Machine Learning: Algorithms and Applications

CSCI1933/433

Philip O. Ogunbona

Advanced Multimedia Research Lab
University of Wollongong

Transformer

SCIT-AMRL (University of Wollongong) Machine Learning Attention

o Language modelling
© Neural machine Translation
© Attention

Q@ Transformer

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Language modelling

Why model language?

@ It allows us to represent and understand language in a computational way.

@ Word model captures meaning, context and relationships between words in a given
sentence.

@ It enables machines to understand, generate, and analyze human language.

@ Example applications of word modelling in natural language processing (NLP):

e Semantic understanding: Words carry meaning and to comprehend the
meaning of a sentence or document we need understand individual
words - model the words

o Language generation: (includes machine translation, text
summarization, and machine-human dialogue/conversation) word
modelling allows the relationship between words to be exploited in
generating coherent and meaningful sentences.

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Language modelling

@ Example applications of word modelling in natural language processing (NLP):

o Text classification and sentiment analysis: Word representations
(modelling) become features for training machine learning models that
perform sentiment analysis or text classification tasks.

o Language understanding: To understand human language, NLP models
need to recognize and interpret the different aspects of text, such as
named entities, part-of-speech tags, syntactic structures, and
sentiment. Word modeling helps in these tasks by providing
representations that capture relevant linguistic features.

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Text encoding (modelling)

Characteristics of word modelling

@ Standardize text; turn to lower case & removing punctuation

@ Words, characters, n-grams are tokens

Process of segmenting text into tokens is tokenization

Tokens are transformed into numeric tensors (vectors) (Vectorizing)

Packed tensors (vectors) form input to deep networks

Token-Vector transformation methods (e.g.):

o one-hot encoding
o token embedding (word embedding)

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Text standardization

@ Text standardization is a form of feature engineering that aims to
remove encoding differences

o Remove punctuations
o Convert to lower case
@ Standardization techniques allow the use of less training data and
models tend to generalize better

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Text splitting - tokenization

@ Words tokenization: tokens are units made up of group of characters.
@ N-gram tokenization: tokens are groups of N consecutive words.

@ Character-level tokenization: each character is its own token (rarely
used).

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Text encoding

Text

The cat sat on the mat.

Standardization

the cat sat on the mat

Tokenization

One-hot Encoding

@ Given a vocabulary of N tokens

Standardized text

Unique integer index i, is associated
with every token Tokens

“the", "mat"

Indexing

Every integer index ¢, is turned into a

. . Token indices 3,26,65,9,3, 133
binary vector of size N T

One-hot encoding or embecdding

Binary vector has all zeros but a 1 in

he i-th o|[o][o][o][c][+
the 2-th entr Vector IR
y encoding ol|of|of(ofjei|o

of indices N A RN

of|1[|1|[o]|o]|]0

of|of[of|o]]o]|1

SCIT-AMRL iversity of Wollongong) Machine Learni Attention

Text encoding

One-hot Encoding

import tensorflow
from tensorflow.keras.preprocessing.text
import Tokenizer
samples = ['The cat sat on the mat.',

'The dog ate my homework. ']
tokenizer = Tokenizer (num_words=1000)
tokenizer.fit_on_texts(samples)
sequences = tokenizer.texts_to_sequences(samples)
#Turns strings into lists of integer
one_hot_results = tokenizer.texts_to_matrix(samples,

mode='binary')

word_index = tokenizer.word_index
print ('Found 7%s unique tokens.' J len(word_index))

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Word embedding

@ Word embedding (supposedly) maps human language into a
geometric space reflecting semantic relationship

Queen =[0.3,0.9] Queen =[0.3,0.9]

King=[05,07] King =[0.5,0.7]

Workan =[03,04] Woman'=[0.3,041

fan =[0.5,0.2] fan = [0.5, 0.2]

Figure 1: Word embedding example (Word2Vec)
Similar vectors allow moves from Cat to Tiger and from Dog to Wolf; akin to mapping
from “pet” to “wild”; notice Cat to Dog vector and Tiger to Wolf vector; there is also

the classical “King + Woman - Man = Queen”

Machine Learning Attention

SCIT-AMRL (University of Wollongong)

Word embedding

@ How to get word embedding?:

o Learn embeddings jointly with the task of interest (e.g. document
classification or sentiment prediction)
Start with random word vectors and learn word vectors in the same way you
learn the weights of a neural network

@ Use pre-computed (also called pre-trained) word embeddings that were
learned on a related task to your task of interest.

