
Machine Learning: Algorithms and Applications

Philip O. Ogúnbo.na

Advanced Multimedia Research Lab
University of Wollongong

Pattern Classification
Autumn

SCIT-AMRL (University of Wollongong) Machine Learning ML 1 / 50



Outline of Topics

1 Pattern Recognition/Classifier

2 Approaches to Classification

3 Elementary Decision Theory

4 Support vector machine

5 References

SCIT-AMRL (University of Wollongong) Machine Learning ML 2 / 50



What is pattern recognition/classifier?

We take for granted the fact that we are able to move around in our world and recognize:

cars
people
animals
objects in general

despite the variety in their form and existence.

What features help in these tasks?

In pattern recognition we study how to design machines that can recognize and classify
”things”.

We study the statistics of the features that describe ”things”.

We study how to measure the performance of pattern recognition systems and select good
systems.
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Basic Model - Pattern Classifier
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Figure 1: Pattern Classifier Webb (2002)

The pattern is a set of numbers or values represented as a p − dimensional vector,

x =
[
x1 x2 · · · xp

]t
where t (or sometimes T ) denotes vector transpose
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Basic Model - Pattern Classifier
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Figure 1: Pattern Classifier Webb (2002)

The pattern could be:

pixels in an image
closing prices of a share on the stock market
recordings of a speech signal
measurements on weather variables
group of measurements about a real estate
group of measurements about the behaviour and life style of people
etc.
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Basic Model - Pattern Classifier
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Figure 1: Pattern Classifier Webb (2002)

We assume that there are C classes denoted by,

ω1, . . . , ωC

There is a variable, z, that indicates which class, ωi , a pattern x belongs. That is,

if z = i, then the pattern, x , belongs to ωi , i ∈ {1, . . . ,C}
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Basic Model - Pattern Classifier

The problem is how to design the pattern classifier.

Designing a pattern classifier entails:

specifying the classifier model parameters
ensuring that response for a given pattern is optimal

The design process assumes we have a set of patterns of known class, {(xi , zi )}, called the
training or design set, used to design the classifier.

Part of the design process is to evaluate and set optimal operating parameters.

The idea is that once we have a designed classifier we can estimate the class membership
of an unknown pattern.

There is an assumption that the samples used for training are drawn from the same
probability distribution as the test samples and the operational samples.
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Basic Model - Pattern Classifier

A closer look at the simplified classifier model:
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Figure 2: Pattern Classifier Webb (2002)

1 Representation pattern is the raw data we obtain from the sensor e.g. image or video pixels,
price of stock, etc.

2 Feature pattern is a small set of variables obtained through some transformation - feature
selection and/or extraction

3 The trained classifier uses the feature pattern to make a decision regarding the pattern
presented at its input.
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Basic Model - Pattern Classifier

Further consideration about classifier design:

Problem

Given a training set of patterns of known class, we seek to design a classifier that is optimal for
the expected operating conditions.

1 The given set of training patterns is finite.
2 The classifier model cannot be too complex. In other words it cannot have too many

parameters. This situation may lead to over-fitting.
3 It is not important to achieve optimal performance on the design set.
4 It is very important to achieve optimal generalization performance.

Expected performance on data representative of the true operating condition - the
infinite set from which the design set is drawn.
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Supervised and Unsupervised Classification

There are two main categories of classifiers :

Supervised: The classifier design process has a set of data samples with associated labels
(class type). These are exemplars or training data.

Unsupervised: The given data is not labelled and the idea is to find groups in the data and the
features that distinguish one group from another.

There is a third category, namely semi-supervised classifiers, in which both labelled and
unlabelled data are used for the training.

CLASSIFICATION


SUPERVISED
 UNSUPERVISED


Figure 3: Main categories of classifiers
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Supervised Classification

Example - from Duda-Hart-Stork Duda et al. (2001)

We are required to design a classifier for a fishing company so as to automate the sorting
process. The company is interested in sorting salmon from bass. The cost of selling a salmon as
bass could be high when misclassified!

Salmon


Bass


Possible features of interest

length
width
number and shape of fins
position of mouth
lightness

These features will vary because
of measurement errors or
conditions.
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Supervised Classification

Interesting observation
may show that bass is
usually longer than
salmon.

We take several samples
of the two fishes and
measure their lengths.

We may represent our
measurement as a
histogram.

We may ask the question,
"Will this feature
sufficiently classify the
fishes?"
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Figure 4: “Histogram” of fishes
lengths; Length marked L∗ will lead
to smallest number of errors.
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Supervised Classification

Perhaps the cost of using
length alone to classify is
too high.

