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Regression - Historical and general ideas

Regression is a supervised learning method often used in prediction tasks (with
modification, also in classification)

Regression as a scientific method first appeared around 1885

Francis Galton developed the ideas in the studies of hereditary stature - comparison of
height of parents and their children (Izenman 2008)

Galton did not link the least squares method and regression which was discovered 80 years
later

Linear regression models can be simple, multiple or multivariate
1 simple linear regression - one input and one output
2 multiple regression - many inputs and one output
3 multivariate regression - many inputs and many outputs

In general there is the output (also called the dependent variable) that is assumed to be
linearly related to the input(s) (also called the independent variables; input space)

Independent variables could be formed from a linear combination of a fixed set of nonlinear
functions (basis functions) of input variables

It is the coefficients of the function of relatedness that we want to determine and obtain an
equation for use in prediction on new observed variables
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Regression - Theoretical development

Regression problem

Let X denote the input space and Y a measurable subset of R.
Denote by D an unknown distribution over X according to which the inputs are drawn
Let f : X → Y be the target labelling function
Learner receives a labelled sample S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y) with x1, . . . , xm
drawn i.i.d from D and yi = f (xi ) for all i ∈ [1,m].

Denote by L : Y × Y → R+ the loss function measuring the magnitude of error
Commonly, squared error is used: L(y, ŷ) = ||y − ŷ||2 for all y, ŷ ∈ Y
Generally, Lp loss function may be used: Lp (y, ŷ) = ||y − ŷ||p for all y, ŷ ∈ Y and some p ≥ 1

Given a hypothesis set H of functions mapping X to Y, regression problem consists of
using the labelled sample S to find the hypothesis h ∈ H with small expected loss or
generalization error R(h) with respect to the target function, f :

R(h) = Ex∼D[L(h(x), f (x))] (1)

Empirical loss is:

R̂(h) =
1
m

m∑
i=1

L(h(xi ), yi ) (2)
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Linear regression
Let Φ : X → RN be a feature mapping from input space X to RN

Consider a family of linear hypotheses

H = {x 7→ w.Φ(x) + b : w ∈ RN , b ∈ R} (3)

Linear regression seeks an hypothesis in H with the smallest mean squared error

Given a sample set S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m we need to solve the following
optimization problem:

min
w,b

1
m

m∑
i=1

(w.Φ(xi ) + b − yi )
2 (4)

If we write X =

[
Φ(x1) . . . Φ(xm)

1 . . . 1

]
, W =


w1
...

wN
1

 and Y =

y1
...

ym

 the optimization

problem in (4) can be written compactly as

min
W

F (W ) =
1
m

||X T W − Y ||2 (5)
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Linear regression

Consider the dimensions of the entries in Equation (5)

X T ∈ Rm×(N+1)

W ∈ RN+1

X T W ∈ Rm

Y ∈ Rm

In transforming Equation (4) to Equation (5) we have done the following:

yi = wi xi + b

= w ′
i xi + 1

where the bias b has been absorbed in the weight w ′

The optimization problem in Equation (5), F (W ), is convex, differentiable and has a global
minimum that can be obtained by differentiating F (W ) = 1

m ||X T W − Y ||2 with respect to W
and equating to zero

∇F (W ) = 0; 2
m X(X T W − Y ) = 0 from which XX T W = XY

W =

{
(XX T )−1XY if XX T is invertible
(XX T )†XY otherwise; using the pseudo-inverse †

(6)
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Linear Regression

Figure 1: Linear least square fitting (X ∈ R2). We seek the linear function of X that minimizes
sum of squared errors from Y (Hastie et al. 2001).
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Linear Regression

Figure 2: N-dimensional geometry of least squares regression with two independent variables
x1, x2. Predicted y vector is orthogonally projected onto the hyperplane spanned by x1 and x2. ŷ
represents the vector of the least squares predictions (Hastie et al. 2001).
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Linear Regression

Results shown in Equation (6) is also referred to as the least squares estimate of the weight
vector (coefficients), W , of the linear regression model

Important notes on linear regression:

Prediction accuracy of least squares estimate often has low bias but large variance1

If there is a large number of independent variables it is desirable to know the key
variables that exhibit strong effect

There is no strong generalization guarantee because we only minimize empirical error
without controlling the norm (length) of the weight vector; there is no regularization
There is possibility of overfitting or underfitting

1See Figure (8) here
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Linear Regression

Quick example:(Does money make people happier?) (Géron 2019, p.19)

Dataset
1 Better Life Index data from OECD’s website (Life satisfaction data)
2 GDP per capita from IMF’s website

Table 1: Does money make people happier?