@ Some pre-trained word embeddings:

Word2vec: https://code.google.com/archive/p/word2vec
Global Vectors for Word Representation (GloVe):
https://nlp.stanford.edu/project/glove

o BERT - Bidirectional Encoder Representations from Transformers
(from Google Research)

fastText (from Cornell, Caltech and Amazon)

GPT-2, GPT-3 [Generative Pre-trained Transformer] (from OpenAl)

SCIT-AMRL (University of Wollongong) Machine Learning Attention

https://code.google.com/archive/p/word2vec
https://nlp.stanford.edu/project/glove

SCIT-AMRL

Word embedding generation

Tensorflow/keras API for embedding

tensorflow API

tf.keras.layers.Embedding(
input_dim,

output_dim,
embeddings_initializer='uniform',
embeddings_regularizer=None,
activity_regularizer=None,
embeddings_constraint=None,
mask_zero=False,
input_length=None,
sparse=False,

**¥kwargs

)

niversity of Wollongong)

Machine Learning

Example usage

model = tf.keras.Sequential()

model.add(tf.keras.layers.Embedding (1000,

The model will take as input an integer

#matriz of size (batch,

anput_length), and the largest

#integer (i.e. word indez) in the input

should be no larger than 999 (vocabulary

Now model.output_shape ts (None, 10, 64

#where “Nome® is the batch

dimension.

input_array = np.random.randint (1000,
size=(32, 10))

model.compile('rmsprop', 'mse')

output_array = model.predict(input_array)

print (output_array.shape)

prints (32, 10, 64)

Attention

s

Neural mac

Neural machine translation (NMT)

@ Given a text in one language, the task of NMT is to generate the translation into a
different language (e.g. English to French).

@ Simple RNN-based NMT model is shown in Figure 2

Target: Je bois du lait <eos>
Prediction: Je bois le lait <eos>

Encoder - Decoder | TimeDistributed(Softmax) |

| Embedding lookup | | Embedding lookup |
I | I | T I I I
288 3335 72 0‘< 2132 21 431
“ milk drink 1” “ <sos> Je bois du lait”

Figure 2: Simple Encoder-Decoder NMT model (Géron, 2019)

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Neural machine translation

Target: Je bois du lait <eos>
Prediction: Je bois le lait <e0s>

Encoder - Decoder TimeDistributed(Softmax) |

Embedding lookup | | Embedding lookup ‘
I

I I I I
72 51 2132 21 431

‘\v\\

“ <sos> Je bois du lait”

[I
288 3335

“ milk drink 1

Figure 3: Simple Encoder-Decoder NMT model (Géron, 2019)

@ Input: “l drink milk”; Target output: “; Je bois du lait” ; Note how input is
reversed in Figure 3 to ensure correct order of translation

@ Notice how correct output is also fed into the decoder, but shifted by one time
step, viz. < SOS > token

Attention

Machine Learning

SCIT-AMRL (University of Wollongong)

Neural machine lation

Algorithm flow

@ Each word is represented by its ID

(from the VOCabUIary) Target: Je bois du lait <eos>
Prediction: Je bois le lait <eos>
@ Embedding layer takes ID and forms Encoder - Decoder [T_* _+ + ¢t |
. . . L \ imeDistributed(Softmax)
word embeddings (which are fed into | . DN T T T ;

Yo Yo Ve

the encoder & decoder)

© Encoder last state is fed to the (e
decoder along with the correct !
A
|

iy % — 5]

. .) 1) Xp i i X, oo Xg Xm o X

translation (but delayed by one time -) — } |
‘ Embedding lookup | | Embedding lookup |
=) Lo b L hoke d
@ At each time step, decoder outputs a “ Mfkl/ ‘\(N
score for each word from the output sos7 o posdua
vocabulary (i.e. French .
y () Figure 4: NMT Encoder-Decoder model

@ Softmax layer turns the scores into
probabilities and the word with
highest probability is output

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Neural machine translation

@ At inference, the configuration
of the decoder is different as
shown in Figure 5.

@ Input is the previous output <sbe>

Figure 5: Input of decoder at inference

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Neural machine translation

Taking care of reality

Variable sentence length

@ Assumption of constant-length
sentence does not hold in

practice
. Ignore end-of-sentence token < eos >
@ Use padding to create
constant-length sentences @ < eos > should not contribute to loss
@ Group sentence into buckets of caleulation
(e.g)) 1—6,7— 12 word @ Use mask to suppress usage in
sentences and use pads to computation

make up constant length

@ ‘| drink milk" becomes
"< pad > < pad >< pad >
milk drink I”

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Neural machine translation

Taking care of reality

Good to “know” the future -

Large output vocabulary Bidirectional RNN

@ Encoder-decoder model @ A conventional RNN treats input text
requires computation of output as “causal signal .

probability by Softmax (Huge
computational burden for large
vocabulary)

@ There is advantage in looking ahead
before encoding a word.