We take several samples
of the two fishes and
measure their lightness.

We again represent our
measurement as a
histogram.

The answer to the
question, "Will this feature
sufficiently classify the
fishes?" is more
satisfying.

The X∗ or L∗ is a decision
threshold.

C

o


u

n


t


Lightness


Sea bass


Salmon


X*


Figure 5: “Histogram” of lightness
of fishes; Lightness marked X∗ will
lead to smallest number of errors.
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Supervised Classification

Assume that we believe that we
could do better at classifying the
fishes by using two (2) features.

We now have a two-dimensional
feature vector,

x =

[
x1
x2

]
The feature space can be
visualized.

How to obtain the “best” decision
boundary is the classifier design
problem.
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Figure 6: Feature space with
decision boundary of classifier.
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Supervised Classification

As we increase the number of
features there is need to deal with
a high dimensional feature vector.

The problem of “too many
features" is referred to as
dimensionality curse.

A very complicated model may
also result in over fitting - training
data is separated “perfectly”; new
patterns are poorly classified.
Generalization problem.
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Figure 7: Feature space with
complex decision boundary of
classifier.
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Supervised Classification

Occam’s Razor

The principle of using as simple as is necessary model to describe systems is captured in the
so-called “Occam’s razor” - favour simpler explanations over those that are needlessly
complicated.

The principle underlies the very popular method of sparse representation.
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Bayes decision rule - minimum error

This approach to classification (also called discrimination) assumes that we have full
knowledge of the probability density function of each class

Let the C classes have known a priori probabilities, P(ω1), . . . ,P(ωC)

We make use of the measurement vector x to assign x to one of the C classes

Formulate a decision rule to assign x to class ωj if the probability of class ωj given the
observation x , (i.e. P(ωj |x) - posterior probability), is the highest over all classes
ω1, . . . , ωC ;

x ∈ ωj if,
P(ωj |x) > P(ωk |x) k = 1, . . . ,C; k ̸= j

Measurement space is partitioned into C regions, Ω1,Ω2, . . . ,ΩC ; x ∈ Ωj ⇒ x is in class ωj
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Bayes decision rule - minimum error

We use Bayes’ theorem to express the a posteriori probabilities P(ωj |x) in terms of the a
priori probabilities and the class-conditional density functions p(x |ωi )

P(ωi |x) =
p(x |ωi )P(ωi )

p(x)

where

p(x) =
C∑

j=1

p(x |ωj )P(ωj )

In terms of the class-conditional density we can write the decision rule as, assign x to ωj if,

p(x |ωj )P(ωj ) > p(x |ωk )P(ωk ) k = 1, . . . ,C k ̸= j

This is the Bayes’ rule for minimum error.
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Bayes decision rule - minimum error

In a two-class case we can write
the Bayes’ minimum error rule in
terms of likelihood ratio, Lr (x), for
x ∈ class ω1,

Lr (x) =
p(x |ω1)

p(x |ω2)
>

P(ω2)

P(ω1)

Take as an example a two-class
discrimination problem, with class
ω1 normally distributed as,
p(x |ω1) = N(x |0, 1) and class ω2
as a normal mixture with
p(x |ω2) =
0.6N(x |1, 1) + 0.4N(x | − 1, 2)

The plots of p(x |ωi )p(ωi ), i = 1, 2
with P(ω1) = P(ω2) = 0.5 are
shown below;
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p(x|w2)p(w2)
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Bayes decision rule - minimum error

Plots of the likelihood ratio Lr (x) and threshold, P(ω2)/P(ω1) are shown
below:

 0

 0.5
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 2

-4 -3 -2 -1  0  1  2  3  4

l(x)
p(w2)/p(w1)

Figure 8: Likelihood function

If Lr (x) >
P(ω2)

P(ω1)
, the observed sample is classified as ω1,
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Bayes decision rule - minimum risk

This decision rule minimizes an expected loss or risk.

Define a loss matrix, Λ, with components,

λji = cost of assigning a pattern x to ωi when x ∈ ωj

The conditional risk of assigning a pattern x to class ωi is defined as

li (x) =
C∑

j=1

λji P(ωj |x)

The average risk over decision region Ωi is

ri =

∫
Ωi

li (x)p(x)dx

=

∫
Ωi

C∑
j=1

λji P(ωj |x)p(x)dx
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Bayes decision rule - minimum risk

The overall expected cost or risk is obtained by summing the risks associated with all the
classes

r =
C∑

i=1

ri =
C∑

i=1

∫
Ωi

C∑
j=1

λji P(ωj |x)p(x)dx

The risk is minimized if the regions Ωi are chosen such that if

C∑
j=1

λji P(ωj |x)p(x) ≤
C∑

j=1

λjk P(ωj |x)p(x) k = 1, . . . ,C

then x ∈ Ωi .

