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Pattern recognition and probability

Machine learning algorithms help us to analyse data and extract
or recognize inherent patterns.
Real life data displays uncertainty and variability.
Probability theory allows us to model the uncertainty and
variability in data.
The models are powerful and provide the basis for
statistical/probabilistic reasoning.
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Introduction to Probability

Probability is the study of non-deterministic events.

We represent the possible outcomes of an experiment as a set S
(also called sample space).
For example if,

S = {f1, f2, f3, . . . , f6},

is the set of outcomes of rolling a die. The probability of each
outcome is,

p(fi) = 1/6, i = 1,2, ..6

Events are a subsets of sample space. For example the sets:
{even} = {f2, f4, f6} and {odd} = {f1, f3, f5}

are events in the rolling of the die.
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Introduction to Probability

Two events, A and B, are mutually exclusive if A ∩ B = ∅.

Suppose we have a finite sample space S and a set of events,
{A,B, ..}. A probability function, P gives a real value for each
event such that:

for every event A we have 0 ≤ P(A) ≤ 1.
P(S) = 1.
If A and B are mutually exclusive, then P(A ∪ B) = P(A) + P(B).

If each sample point in the space has the same probability, we
refer to this as equiprobable or uniform space.

We can use the number of points in A to find its probability.
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Introduction to Probability

Example 1:
Suppose we have a loaded die with

p(fi) = 1/4, for i = 1,2,3
p(fi) = 1/12, for i = 4,5,6

Then,

p(even) =
1
4
+ 2 × 1

12
=

5
12

It can be shown that for two events A and B

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Introduction to Probability

Example 2:
Consider the events:
A= even; B= multiple of 3
such that,

P(A) =
1
2
, P(B) =

1
3

P(A ∩ B) = P(even and multiple of 3) =
1
6

and
P(A ∪ B) =

1
3
+

1
2
− 1

6
=

2
3
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Introduction to Probability

Example 3:
Consider the toss of two dice.
Each point of the sample space can be represented by a two tuple,

(i , j), i = 1,2, · · · 6, j = 1,2, · · · 6

For an un-biased die every outcome has equal probability, p(i , j) = 1
36

of occurrence.

For illustrative purposes, let us define some events. (See next slide)

SCIT-AMRL (University of Wollongong) Machine Learning ML 8 / 36



Introduction to Probability

We define 12 different events v1, . . . , v12 where vu is the event that i + j = u. So, we
have:

v1 ⇒ p(v1) = 0
v2 (1, 1) ⇒ p(v2) = 1/36
v3 (1, 2), (2, 1) ⇒ p(v3) = 1/18
v4 (1, 3), (2, 2) (3, 1) ⇒ p(v4) = 1/12
v5 (1, 4), (2, 3) (3, 2) (4, 1) ⇒ p(v5) = 1/9
v6 (1, 5), (2, 4) (3, 3) (4, 2) (5, 1) ⇒ p(v6) = 5/36
v7 (1, 6), (2, 5) (3, 4) (4, 3) (5, 2) (6, 1) ⇒ p(v7) = 1/6
v8 (2, 6) (3, 5) (4, 4) (5, 3) (6, 2) ⇒ p(v8) = 5/36
v9 (3, 6) (4, 5) (5, 4) (6, 3) ⇒ p(v9) = 1/9
v10 (4, 6) (5, 5) (6, 4) ⇒ p(v10) = 1/12
v11 (5, 6) (6, 5) ⇒ p(v11) = 1/18
v12 (6, 6) ⇒ p(v12) = 1/36
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Conditional Probability

Events may be dependent; that is, occurrence of one influences the probability of
the other.

The probability of event A given that event E has occurred is given by

P(A|E) =
P(A ∩ E)

P(E)

Example 4:
Consider two events described as follows:

A = { points with i + j = 2u}
= {v2, v4, v6, v8, v10, v12}

E = { points with i = j}
= {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
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Conditional Probability

Example 4 cont.
Then,

P(A) = 18/36 = 1/2

P(E) = 6/36 = 1/6

E is a subset of A:

a ∈ E ⇒ a ∈ A.
We can then infer that P(A ∩ E) = P(E) = 6/36 = 1/6
So P(E |A) = P(A ∩ E)/P(A) = (1/6)/(1/2) = 1/3
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Independent Events

Two events E and A are independent if

P(A|E) = P(A)

That is, occurrence of E does not influence probability of occurrence of A.