@ For example the word queen in

@ Use S le Soft
€3 Bempl SelHme " Queen of the United Kingdom*, "the

@ Consider only logits output by quuen of hearts" and "the queen bee*"
model for correct word and require looking ahead to generate the
randomly sample any of the appropriate encoding.

incorrect words; compute
approximate loss based on the
two.

@ Use Bidirectional recurrent layer and
concatenate the output at each time
- step.

SCIT-AMRL (University of Wollongong) Machine Learning

Beam search

Beam search - key idea

@ How to give the model a chance to fix mistakes it made earlier?

@ Keep track of the £ most promising sentences and at each decoder
step, try to extend them by one word, keeping only k most likely
sentences.

@ Parameter k is called the beam width.

@ Beam search is computationally expensive because it maintains k
copies of the model and generates conditional probabilities on the
order of the size of the vocabulary for each copy.

@ A better solution is provided by Attention mechanism.

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Attention

@ Attention is the process of focusing on what is important and fading
out what is not important (Chollet, 2021, Chp. 11.4).

@ Importance scoring is the starting point of all attention mechanisms.

@ Attention can make features Context-aware.

SCIT-AMRL (University of Wollongong) Machine Learning Attention

NMT with Attention

“du” “lait”

Do =

\Decoder
O fz0) %1 2
1 Yoo Yoo Yo :
P Yo Y Yo |
: x(o) xm x(z) . (0) (1) (2) :
“E'!??,q?,’,i ,,,,,,,,,,,,,,,,,,,,,,,, ./ \Alignmentmodel
P “drink” milk”

Figure 6: Neural machine translation with attention mechanism (shown on the right)

SCIT-AMRL niversity of Wollongong) Machine Learni Attention

NMT with Attention

Algorithm

@ Decoder computes a weighted sum of
all the encoder outputs; this
determines which words to focus upon

o Ty at this time step.
© Using Figure 7, a4 is the weight of
sim elﬂ 81@ the " encoder output at the t*"
Pop P - decoder time step.
NS A A

e If Oé(gyg) > Oé(310) > a(371), then the
i\E,,mde,xf"’ xf” P stgmenmosn 4 decoder will focus attention on word,
e ik "milk*“ than the other two words (at
this time step).

x Yo Yoo VYo |

Figure 7: Neural machine translation

with attention mechanism Apart modification, decoder behaves

as in the simple NMT of Figure 2.

© The block on the right generates the
weights; it is the Attention layer or
alignment model.

= = = = =

SCIT-AMRL (University of Wollongong) Machine Learning

Alignment model

@ Time-distributed dense layer (with single neuron) receives all encoder output,
concatenated with the decoder’s previous hidden state as input

Output of dense layer is a score (or energy) for each encoder output (e.g. e(3,2))

Score is a measure of how well aligned is each output with the decoder’s previous
hidden state

Final weight (o (s,2)) is generated by the softmax layer (this is called, additive
attention)

© ©0 060

The alignment can also be measured by simple inner (i.e. dot) product (this is the
multiplicative attention) (also called Luong attention after the first author of paper
that introduced it)

Alignment model

v

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Alignment model

Three models of alignment mechanism
hay = Y ey
i

exp(e,i))

with, au) ="
(t,4) > exp(eq,iry)
ha)y(i) dt
and e = hg;)Wy(i) general

thanh(W[h(t);y(i)]) concat

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Transformer

Output
Probabilities

/Decoder

Encoder

ansfor desc

@ Encoder (left) -Decoder (right) pair. l
@ Nz implies both encoder and decoder
are stackable. —— Nx
© Input to encoder: word ID (shape: Nx e
[batch size, max input sentence nton enion
length]) passed through embedding to)
2 H Positional -
generate 512-dimensional e i
representation. Embeaig b
@ Encoder output shape: [batch size, .nplu.S outputs
. hifted right)
max input sentence length, 512]. fean

Figure 8: Transformer: " Attention is all you
need“ (Géron, 2019)

Attention

SCIT-AMRL niversity of Wollongong) Machine Learni

Transformer

Output
Probabilities

sformer - description (cont’d)

/Decoder

@ Decoder (right) takes target sentence
(shifted by one time step to the right)
as input during training.

@ Second input to decoder is the output
of the encoder

Encoder

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Atention

Add & Norm

Nx

Add & Norm
Multi-Head
Attention

Masked
Multi-Head
Attention

© Decoder outputs a probability for each N
possible next word at each time step
(output shape: [batch size, max

J

Positional it
output sentence length, vocabulary Encoding Encoding
length]). Embeaig b

@ During inference, decoder has no Inpus Outpus
(shifted right)

access to targets, so it is fed
previously output words (starting with Figure 9: Transformer: " Attention is all you
start-of-sentence token). need* (Géron, 2019)

V.

Attention

SCIT-AMRL (University of Wollongong) Machine Learning

Transformer

nsformer - desc (cont’d)
Output
Probabilities

@ Basic Encoder-Decoder pair has two
embedding layers and 5 skip
connection (5 X N with stacking).