This is the Bayes decision rule for minimum risk

The Bayes risk, r∗, is

r∗ =

∫
x

min
i=1,...,C

C∑
j=1

λji P(ωj |x)p(x)dx
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Bayes decision rule - minimum risk

For a two-category classification problem we can write the conditional risks as:

li (x) =
C∑

j=1

λji P(ωj |x)

l1(x) = λ11P(ω1|x) + λ21P(ω2|x)
l2(x) = λ12P(ω1|x) + λ22P(ω2|x)

The minimum risk decision rule is simply to decide ω1 if l1(x) < l2(x).

This can be expressed in terms of posterior probabilities as: Decide ω1 if

(λ11 − λ12)P(ω1|x) < (λ22 − λ21)P(ω2|x)

In terms of the prior probabilities and conditional densities we decide ω1 if,

(λ11 − λ12)p(x |ω1)P(ω1) < (λ22 − λ21)p(x |ω2)P(ω2)

SCIT-AMRL (University of Wollongong) Machine Learning ML 21 / 50



Bayes decision rule - minimum risk

If we consider the special case of equal cost (also called symmetrical or zero-one) loss
matrix, Λ, in which,

λij =

{
1, i ̸= j;
0, i = j

a substitution of this condition into the Bayes decision rule for minimum risk, gives,

C∑
j=1

P(ωj |x)p(x)− P(ωi |x)p(x) ≤
C∑

j=1

P(ωj |x)p(x)− P(ωk |x)p(x)

for k = 1, . . . ,C. This is easily simplified as,

p(x |ωi )p(ωi ) ≥ p(x |ωk )p(ωk ), k = 1, . . . ,C

when x ∈ class ωi .
This is the same as Bayes rule for minimum error.
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Bayes decision rule - minimum risk

If we consider the special case of zero-one loss matrix, Λ, in which,

λij =

{
1, i ̸= j;
0, i = j

and a two-category classification the Bayes decision rule for minimum risk, gives,

p(x |ω1)p(ω1) ≥ p(x |ω2)p(ω2),

when x ∈ class ω1.
This is the same as Bayes rule for minimum error in the two-category case.

The corresponding risks in the case of the zero-one loss matrix are

li (x) =
C∑

j=1

λij P(ωj |x)

=
∑
j ̸=i

P(ωj |x)

= 1 − P(ωi |x)
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Discriminant Functions

Bayes decision rules requires knowledge of prior class probabilities and class conditional
densities which are often not available in practice and must be estimated from data

The class of techniques being introduced makes no assumption about p(x |ωi ) but rather
assumes a form of the discriminant functions

A discriminant function is a function of the feature vector x that leads to a classification rule

Consider a two-class problem, a discriminant function h(x) is such that

h(x) > k ⇒ x ∈ ω1

< k ⇒ x ∈ ω2

for a constant k
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Discriminant Functions

Discriminant functions are not unique. If f (.) is a monotonic function, then

g(x) = f (h(x)) > k ′ ⇒ x ∈ ω1

< k ′ ⇒ x ∈ ω2

where k ′ = f (k), gives the same decision as h(x).

For classification problem with C classes we define C discriminant functions, gi (x) such
that,

gi (x) > gj (x) ⇒ x ∈ ωi j = 1, . . . ,C; j ̸= i

This implies that a feature vector is assigned to the class with the largest discriminant.

The discriminant techniques rely on the form of the function being specified and not on the
underlying distribution

Parameters of the functional form are adjusted by a training procedure
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Linear discriminant functions

Linear discriminant functions are a linear combination of the components of the
measurement (or feature) vector, x =

[
x1, x2, . . . , xp

]t , such that,

g(x) = ωt x + ω0 =

p∑
i=1

ωi xi + ω0

where we need to specify the weight vector ω and threshold weight ω0

The equation describes a hyperplane with unit normal in the direction of ω and a
perpendicular distance, |ω0|/|ω| from origin.

SCIT-AMRL (University of Wollongong) Machine Learning ML 26 / 50



Linear discriminant functions

g >0


g < 0


g = 0
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w
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Figure 9: Geometry of linear discriminant function

The value of the discriminant function for a pattern x is the perpendicular distance from the
hyperplane
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Linear discriminant functions

Classifiers that use a linear discriminant function are called linear machine.