Country GDP per capita (USD) Life satisfaction
Hungary 12,240 4.9
Korea 27,195 5.8
France 37,675 6.5
Australia 50,962 7.3
United States 55,805 7.2
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Linear Regression

Figure 3: satisfaction v GDP per capita (Géron 2019)

Notice the somewhat linear trend suggesting a linear relationship

This is model selection - we assume a linear model

life satisfaction = θ0 + θ1 × GDP per capita (7)
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Linear Regression

Figure 4: Different values of parameter lead to different models (Géron 2019)
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Linear Regression

Figure 5: Best linear model fit to data (Géron 2019)

life satisfaction = 4.85 + 4.91 × 10−5 × GDP per capita (8)
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Linear Regression

1 There are several software libraries/frameworks available for implementation
2 Scikit-Learn (very popular Python-based) library
3 TensorFlow (Python-based framework by Google)
4 Pytorch (Python-based framework by Facebook)

Scikit-Learn implementation of linear regression

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn.linear_model
# Load the data
oecd_bli = pd.read_csv("oecd_bli_2015.csv", thousands=',')
gdp_per_capita = pd.read_csv("gdp_per_capita.csv",
thousands=',',delimiter='\t',
encoding='latin1', na_values="n/a")
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Linear Regression

# Prepare the data
country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)
X = np.c_[country_stats["GDP per capita"]]
y = np.c_[country_stats["Life satisfaction"]]

# Visualize the data
country_stats.plot(kind='scatter', x="GDP per capita",
y='Life satisfaction')
plt.show()
# Select a linear model
model = sklearn.linear_model.LinearRegression()
# Train the model
model.fit(X, y)
# Make a prediction for Cyprus
X_new = [[22587]] # Cyprus's GDP per capita
print(model.predict(X_new)) # outputs [[ 5.96242338]]

There is no life satisfaction data for Cyprus, but our model can help us predict a life
satisfaction index:

X_new = [[22587]]

life satisfaction = 4.85 + 4.91 × 10−5 × 22587 = 5.96
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Kernel Ridge regression
Formulation is somewhat similar to linear regression; consider mapping from input space to
a feature space but with a kernel Φ(·)

This model gives better theoretical guarantees and improved performance in practice (there
is a theorem that supports this claim) The optimization problem is written compactly as:

min
W

F (W ) = λ||W ||2 + ||X T W − Y ||2 (9)

where λ is a positive parameter that determines the trade-off between the regularization
term ||W ||2 and the empirical mean squared error; X ∈ RN×m is the matrix of feature
vectors, X = [Φ(x1), . . . ,Φ(xm)] and W and Y are as defined previously (see Equation (5))

Optimization problem of Equation (9) is convex and differentiable with a global minimum if
and only if

∇F (W ) = 0 ⇔ (XX T + λI)W = XY ⇔ W = (XX T + λI)−1XY (10)

XX T + λI is always invertible 2

Alternative formulation of the kernel ridge regression

min
w

m∑
1

(w ·Φ(xi )− yi )
2 subject to ||w ||2 ≤ Λ2 (11)

2because its eigenvalues are sum of non-negative eigenvalues of positive semi-definite matrix
XX T and λ > 0
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Kernel Ridge regression

Some properties of ridge regression:
In essence it is a model selection method in which the ridge parameter λ helps
select/weight the variables appropriately.

The choice of the ridge parameter is a tool to balance the “bias-variance” trade-off. The
larger the value of λ the larger the bias and the smaller the variance. The parameter can be
determined using cross validation technique.

The ridge regression estimator is a shrinkage estimator that shrinks the least square
weights toward zero.

It can be used with positive definite symmetric (PDS) kernels and hence can be extended to
non-linear regression and more general feature spaces.
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Ridge Regression

Example of ridge regression implementation with Scikit-Learn

from sklearn.linear_model import Ridge
ridge_reg = Ridge(alpha=1, solver="cholesky")
ridge_reg.fit(X, y)
ridge_reg.predict([[1.5]])
array([[1.55071465]])

In this case the closed-form solution has been used and cholesky
factorisation method chosen as the solver.
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Ridge Regression

Example of ridge regression implementation with Scikit-Learn

sgd_reg = SGDRegressor(penalty="l2")
sgd_reg.fit(X, y.ravel())
sgd_reg.predict([[1.5]])
array([1.47012588])

In this case the stochastic gradient optimisation has been used to find the
optimum coefficients.
The use case is when you have a lot of data items and features. In
general this is what is used when training neural networks.
We will revisit gradient descent algorithm later in the lectures.
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Lasso Regression

Our goal in prediction is to choose an economical (parsimonious) model that will balance
the bias-variance trade-off.

What variables are important for the prediction?

Variable selection is another method of solving this problem
1 Backward elimination: Begin with full set of variables and drop at each step the

variable whose F−ratio is smallest:

F =
(RSS0 − RSS1)/(df0 − df1)

RSS1/df1
(12)

RSS0 =
∑

i (yi − ŷi )
2 computed with reduced model and with degree of freedom df0 ;

RSS1 =
∑

i (yi − ŷi )
2 computed with larger model and with degree of freedom df1 ;

The reduced model is refitted and the iteration is repeated.
2 Forward selection: Begin with an empty set of variables and select the variable from

the list that gives the largest F value3.

