel x(X;, X; = exp(—v||X; — X;||?) (see Table 42)
@ Use cross-validation to find the best parameter C and ~
@ Use the best parameter C and ~ to train the whole training set
@ Test
The guide given by Hsu et al. (2003-2016) is concise and straightforward, and students are
strongly encouraged to consult the publication for details.
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