The minimum-distance classifier is an example. It uses the nearest-neighbour decision rule.

Let the prototype points of the classifier be p1, . . . , pC . Each point represents a class, ωi .
The minimum distance classifier assigns x to the ωi with nearest point pi

||x − pi ||2 = x t x − 2x t pi + pt
i pi

The class assigned to x is

ωi = max
i

(x t pi −
1
2

pt
i pi )
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Linear discriminant functions

We can relate this assignment to the linear discriminant function

gi (x) = ωt
i x + ωi0

where

ωi = pi (1)

ωi0 = −
1
2
||pi ||2 (2)

to show that it is indeed a linear machine.

The prototype points could be chosen as the mean of each class and we have a nearest
class mean classifier.
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Linear discriminant functions

Each boundary is the perpendicular bisector of the lines joining the prototype points of
regions that are contiguous.

Note also that the decision regions of a linear machine are always convex.

Decision boundary line


Prototype point


Perpendicular bisector


Figure 10: Decision regions of minimum distance classifier
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Piecewise linear discriminant functions

The linear machine has a simple form but suffers the limitation of not being able to separate
situations where the decision regions have to be non-convex.

The examples below show two-class problems where a linear discriminant will fail to
separate. They require piece-wise linear discriminant functions.

Decision regions are not convex


Figure 11: Groups not separable by linear discriminant functions
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Piecewise linear discriminant functions

Figure 12: Quick illustration of convex and non-convex regions
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Piecewise linear discriminant functions

We may solve the previous two-class problem by using piece-wise linear discriminant
function to generalize the minimum-distance classifier.

We allow more than one prototype for each class.

Suppose there are ni prototypes in class ωi , p1
i , . . . , p

ni
i , i = 1, . . . ,C.

The discriminant function which assigns pattern x to class, ωi , is defined as

gi (x) = max
j=1,...,ni

g j
i (x)

where g j
i is a linear subsidiary discriminant function, given by

g j
i (x) = x t pj

i −
1
2

pj
i
t
, j = 1, . . . , ni ; i = 1, . . . ,C
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Kernel methods

Main idea

Embed given data into a space where the patterns can be discovered as linear relations

Two steps:

Mapping is defined implicitly by a so-called kernel function (depends on domain
knowledge regarding pattern in data source)
Use general purpose algorithm that is robust

Algorithm is efficient, requiring computational resource that is polynomial in the size and
number of data items; dimension of the embedding space grows exponentially and does not
affect computational burden
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Kernel methods

Figure 13: Function ϕ embeds data into a feature space; nonlinear pattern now appears linear
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Kernel methods

Figure 13: Example of nonlinear mapping in classification problem
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Ridge regression revisited

Formulation is somewhat similar to linear regression;

This model gives better theoretical guarantees and improved performance partly because
we constrain the norm of the weight vector The optimization problem is written compactly
as:

min
W

F (W ) = λ||W ||2 + ||X T W − Y ||2 (3)

where λ is a positive parameter that determines the trade-off between the regularization
term ||W ||2 and the empirical mean squared error; X ∈ RN×m is the matrix of feature
vectors, X = [x1, . . . , xm] and W and Y are as defined previously (see lecture slides on
regression).

Optimization problem of Equation is convex and differentiable with a global minimum if and
only if

∇F (W ) = 0 ⇔ (XX T + λI)W = XY ⇔ W = (XX T + λI)−1XY (4)

XX T + λI is always invertible 1

The form of the solution weight vector

W = (XX T + λI)−1XY

is the primal solution

1because its eigenvalues are sum of non-negative eigenvalues of positive semi-definite matrix XX T and
λ > 0

SCIT-AMRL (University of Wollongong) Machine Learning ML 36 / 50



Ridge regression revisited

The solution,
W = (XX T + λI)−1XY

can be written as:

W = Xα (5)

where α is

(G + λI)−1Y (6)

and G = X T X is called the Gram matrix. Each component of G is an inner product,〈
x i , x j

〉
. Thus

Gi,j =
〈
x i , x j

〉

The prediction function is

g(x) =< W , x >=

〈 m∑
i=1

α1x i , x

〉
=

m∑
i=1

αi < x i , x >= Y T (G + λI)−1k

where ki =< x i , x >
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Ridge regression revisited

We have two forms of solution for the ridge regression (similarly for other regression):

W = (XX T + λI)−1XY : Primal form

W = Xα : Dual form (7)

Primal form computes explicitly while the dual expresses solution as linear combination of
training samples.