3More on feature selection later in the lecture series.
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Lasso Regression

Lasso is a short for Least absolute shrinkage and selection operator

Essentially it combines variable subset selection and shrinkage to improve accuracy

This model does not allow an easy use of a PDS kernel; assume input space X , is a subset
of RN

Consider a family of linear hypotheses

H = {x 7→ w.x + b : w ∈ RN , b ∈ R} (13)

Given a sample set S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m

Lasso regression seeks an hypothesis in H that minimizes empirical squared error with a
regularization term depending on the norm of the weight vector;

Lasso uses L1 norm instead of L2 norm (ridge regression - see Equations (9) and (11) ):

min
w,b

F (w , b) = λ||w ||1 +
m∑

i=1

(w.x i + b − yi )
2 (14)

Equivalently:
minw,b

∑m
i=1(w.x i + b − yi )

2 subject to ||w ||1 ≤ Λ1; It is a Quadratic Program solvable by
QP solvers
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Lasso Regression
Key property of Lasso is that it leads to sparse solution of w - one with few non-zero
components
Sparsity is encouraged by L1 norm

Figure 6: Comparision of Lasso and ridge regression solutions (Mohri et al. 2012)

Objective function is quadratic and contours are ellipsoids (See Figure 6); Lasso solution is
intersection with L1 ball occurring at corner where some coordinates are zero, hence it
promotes sparsity; contrast with L2 regularization
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Lasso Regression

Example of Lasso regression implementation with Scikit-Learn

from sklearn.linear_model import Lasso
lasso_reg = Lasso(alpha=0.1)
lasso_reg.fit(X, y)
lasso_reg.predict([[1.5]])
array([1.53788174])

SCIT-AMRL (University of Wollongong) Machine Learning ML 23 / 30



Elastic net regularization
Elastic net linear regression uses the penalties from both the lasso and ridge techniques to regularize
regression models.

min
w,b

F (w , b) = λ||w ||1 + β||W ||22 +
m∑

i=1

(w.x i + b − yi )
2 (15)

Figure 7: The ball of the various penalty norms

Elastic net method estimator, involve two stages.
It first finds the ridge regression coefficients and then conducts the second step by using a lasso
sort of shrinkage of the coefficients.
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Elastic Net Regression

Partitioned feature space
In some situations, the feature space may be naturally partitioned into subsets, and it may be
desirable to find a sparse solution that selects or omits entire subsets of features. A natural norm
in this setting is the group or mixed norm L2, 1 , which is a combination of the L1 and L2 norms
(Mohri et al. 2012).
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Elastic-net Regression

Example of Elastic-Net regression implementation with Scikit-Learn

from sklearn.linear_model import ElasticNet
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X, y)
elastic_net.predict([[1.5]])
array([1.54333232])
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Dealing with data

Non-representative Data
1 For the created model to generalise, training data must be representative

of the new cases (or production data) to be used when deployed.
2 This is the same as saying that the underlying probability distribution of

both training data and production data must be the same.
3 Possible solution is to ensure proper sampling - not too few samples

(avoid sampling noise); representative sampling (avoid sampling bias)

Poor Quality Data
1 Sources of poor quality include: errors, outliers, and noise.
2 Outliers: discard of fix manually
3 Missing values: if there are too many for a feature it may be good to

ignore the feature; replace missing values with median (or average); train
one model with feature and one without.
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Dealing with data

Irrelevant Features
1 These features that do not add any new information to model creation
2 Feature engineering can fix the problem of irrelevant features
3 Feature selection - from available features, select the most useful ones

for model training; Regularisation could be used to select relevant
features (Lasso or elastic-net regularization)

4 Feature extraction - combining features to produce more useful ones.
Dimensionality reduction is an example.

Essential further reading

Chapter 2 of the text by Géron (Géron 2019) is an excellent reference on
end-to-end design of a machine learning system.
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Model Selection and variance-bias Trade-off

Figure 8: Typical training and test error behaviour as a function of model complexity (Hastie
et al. 2001). Training error decreases as model complexity increases; model overfits leading to
poor generalization and large variance. Test error increases if model is not complex enough;
model underfits; lead to large bias and poor generalization. So there is a bias-variance trade-off.

The prediction error has three parts:
1 irreducible error (variance of the new test target) which is beyond our control
2 Bias component - the squared difference between true mean of the estimate and the

expected value of the estimate
3 Variance component - variance of an average

Back to main

SCIT-AMRL (University of Wollongong) Machine Learning ML 29 / 30



Bibliography

Alpaydin, E. (2010), Introduction to Machine Learning, second edn, The MIT Press, Cambridge
Massachusetts.

Duda, R. O., Hart, P. E. & Stork, D. G. (2001), Pattern Classification, Second edn, John Wiley and
Sons.
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