
Machine Learning: Algorithms and Applications
CSCI933/433

Philip O. Ogunbona

Advanced Multimedia Research Lab
University of Wollongong

Transformer

SCIT-AMRL (University of Wollongong) Machine Learning Attention 1 / 33

Outline

1 Language modelling

2 Neural machine Translation

3 Attention

4 Transformer

SCIT-AMRL (University of Wollongong) Machine Learning Attention 2 / 33

Language modelling

Why model language?

It allows us to represent and understand language in a computational way.

Word model captures meaning, context and relationships between words in a given
sentence.

It enables machines to understand, generate, and analyze human language.

Example applications of word modelling in natural language processing (NLP):

Semantic understanding: Words carry meaning and to comprehend the
meaning of a sentence or document we need understand individual
words - model the words
Language generation: (includes machine translation, text
summarization, and machine-human dialogue/conversation) word
modelling allows the relationship between words to be exploited in
generating coherent and meaningful sentences.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 3 / 33

Language modelling

Example applications of word modelling in natural language processing (NLP):

Text classification and sentiment analysis: Word representations
(modelling) become features for training machine learning models that
perform sentiment analysis or text classification tasks.
Language understanding: To understand human language, NLP models
need to recognize and interpret the different aspects of text, such as
named entities, part-of-speech tags, syntactic structures, and
sentiment. Word modeling helps in these tasks by providing
representations that capture relevant linguistic features.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 4 / 33

Text encoding (modelling)

Characteristics of word modelling

Standardize text; turn to lower case & removing punctuation

Words, characters, n-grams are tokens

Process of segmenting text into tokens is tokenization

Tokens are transformed into numeric tensors (vectors) (Vectorizing)

Packed tensors (vectors) form input to deep networks

Token-Vector transformation methods (e.g.):

one-hot encoding
token embedding (word embedding)

SCIT-AMRL (University of Wollongong) Machine Learning Attention 5 / 33

Text standardization

Text standardization is a form of feature engineering that aims to
remove encoding differences

Remove punctuations
Convert to lower case

Standardization techniques allow the use of less training data and
models tend to generalize better

SCIT-AMRL (University of Wollongong) Machine Learning Attention 6 / 33

Text splitting - tokenization

Words tokenization: tokens are units made up of group of characters.

N-gram tokenization: tokens are groups of N consecutive words.

Character-level tokenization: each character is its own token (rarely
used).

SCIT-AMRL (University of Wollongong) Machine Learning Attention 7 / 33

Text encoding

One-hot Encoding

Given a vocabulary of N tokens

Unique integer index i, is associated
with every token

Every integer index i, is turned into a
binary vector of size N

Binary vector has all zeros but a 1 in
the i-th entry

SCIT-AMRL (University of Wollongong) Machine Learning Attention 8 / 33

Text encoding

One-hot Encoding

import tensorflow

from tensorflow.keras.preprocessing.text

import Tokenizer

samples = ['The cat sat on the mat.',

'The dog ate my homework.']

tokenizer = Tokenizer(num_words=1000)

tokenizer.fit_on_texts(samples)

sequences = tokenizer.texts_to_sequences(samples)

#Turns strings into lists of integer

one_hot_results = tokenizer.texts_to_matrix(samples,

mode='binary')

word_index = tokenizer.word_index

print('Found %s unique tokens.' % len(word_index))

SCIT-AMRL (University of Wollongong) Machine Learning Attention 9 / 33

Text encoding

Word embedding

Word embedding (supposedly) maps human language into a
geometric space reflecting semantic relationship

Figure 1: Word embedding example (Word2Vec)
Similar vectors allow moves from Cat to Tiger and from Dog to Wolf; akin to mapping
from “pet” to “wild”; notice Cat to Dog vector and Tiger to Wolf vector; there is also
the classical “King + Woman - Man = Queen”

SCIT-AMRL (University of Wollongong) Machine Learning Attention 10 / 33

Text encoding

Word embedding

How to get word embedding?:

Learn embeddings jointly with the task of interest (e.g. document
classification or sentiment prediction)
Start with random word vectors and learn word vectors in the same way you
learn the weights of a neural network
Use pre-computed (also called pre-trained) word embeddings that were
learned on a related task to your task of interest.