Equivalently we can write,

P(A ∩ E) = P(A|E)P(E) = P(A)P(E)

Example 5:
A fair coin is tossed three times. Consider two events:
A= { first toss is heads}
B={ second toss is heads}
We have

P(A) = P({hhh, hht , hth, htt}) = 1/2

P(B) = P({hhh, hht , thh, tht}) = 1/2

P(A ∩ B) = P({hht , hhh}) = 1/4

So P(A ∩ B) = P(A)× P(B) since the two events are independent.
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Mutually Exclusive Events

If events E and A are mutually exclusive, occurrence of one excludes the
occurrence of the other and so,

P(A|E) = 0

Note that this means that mutually exclusive events are not independent. Recall
that independence requires that P(A ∩ E) = P(A|E)P(E) = P(A)P(E).

If A ⊂ E then
P(A and E) = P(A)
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Mutually Exclusive Events

S consists of the outcomes of rolling a die.

P(fi) =
1
6

i = 1, 2, . . . , 6

Let E = even and A = {f2}.
Then

P(f2|E) =
P(f2 and E)

P(E)
=

1/6
1/2

=
1
3

Suppose we are interested in the event A = { even and divisible by 3 }.
Then

A ⊂ E

and

P(A and E) = P(A) = 1/6.
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Joint Probability Distribution

We may have joint probability distribution: In this case the sample space consists of
pairs of outcomes of two experiments. We illustrate by way of example.

Example 6:

Joint probability of (temperature, humidity) in summer:

Low High
30oC 1/6 1/12
40oC 5/18 1/9
45oC 7/36 2/12
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Marginal Distribution

Given a joint distribution for (X ,Y ), one can derive distribution of X and Y .

Let P(x , y) denote probability of the sample point (x , y).

P(x) =
∑

all values of y

P(x , y)

P(y) =
∑

all values of x

P(x , y)

P(x) and P(y) are marginal distributions.

Example 7:
In the temperature and humidity example (6) we have marginal distributions as follows:

P(Temperature) =
( 9

36
,

14
36

,
13
36

)
P(Humidity) =

(23
36

,
13
36

)
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Conditional independence

Recall the joint probability of two events A and B,
P(A,B) = P(A)P(B|A) = P(B)P(A|B)

If events A and B are independent we write:

P(A,B) = P(A)P(B)

If we have three events A,B,C, the joint probability is written as:

P(A,B,C) = P(A)P(B|A)P(C|A,B)

Of course if the three events are independent we write:

P(A,B,C) = P(A)P(B)P(C)

Can we have conditional independence? What does this mean?
How useful is it?
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Conditional independence (adapted from QMC
London slides)

Example of independence
Suppose Jane and John each toss separate coins. Let A represent the variable
“Jane’s toss outcome”, and B represent the variable “John’s toss outcome”. Both A
and B have two possible values (Heads and Tails). Without any controversy we can
assume that A and B are independent. Evidence about B will not change our belief in
A.
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Conditional independence (adapted from QMC
London slides)

Example of conditional independence
Now suppose both Jane and John toss the same coin. Again let A represent the
variable “Jane’s toss outcome”, and B represent the variable “John’s toss outcome”.
Assume also that there is a possibility that the coin is biased towards heads but we do
not know this for certain. In this case A and B are not independent. For example,
observing that A is Heads causes us to increase our belief in B being Heads
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Conditional independence (adapted from QMC
London slides)

In the conditional independence example the variables A and B are both dependent
on a separate variable C, “the coin is biased towards Heads” (which has the value
True or False). Although A and B are not independent, it turns out that once we know
for certain the value of C then any evidence about A cannot change our belief about B
(and in general vice versa). Specifically:

P(B|C) = P(B|A,C)

P(A|C) = P(A|B,C)

P(A,B|C) = P(A|C)P(B|C)
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Random Variable

A random variable assigns values to events in a probability space.

Example 8:
X is a random variable that assigns 0 or 1 to the outcome of the an experiment such
as in Example 3 (this is discrete case).
If the sum is divisible by 4, then we assign X = 0 otherwise it is 1.
We have

p(X = 0) =
∑

p(sum divisible by 4 )

= 1/12 + 5/36 + 1/36 = 9/36 = 1/4

p(X = 1) = 1 − 1/4 = 3/4
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Random Variables

Example 8 contd.:

Let a random variable X take values x1, x2, . . . , xN .

Expected value of X is
E(X ) =

∑
xnp(xn)

Expected value can be regarded as the average value of the random variable.