/Decoder

Encoder

Add & Norm

Add & Norm

Multi-Head
Attention

Add & Norm
Feed
Forward

Multi-Head
Attention

@ Skip connections are followed by layer
normalization and feed-forward
modules (two dense layers; first with
ReLu; second with no activation)

Nx

Nx

Masked
Multi-Head
Attention

© Decoder output layer is a dense layer

with softmax activation. Sl =)
) . . Positional Positional
Q@ All layers are time-distributed, so ech Encoding Encoding
. . Input Output
word is treated independently of all Embeddng Embedding
Others' Inputs Outputs
(shifted right)

© Word-word relationship and position
within sentence are respectively Figure 10: Transformer: “Attention is all you
encoded by multi-head attention and | need” (Géron, 2019)
positional encoding modules

SCIT-AMRL niversity of Wollongong) Machine Learni Attention

Transformer

Transformer - positional embedding

@ Positional embedding encodes the position of each word, and adds the i*"
embedding to the word embedding of the " word.

@ Positional embedding can be learned or obtained in a deterministic formula.

© Positional embedding matrix P is deterministically obtained as:
P, 5; = sin(p/10000%"/%)
P, 2i+1 = cos(p/10000%"/%)

where, p is the word position, i is index of the embedding, and d is the maximum
dimension of each word representation.

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Transformer

Transformer - Multi-Head Attention

@ Multi-head attention module depends on the Scaled Dot-Product Attention layer.

@ Assume Encoder learned to encode the sentence They played chess with attributes:

Table 1: possible encoding - value-key dictionary

Token (word) | Part of speech

They pronoun (also subject of the sentence)
played verb

chess noun

© After decoding They, a subject, decoder “decides” to decode a verb; it should look
up (using a “query”) in the encoding (map) for the “value” corresponding to the
“key” verb.

@ Since the encoding of the attributes is vectorized representation, decoder must find
the appropriate “value” by computing an approximation - a Scaled Dot-Product.

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Transformer

Transformer - Scaled dot-product

@ Compute similarity between “query” and “key”s in the dictionary and use softmax
to ensure scores sum to one.

@ In the example being considered, the “key” corresponding to verb should have
score close to one

© A weighted sum of the corresponding “values” should be close to the
representation of “played”.

@ Transformer uses dot-product

@ Q: matrix of queries ([nqueries; dkeys])

@ K: matrix of keys ([Nkeys, dieys]); Mkeys
is number of key-value pairs.

QKT @ V: matrix of values ([rkeys; dvalues])
Attention(Q, K, V') = softmax \%

\ dkeys

@ Final output ([Nqueries, dvalues]) has one
row per query; each row is a query result
(i.e. weighted sum of values).

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Transformer

Multi-Head Attention

@ Itisa f:ollectlon of Scaled Dot-Product
Attention modules.
L L @ Starts with linear transformation of the
Scaled Dot-Product H I s d . . o
Attention values, keys, and queries '(l.e., a time-
N " distributed Dense layer with no activation
function).
(spit) (spit] [spit])
@ The values, keys and queries are split and
[Linear] [Linear] [Linear] passed to each Head (i.e. Scaled
Dot-Product Attention module).
\Y, K Q @ The model uses multi-head to project the
word representation into different
Figure 11: Multi-Head Attention layer subspaces, each focusing on a subset of
the word'’s characteristics.

architecture (Géron, 2019)

SCIT-AMRL (University of Wollongong) Machine Learning Attention

Tensorflow (2.12) API

tfm.nlp.layers.Transformer (
num_attention_heads,
intermediate_size,
intermediate_activation,
dropout_rate=0.0,
attention_dropout_rate=0.0,
output_range=None,

kernel_initializer='glorot_uniform'

bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
use_bias=True,
norm_first=False,
norm_epsilon=le-12,
intermediate_dropout=0.0,
attention_initializer=None,
**kwargs

>

SCIT-AMRL (University of Wollongong)

Machine Learning

Some questions

@ How do we apply transformer
architecture to other tasks apart
from NLP?

@ What is the equivalent of words
in other tasks?

@ Do we need to interpret the task
as sequence-to-sequence task?

Attention

Bibliography

Chollet, F. (2021). Deep Learning with Python (2nd ed.). Shelter Island,
NY, USA: Manning Publishing Co. Ltd.
Géron, A. (2019). Hands-on machine learning with scikit-learn keras and

tensorflow: Concepts, tools and techniques to build intelligent
systems (2nd ed.). CA, USA: O'Reilly Media, Inc.

SCIT-AMRL (University of Wollongong) Machine Learning Attention

	Language modelling
	Neural machine Translation
	Attention
	Transformer
	References