Some pre-trained word embeddings:

Word2vec: https://code.google.com/archive/p/word2vec
Global Vectors for Word Representation (GloVe):
https://nlp.stanford.edu/project/glove

BERT - Bidirectional Encoder Representations from Transformers
(from Google Research)
fastText (from Cornell, Caltech and Amazon)
GPT-2, GPT-3 [Generative Pre-trained Transformer] (from OpenAI)

SCIT-AMRL (University of Wollongong) Machine Learning Attention 11 / 33

https://code.google.com/archive/p/word2vec
https://nlp.stanford.edu/project/glove

Word embedding generation

Tensorflow/keras API for embedding

tensorflow API

tf.keras.layers.Embedding(

input_dim,

output_dim,

embeddings_initializer='uniform',

embeddings_regularizer=None,

activity_regularizer=None,

embeddings_constraint=None,

mask_zero=False,

input_length=None,

sparse=False,

**kwargs

)

Example usage

model = tf.keras.Sequential()

model.add(tf.keras.layers.Embedding(1000, 64, input_length=10))

The model will take as input an integer

#matrix of size (batch,

input_length), and the largest

#integer (i.e. word index) in the input

should be no larger than 999 (vocabulary size).

Now model.output_shape is (None, 10, 64),

#where `None` is the batch

dimension.

input_array = np.random.randint(1000,

size=(32, 10))

model.compile('rmsprop', 'mse')

output_array = model.predict(input_array)

print(output_array.shape)

prints (32, 10, 64)

SCIT-AMRL (University of Wollongong) Machine Learning Attention 12 / 33

Neural machine translation

Neural machine translation (NMT)

Given a text in one language, the task of NMT is to generate the translation into a
different language (e.g. English to French).

Simple RNN-based NMT model is shown in Figure 2

Figure 2: Simple Encoder-Decoder NMT model (Géron, 2019)

SCIT-AMRL (University of Wollongong) Machine Learning Attention 13 / 33

Neural machine translation

Figure 3: Simple Encoder-Decoder NMT model (Géron, 2019)

Input: “I drink milk”; Target output: “; Je bois du lait” ; Note how input is
reversed in Figure 3 to ensure correct order of translation

Notice how correct output is also fed into the decoder, but shifted by one time
step, viz. < SOS > token

SCIT-AMRL (University of Wollongong) Machine Learning Attention 14 / 33

Neural machine translation

Algorithm flow

1 Each word is represented by its ID
(from the vocabulary)

2 Embedding layer takes ID and forms
word embeddings (which are fed into
the encoder & decoder)

3 Encoder last state is fed to the
decoder along with the correct
translation (but delayed by one time
step)

4 At each time step, decoder outputs a
score for each word from the output
vocabulary (i.e. French)

5 Softmax layer turns the scores into
probabilities and the word with
highest probability is output

Figure 4: NMT Encoder-Decoder model

SCIT-AMRL (University of Wollongong) Machine Learning Attention 15 / 33

Neural machine translation

At inference, the configuration
of the decoder is different as
shown in Figure 5.

Input is the previous output

Figure 5: Input of decoder at inference

SCIT-AMRL (University of Wollongong) Machine Learning Attention 16 / 33

Neural machine translation

Taking care of reality

Variable sentence length

Assumption of constant-length
sentence does not hold in
practice

Use padding to create
constant-length sentences

Group sentence into buckets of
(e.g.) 1− 6, 7− 12 word
sentences and use pads to
make up constant length

“I drink milk” becomes
“< pad > < pad >< pad >
milk drink I”

Ignore end-of-sentence token < eos >

< eos > should not contribute to loss
calculation

Use mask to suppress usage in
computation

SCIT-AMRL (University of Wollongong) Machine Learning Attention 17 / 33

Neural machine translation

Taking care of reality

Large output vocabulary

Encoder-decoder model
requires computation of output
probability by Softmax (Huge
computational burden for large
vocabulary)

Use Sample Softmax ⇓
Consider only logits output by
model for correct word and
randomly sample any of the
incorrect words; compute
approximate loss based on the
two.

Good to “know” the future -
Bidirectional RNN

A conventional RNN treats input text
as “causal signal“.

There is advantage in looking ahead
before encoding a word.