In example 8

E(X ) = 0 × 1/4 + 1 × 3/4 = 3/4
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Random Variables

Second moment and Variance

The second moment of a random variable X that takes on values xi is

E [X 2] =
∑

i

x2
i P(xi) (1)

If we denote the expected value of X as µ = E [X ], the variance of X is,

Var{X} = σ2 = E [(X − µ)2] =
∑

i

(xi − µ)2P(xi) (2)

σ is the standard deviation of the X .
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Random Variables

Functions of two random variables

If we have a function of two random variables f (x , y) that are jointly distributed
as P(x , y). The expected value of the function is

E [f (x , y)] =
∑
RX

∑
RY

f (x , y)P(x , y)

RX and RY are the ranges of X and Y respectively.

The expectation operator is a linear function since,

E [α1f1(x , y) + α2f2(x , y)] = α1E [f1(x , y)] + α2E [f2(x , y)]

for any two functions f1(x , y) and f2(x , y); and scalars α1 and α2.
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Random Variables

Functions of two random variables

The expected value of X and Y can be written as,

µx = E [X ] =
∑

x∈RX

∑
y∈RY

xP(x , y)

µy = E [Y ] =
∑

x∈RX

∑
y∈RY

yP(x , y)

The variances are,

σ2
x = E [(X − µx)

2] =
∑

x∈RX

∑
y∈RY

(x − µx)
2P(x , y)

and
σ2

y = E [(Y − µy )
2] =

∑
x∈RX

∑
y∈RY

(y − µy )
2P(x , y)
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Random Variables

Functions of two random variables

The covariance of X and Y is defined as,

σxy = E [(X − µx)(Y − µy )] =
∑

x∈RX

∑
y∈RY

(x − µx)(y − µy )P(x , y)

Covariance is a measure of the degree of statistical dependence between X and
Y . If X and Y are statistically independent, σxy = 0.

If σxy = 0, then the random variables are said to be uncorrelated.

It does not follow that uncorrelated variables must be statistically independent.
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Random Variables

Functions of two random variables

Note that uncorrelated variables are statistically independent if they have
multivariate normal distribution.

If we have the relation, Y = αX , which denotes that Y depends strongly on X ,
then σxy = ασx .

Covariance is positive if X and Y increase or decrease together and negative if
Y decreases when X increases.

The correlation coefficient defined as

ρ =
σxy

σxσy

is normalized covariance and takes values between -1 and +1
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Random Variables

Vector random variables

If we have more than two variables it is convenient to represent them in a vector
notation.

x denotes a random vector with components x1, x2, . . . , xd (d-dimensional
vector).

The joint distribution can be obtained and will in general be complicated. If the
variables are statistically independent, the joint probability mass function, P(x) is
the product,

P(x) = Px1(x1)Px2(x2) · · ·Pxd (xd)

=
d∏

i=1

Pxi (xi)

The marginal distributions, Pxi (xi) are obtained by summing the joint distribution
over the other variables.
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Random Variables

Expectation, Mean Vectors and Covariance Matrices

The expected value of a vector is defined as the vector whose components are
the expected values of the original components.

The d-dimensional mean vector µ is defined by,

µ = E [x] =


E [x1]
E [x2]

...
E [xd ]

 =


µ1

µ2
...
µd

 =
∑

x

xP(x)
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Random Variables

Expectation, Mean Vectors and Covariance Matrices

The covariance matrix denoted by
∑

, is defined as

σij = σji = E [(xi − µi)(xj − µj)] i, j = 1, . . . d

∑
=


E [(x1 − µ1)(x1 − µ1)] . . . E [(x1 − µ1)(xd − µd)]
E [(x2 − µ2)(x1 − µ1)] . . . E [(x2 − µ2)(xd − µd)]

...
. . .

...
E [(xd − µd)(x1 − µ1)] . . . E [(xd − µd)(xd − µd)]



=


σ11 σ12 . . . σ1d

σ21 σ22 . . . σ2d
...

...
. . .

...
σd1 σd2 . . . σdd

 =


σ2

1 σ12 . . . σ1d

σ21 σ2
2 . . . σ2d

...
...

. . .
...

σd1 σd2 . . . σ2
d


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Random Variables

Expectation, Mean Vectors and Covariance Matrices

The covariance matrix,
∑

, can be written as the vector outer product,∑
= E [(x − µ)(x − µ)t ]

The covariance matrix is symmetric and the diagonal elements are the variances
of the individual elements of x. They are always positive.

The off-diagonal entries of
∑

are the covariances and they are positive or
negative.
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Random Variables

Expectation, Mean Vectors and Covariance Matrices

If the variables are statistically independent, the covariances are zero and the
covariance matrix is diagonal,

∑
=


σ2

1 0 . . . 0
0 σ2

2 0
...