In primal form we solve an (N × N) system of equations while in the dual form we solve an
(m × m) system.

If dimension of features is N ≫ m (the number of samples) the computational advantage is
obvious

Key observation: Ridge regression algorithm can be solved in a form that only requires
inner products between sample points
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Kernel-defined nonlinear mapping

Consider an embedding map

ϕ : x ∈ RN 7→ ϕ(x) ∈ F ⊆ RN (8)

Choose the map ϕ so that it aims to convert the nonlinear relations into linear ones.

Map ϕ recodes the given dataset, S, into {(ϕ(x i ), yi ), . . . (ϕ(xm), ym)} for the m samples in
the dataset.

Recall that the efficient dual form of the solution to ridge regression entails the Gram matrix
which is made up inner products

Gi,j =
〈
ϕ(x i ), ϕ(xj )

〉
(9)

Computational cost of α is O(m3 + m2N) and that of evaluating the predictor on a new
sample is O(mN)

It turns out that the inner product can be computed directly in the input space rather than
first computing ϕ(x) using a kernel function
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Kernel-defined nonlinear mapping

Definition:

A Kernel is a function, κ, that for all x, z ∈ S satisfies

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩ ,

where ϕ is a mapping from S to an inner product feature space F

ϕ : x 7→ ϕ(x) ∈ F
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Kernel-defined nonlinear mapping

Example
Consider a two-dimensional input space x ⊆ R2 together with the feature map

ϕ : x = (x1, x2) 7→ ϕ(x) = (x2
1 , x

2
2 ,

√
2x1x2) ∈ F = R3.

Hypothesis of linear functions in F are of the form

g(x) = w11x2
1 + w22x2

2 + w12
√

2x1x2

⟨ϕ(x), ϕ(z)⟩ =
〈
(x2

1 , x
2
2 ,

√
2x1x2), (z2

1 , z
2
2 ,

√
2z1z2)

〉
= x2

1 z2
1 + x2

2 x2
2 + 2x1x2z1z2

= (x1z1 + x2z2)
2 = ⟨x , z⟩2

Hence κ(x , z) = ⟨x , z⟩2 is a kernel function with F its corresponding feature space
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Kernel-defined nonlinear mapping

Example
Consider a two-dimensional input space x ⊆ R2 together with the feature map

ϕ : x = (x1, x2) 7→ ϕ(x) = (x2
1 , x

2
2 , x1x2, x2x1) ∈ F = R4.

⟨ϕ(x), ϕ(z)⟩ =
〈
(x2

1 , x
2
2 , x1x2, x2x1), (z2

1 , z
2
2 , z1z2, z2z1)

〉
= x2

1 z2
1 + x2

2 x2
2 + x1x2z1z2 + x2x1z2z1

= (x1z1 + x2z2)
2 = ⟨x , z⟩2

The same kernel computes the inner product of this feature space

Hence feature space is not uniquely determined by the kernel function
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Kernel-defined nonlinear mapping

Table 1: Commonly used kernels (γ, r , and d are parameters)

Nonlinearity Mathematical form: κ(xi , xj ) =
Linear

〈
xi , xj

〉
Polynomial (γ

〈
xi , xj

〉
+ r)d ; γ > 0

Gaussian (Radial Basis Function - RBF) exp
(
−γ||xi − xj ||2

)
; γ > 0

Sigmoid tanh
(
γ
〈
xi , xj

〉
+ r
)

Example

Let x =
[
1 4 6

]T and z =
[
3 5 2

]T be two feature vectors that we need to map through
the mapping function ϕ(·) to some feature space F . Further, let the kernel associated with the
feature space be the RBF with parameter γ = 0.2222. The value of the inner product of the two
vectors, ⟨ϕ(x), ϕ(z)⟩, in the feature space is easily computed as κ(x , z) = exp(−γ||x − z||2)

⟨ϕ(x), ϕ(z)⟩ = κ(x , z)

= exp(−0.2222 × ||x − z||2)

= exp(−4.667) = 9.4 × 10−3

Try this simple example yourself to ensure you understand the concept
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Kernel-defined nonlinear mapping

Recall Equations (5) and (6) and the comments that followed; each entry of the Gram matrix
that appeared in the solution of the ridge regression is an inner product of the data in the
input space.