For example the word queen in
”Queen of the United Kingdom“, ”the
quuen of hearts“ and ”the queen bee“
require looking ahead to generate the
appropriate encoding.

Use Bidirectional recurrent layer and
concatenate the output at each time
step.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 18 / 33

Beam search

Beam search - key idea

How to give the model a chance to fix mistakes it made earlier?

Keep track of the k most promising sentences and at each decoder
step, try to extend them by one word, keeping only k most likely
sentences.

Parameter k is called the beam width.

Beam search is computationally expensive because it maintains k
copies of the model and generates conditional probabilities on the
order of the size of the vocabulary for each copy.

A better solution is provided by Attention mechanism.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 19 / 33

Attention

Attention

Attention is the process of focusing on what is important and fading
out what is not important (Chollet, 2021, Chp. 11.4).

Importance scoring is the starting point of all attention mechanisms.

Attention can make features Context-aware.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 20 / 33

NMT with Attention

Figure 6: Neural machine translation with attention mechanism (shown on the right)

SCIT-AMRL (University of Wollongong) Machine Learning Attention 21 / 33

NMT with Attention

Figure 7: Neural machine translation
with attention mechanism

Algorithm

1 Decoder computes a weighted sum of
all the encoder outputs; this
determines which words to focus upon
at this time step.

2 Using Figure 7, α(t,i) is the weight of
the ith encoder output at the tth

decoder time step.

3 If α(3,2) > α(3,0) > α(3,1), then the
decoder will focus attention on word,
”milk“ than the other two words (at
this time step).

4 Apart modification, decoder behaves
as in the simple NMT of Figure 2.

5 The block on the right generates the
weights; it is the Attention layer or
alignment model.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 22 / 33

Alignment model

Alignment model

1 Time-distributed dense layer (with single neuron) receives all encoder output,
concatenated with the decoder’s previous hidden state as input

2 Output of dense layer is a score (or energy) for each encoder output (e.g. e(3,2))

3 Score is a measure of how well aligned is each output with the decoder’s previous
hidden state

4 Final weight (α(3,2)) is generated by the softmax layer (this is called, additive
attention)

5 The alignment can also be measured by simple inner (i.e. dot) product (this is the
multiplicative attention) (also called Luong attention after the first author of paper
that introduced it)

SCIT-AMRL (University of Wollongong) Machine Learning Attention 23 / 33

Alignment model

Three models of alignment mechanism

h̃(t) =
∑
i

α(t,i)y(i)

with, α(t,i) =
exp(e(t,i))∑
i
′ exp(e(t,i′))

and e(t,i) =


hT
(t)y(i) dot

hT
(t)Wy(i) general

vT tanh(W [h(t); y(i)]) concat

SCIT-AMRL (University of Wollongong) Machine Learning Attention 24 / 33

Transformer

Transformer - description

1 Encoder (left) -Decoder (right) pair.

2 Nx implies both encoder and decoder
are stackable.

3 Input to encoder: word ID (shape:
[batch size, max input sentence
length]) passed through embedding to
generate 512-dimensional
representation.

4 Encoder output shape: [batch size,
max input sentence length, 512].

Figure 8: Transformer: ”Attention is all you
need“ (Géron, 2019)

SCIT-AMRL (University of Wollongong) Machine Learning Attention 25 / 33

Transformer

Transformer - description (cont’d)

1 Decoder (right) takes target sentence
(shifted by one time step to the right)
as input during training.

2 Second input to decoder is the output
of the encoder

3 Decoder outputs a probability for each
possible next word at each time step
(output shape: [batch size, max
output sentence length, vocabulary
length]).

4 During inference, decoder has no
access to targets, so it is fed
previously output words (starting with
start-of-sentence token).