. . .
...

0 0 . . . σ2
d



For any d-dimensional vector w, if the quadratic form

w t
∑

w > 0∑
is positive definite. It is positive semi-definite if,

w t
∑

w ≥ 0
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Continuous Random Variables

If the random variable can take values in the continuum we refer to it as a
continuous random variable and describe it in terms of its probability density
function.

Rather than the probability mass function P(X ) we define the probability density
function p(x) with the property,

Pr [x ∈ (a, b)] =
∫ b

a
p(x)dx .

This is the probability that the continuous random variable, x , has value lying in
the interval (a, b)

The following is true:

p(x) ≥ 0 and
∫ ∞

−∞
p(x) = 1
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Normal Distributions

The normal or Gaussian probability density function is defined (for a single
random variable) by,

p(x) =
1√
2πσ

exp−1/2((x−µ)2/σ2)

The following expected values can be computed,

E [1] =
∫ ∞

−∞
p(x)dx = 1

E [x ] =
∫ ∞

−∞
xp(x)dx = µ

E [(x − µ)2] =

∫ ∞

−∞
(x − µ)2p(x)dx = σ2
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Bayes Rule

We can combine the conditional probability with the product and sum rules to
yield Bayes rule (also called Bayes theorem)

Let us consider two random variable X and Y :

p(X = x |Y = y) =
p(X = x ,Y = y)

p(Y = y)

=
p(X = x)p(Y = y |X = x)∑

x′ p(X = x ′)p(Y = y |X = x ′)

This rule is used in classification task.
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Example

Medical diagnosis

Suppose a person went to have a medical test for some cancer. We are interested in the
probability of the person having cancer if the test is positive. It is known that the sensitivity
of the test is 80% (i.e if the person has cancer, the test will be positive with probability of
0.8 ). We can write this as p(x = 1|y = 1) = 0.8; x is the random variable “test is positive”
and y is the random variable “has cancer”.

Assuming that this cancer is very rare and has a low probability of occurrence:
p(y = 1) = 0.004 and equivalently p(y = 0) = 0.996.

Let us further assume that the probability of false positive, p(x = 1|y = 0) = 0.1

The actual probability of the person having the cancer under the given conditions can be
computed by using Bayes rule:

p(y = 1|x = 1) =
p(x = 1|y = 1)p(y = 1)

p(x = 1|y = 1)p(y = 1) + p(x = 1|y = 0)p(y = 0)

=
0.8 × 0.004

0.8 × 0.004 + 0.1 × 0.996
= 0.031

This means, testing positive implies there is only 3% chance of having the cancer.
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Summary of key points and relations - I

1 Sample space, (S) - the collection of possible outcomes for an experiment
2 Event - A subset of the sample space
3 Mutually exclusive events - A ∩ B = ∅
4 Probability of event - real number associated with the event that represents

relative frequency of occurrence of that event
5 P(S) = 1
6 P(A) ≥ 0
7 P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅
8 P(B1 ∪ B2 ∪ · · · ∪ Bn · · · ) =

∑∞
i=1 P(Bi) if Bi ∩ Bj = ∅ for all i ̸= j

P(∅) = 0
P(Ā) = 1 − P(A)
P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

9 Equally likely rule : P(A) = number of elements in A
number of elements in S

10 Conditional probabilty: P(A|B) = P(A∩B)
P(B)

11 P(A ∩ B ∩ C) = P(A)P(B(|A)P(C|A ∩ B)
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Summary of key points and relations - II

12 Partition: E1 ∪ E2 ∪ · · · ∪ En = S and Ei ∩ Ej = ∅ if i ̸= j

13 Bayes Theorem: P(Ei |A) =
P(Ei)P(A|Ei)∑n
j=1 P(Ej)P(A|Ej)

if E1,E2, · · · ,En is a partition of

S.
14 Conditional independence: P(A|C) = P(A|B,C);

P(A,B|C) = P(A|C)× P(B|C); A and B are conditionally independent given C.
A typical situation where conditional independence holds between events, is
when the events share a common cause.

15 Chain rule with conditional independence: Consider the usual chain rule

P(Ei ,E2, · · · ,En|A = a) =P(E1|A = a)× P(E2,E1|A = a)

× P(En,En−1, · · · ,E1|A = a)

Under the assumption of conditional independence (i.e. the Ei have a common
cause in the event A = a;

P(Ei ,E2, · · · ,En|A = a) =P(E1|A = a)× P(E2|A = a)× · · · × P(En|A = a)
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