A mapping, ϕ(·), into a high dimensional feature space F , implies that each entry of the
Gram matrix can be computed with the appropriate kernel of the feature space

Gi,j =
〈
ϕ(x i ), ϕ(x j )

〉
= κ(x i , x j ) (10)

Kernalization provides a way of dealing with nonlinear relationships that may exist in the
problem (e.g. regression, classification, dimensionality reduction, etc.)
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Support vector machine

Consider a binary classification task with data points x i (i = 1, . . . ,m) having corresponding
labels yi = ±1 and decision function

g(x) = sign(⟨w , x⟩+ b) (11)

For a separable dataset all data will be correctly classified if yi (⟨w , x⟩+ b) > 0;∀i

Define canonical hyperplane such that ⟨w , x⟩+ b = 1 for closest points on one side of
separating plane and ⟨w , x⟩+ b = −1 for closest points on the other

Separating plane : ⟨w , x⟩+ b = 0 and normal vector is w
||w||

Margin is given by projection of x1 − x2 onto the separating plane

⟨w , x1⟩+ b = 1 and ⟨w , x2⟩+ b = −1; margin is γ = 1/||w || (see Fig 14 on next slide)
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Support vector machine

Maximize the margin γ = 1/||w ||, by

min

[
1
2
||w ||2

]
subject to yi (⟨w , x⟩+ b) ≥ 1; ∀i.

Figure 14: SVM separating
hyperplane

Figure 15: SVM separating
hyperplane in detail
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Support vector machine

Learning task reduces to minimizing the primal objective function:

L =
1
2
(⟨w , w⟩)−

m∑
i=1

αi (yi (⟨w , xi ⟩+ b)− 1) (12)

αi are Lagrange multipliers and αi ≥ 0

After taking derivatives with respect to b and w and appropriate substitution into Equ. 12,
we obtain the dual objective function

W(α) =
m∑

i=1

αi −
1
2

m∑
i,j=1

αiαj yi yj
〈
xi , xj

〉
(13)

to be maximized with respect to the αi subject to

αi ≥ 0
m∑

i=1

αi yi = 0 (14)

The quadratic program represented by Equ.13 gives optimal separating hyperplane with
maximal margin for separable data
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Support vector machine
Equ.13 indicates how we can incorporate the kernel that computes inner product in the
feature space after applying a mapping ϕ(·); case of inseparable data
Mapping achieved by 〈

xi , xj
〉
7→
〈
ϕ(xi ), ϕ(xj )

〉
(15)

Note that the functional form of ϕ(xi ) need not be known since choice of kernel implicitly
defines it:

κ(xi , xj ) =
〈
ϕ(xi ), ϕ(xj )

〉
Kernalized version of Equ. 13 becomes

W(α) =
m∑

i=1

αi −
1
2

m∑
i,j=1

αiαj yi yjκ(xi , xj ) (16)

to be maximized with respect to the αi subject to

αi ≥ 0
m∑

i=1

αi yi = 0

For example the kernel could be chosen as κ(xi , xj ) = exp(−γ||xi − xj ||2)
Decision function for a new test data z is

f (z) = sign

( m∑
i=1

yiαiκ(x i , z) + b

)
(17)
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Support vector machine with soft margin

Noisy data and outliers can lead to poor generalization

Reduce the effect by introducing soft margin

Recall (Equ. 16) that for a given kernel (κ(·, ·)), the learning task is:

maximize
α

W(α) =
m∑

i=1

αi −
1
2

m∑
i,j=1

αiαj yi yjκ(xi , xj )

subject to αi ≥ 0
m∑

i=1

αi yi = 0.

(18)

Two ways of accounting for noisy data and outlier with
Use L1 norm error and introduce box constrain 0 ≤ αi ≤ C in Equ (18)
Use L2 norm error and add a small positive constant to the leading diagonal of kernel
matrix κ(xi , xj ) becomes κ(xi , xj ) + λ in Equ (18)

Parameters C and λ are chosen to trade-off between training error and generalization
ability; achieve this with validation set; well-known library libsvm exposes interface to
determine C
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Using SVM

Beginners are advised to use the following procedure (see Hsu et al. (2003-2016)):

Transform data to the format of an SVM package

Conduct simple scaling on the data

Consider the RBF kernel κ(xi , xj = exp(−γ||xi − xj ||2) (see Table 42)

Use cross-validation to find the best parameter C and γ

Use the best parameter C and γ to train the whole training set

Test

The guide given by Hsu et al. (2003-2016) is concise and straightforward, and students are
strongly encouraged to consult the publication for details.
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