Figure 9: Transformer: ”Attention is all you
need“ (Géron, 2019)

SCIT-AMRL (University of Wollongong) Machine Learning Attention 26 / 33

Transformer

Transformer - description (cont’d)

1 Basic Encoder-Decoder pair has two
embedding layers and 5 skip
connection (5×N with stacking).

2 Skip connections are followed by layer
normalization and feed-forward
modules (two dense layers; first with
ReLu; second with no activation)

3 Decoder output layer is a dense layer
with softmax activation.

4 All layers are time-distributed, so ech
word is treated independently of all
others.

5 Word-word relationship and position
within sentence are respectively
encoded by multi-head attention and
positional encoding modules

Figure 10: Transformer: “Attention is all you
need” (Géron, 2019)

SCIT-AMRL (University of Wollongong) Machine Learning Attention 27 / 33

Transformer

Transformer - positional embedding

1 Positional embedding encodes the position of each word, and adds the ith

embedding to the word embedding of the ith word.

2 Positional embedding can be learned or obtained in a deterministic formula.

3 Positional embedding matrix P is deterministically obtained as:

Pp,2i = sin(p/100002i/d)

Pp,2i+1 = cos(p/100002i/d)

where, p is the word position, i is index of the embedding, and d is the maximum
dimension of each word representation.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 28 / 33

Transformer

Transformer - Multi-Head Attention

1 Multi-head attention module depends on the Scaled Dot-Product Attention layer.

2 Assume Encoder learned to encode the sentence They played chess with attributes:

Table 1: possible encoding - value-key dictionary

Token (word) Part of speech

They pronoun (also subject of the sentence)
played verb
chess noun

3 After decoding They, a subject, decoder “decides” to decode a verb; it should look
up (using a “query”) in the encoding (map) for the “value” corresponding to the
“key” verb.

4 Since the encoding of the attributes is vectorized representation, decoder must find
the appropriate “value” by computing an approximation - a Scaled Dot-Product.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 29 / 33

Transformer

Transformer - Scaled dot-product

1 Compute similarity between “query” and “key”s in the dictionary and use softmax
to ensure scores sum to one.

2 In the example being considered, the “key” corresponding to verb should have
score close to one

3 A weighted sum of the corresponding “values” should be close to the
representation of “played”.

4 Transformer uses dot-product

Attention

Attention(Q,K,V) = softmax

(
QKT√
dkeys

)
V

Q: matrix of queries ([nqueries, dkeys])

K: matrix of keys ([nkeys, dkeys]); nkeys

is number of key-value pairs.

V : matrix of values ([nkeys, dvalues])

Final output ([nqueries, dvalues]) has one
row per query; each row is a query result
(i.e. weighted sum of values).

SCIT-AMRL (University of Wollongong) Machine Learning Attention 30 / 33

Transformer

Figure 11: Multi-Head Attention layer
architecture (Géron, 2019)

Multi-Head Attention

It is a collection of Scaled Dot-Product
Attention modules.

Starts with linear transformation of the
values, keys, and queries (i.e., a time-
distributed Dense layer with no activation
function).

The values, keys and queries are split and
passed to each Head (i.e. Scaled
Dot-Product Attention module).

The model uses multi-head to project the
word representation into different
subspaces, each focusing on a subset of
the word’s characteristics.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 31 / 33

Tensorflow (2.12) API

tfm.nlp.layers.Transformer(

num_attention_heads,

intermediate_size,

intermediate_activation,

dropout_rate=0.0,

attention_dropout_rate=0.0,

output_range=None,

kernel_initializer='glorot_uniform',

bias_initializer='zeros',

kernel_regularizer=None,

bias_regularizer=None,

activity_regularizer=None,

kernel_constraint=None,

bias_constraint=None,

use_bias=True,

norm_first=False,

norm_epsilon=1e-12,

intermediate_dropout=0.0,

attention_initializer=None,

**kwargs

)

Some questions

How do we apply transformer
architecture to other tasks apart
from NLP?

What is the equivalent of words
in other tasks?

Do we need to interpret the task
as sequence-to-sequence task?

SCIT-AMRL (University of Wollongong) Machine Learning Attention 32 / 33

Bibliography

Chollet, F. (2021). Deep Learning with Python (2nd ed.). Shelter Island,
NY, USA: Manning Publishing Co. Ltd.

Géron, A. (2019). Hands-on machine learning with scikit-learn keras and
tensorflow: Concepts, tools and techniques to build intelligent
systems (2nd ed.). CA, USA: O’Reilly Media, Inc.

SCIT-AMRL (University of Wollongong) Machine Learning Attention 33 / 33

	Language modelling
	Neural machine Translation
	Attention
	Transformer
	References

