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Autoencoders

Figure 1: General structure of an autoencoder;

input x maps to an output r (reconstruction)
through internal representation or code
h (Goodfellow et al. 2016)
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Conceptually an autoencoder is a
feedforward network trained to copy its
input to its output (albeit imperfectly)

Structure (see Figure 1) has a hidden layer
h describing the code representing the
input

Autoencoder has two parts: encoder
function h = f(x) that generates the
representative code of the input and
decoder function r = g(k) that produces a
reconstruction from the code

Generalization of autoencoder to
stochastic mappings:
Pencoder (1) @and pgecoder (X|7)

Typical training strategy is similar to that
used for feedforward networks - minibatch
gradient descent
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Stacked autoencoder

t

784 units [ Outputs ] <«—— Reconstructions

300 units

300 units

784 units [ Inputs J

(= inputs)

Figure 2: Example of stacked autoencoder

used for the MNIST dataset; notice the 784

(28 x 28) input neurons; 300 hidden neurons;
150 central hidden neurons; a mirroring in the

top layer (Géron 2019)
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Practical autoencoder is a stack

Architecture of a stacked
autoencoder is typically
symmetrical with regards to the
central hidden layer (the coding
layer) (see Figure 2)
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Undercomplete/Overcomplete autoencoders

@ Constraining k to have smaller dimension than x results in an undercomplete autoencoder
@ h captures the most salient features of input

@ Learning entails minimizing a loss function
L(x, g(f(x))) M
L penalizes g(f(x)) being dissimilar to x

@ [f dimension of code is greater than that of input we have overcomplete autoencoder

@ Any architecture of autoencoder can be trained without the risk of over-capacity or learning
a trivial identity, by using regularization

@ Regularization can inpart properties to loss function:

sparsity of representation

smallness of derivative of representation
robustness to noise

robustness to missing data
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Autoencoders and Principal Component Analysis

(PCA)

@ With a linear decoder g(k) and mean squared error loss, an
undercomplete autoencoder learns the same subspace as PCA

@ With a nonlinear encoder and decoder (respectively, f(x) and g(h)), an
autoencoder can learn a more powerful generalization of PCA
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Sparse autoencoders

@ Sparse autoencoder has cost function used for training in the form of
reconstruction error and sparsity penalty on the code layer h:

L(x, g(f(x))) + (k) ()
where h is the encoder output; k = f(x) typically (see Figure 1)

@ Sparse autoencoders are useful in learning features that can be input for
other tasks, e.g. classification (think about semi-supervised classification)

@ Sparse autoencoders can be interpreted as approximating maximum
likelihood training of generative model that has latent variables (in this
case h)

@ In this respect, it is maximizing
log Pmodel (hax) = log pPmodel (h) + 10g pmodel (x|h) (3)

log pmodet () can be sparsity-inducing
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Denoising autoencoders

@ Denoising aims to reduce the noise in signals
@ Denoising autoencoders minimize
L(x, g(f(¥))) (4)
where X is a copy of x corrupted by some form of noise
@ Training process forces f and g to implictly learn the structure of pyata(x)

@ Another form of regularization A Y", ||V.h;||* forces the learning of a
function that does not change much when x changes slightly:

L(x,£(g( +AZ||W||2 (5)
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Denoising autoencoders

Layer 3 Decoder

Layer 2 Encoder

Layer 1 Encoder

X =X+ noise

Figure 3: Stacked convolutional denoising
autoencoder
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Figure 4: Comparison between output of
stacked convolutional denoising autoencoder

S

and median filter; Gaussian noise: © =0, 0 =1
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More autoencoders - cost functions

Contractive autoencoder

@ Regularization is introduced on the code & = f(x) to encourage
derivatives of f to be as small as possible

2
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@ Contractive autoencoder and denoising autoencoder are related when
input noise is small and Gaussian (Goodfellow et al. (2016))
@ denoising autoencoders make the reconstruction function resist small but
finite-sized perturbations of the input;

@ contractive autoencoders make the feature extraction function resist
infinitesimal perturbations of the input
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Variational autoencoder

Variational autoencoder (Chollet 2021)

@ An encoder module turns the input sample, (e.g.input-img,) into two
parameters in a latent space of representations, z_mean and
z_log_variance.

© You randomly sample a point z from the latent normal distribution that is
assumed to generate the input image, via

z = z_mean + exp(z_log_variance) x epsilon

where epsilon is a random tensor of small values.

© A decoder module maps this point in the latent space back to the original
input image.
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Variational autoencoder

Distribution over latent
space defined by z_ mean
Input image and z_log_var
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Figure 5: VAE maps an image to two vectors, z_mean and z_log_sigma, which define a
probability distribution over the latent space, used to sample a point to decode (Chollet
2021)

@ See accompanying jupyter notebook for a demonstration of VAE (Chollet
2021). The notebook from Géron (2019) is also a good source of
demonstration.
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Generative adversarial networks (GAN)

@ Central problem addressed by GAN is density estimation; GAN implicitly
captures the underlying data distribution

@ GAN can be used in both unsupervised and semisupervised learning
settings

@ Characterised by training two networks in competition:

e There is a network, named the generator (G), trying to produce samples
from a distribution that is learned from given data - mimicking, forging,
synthetic data

e There is a second network, the discriminator (D), that is able to tell the
synthetic samples from the real ones

@ Objective is to be able to generate synthetic signals that are no different
from the real ones
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Generative adversarial networks (GAN)

Simple illustration of GAN operation

Fake/Real

Discriminator }Goal = tell fake from real

/o
Fake I ' Real

} Goal = trick the discriminator

Figure 6: Simple illustration of GAN (Géron 2019)
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Generative adversarial networks (GAN)

The generator is trained T
to map a noise sample
to a synthetic data sample o] 3 D Real
that can “fool” or
the discriminator. Fake?
T The discriminator is trained to

distinguish real data
samples from synthesized
samples.

Noise Real Data
Source Sample

Figure 7: Two models are learned while training GAN; Discriminator (D) and
Generator (G); models implemented using neural network, but any differentiable
system (mapping) can also be used (Creswell et al. 2018)
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Generative adversarial networks (GAN)

@ In Figure 7, Generator network has no access to the real samples

@ Generator network is a mapping from some representation space (latent
space) to the data sample space:

G:G(z) - RN

where z € R"! is the data sample and | - | denotes the number of
dimensions

@ Discriminator network, D, maps data sample to a probability that sample
is from real data distribution and not generator distribution

D : D(x) — (0,1)

@ pyata(x) represents the probability density function over the data samples
(in RI*!) and p,(x) distribution of the samples produced by the generator
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Generative adversarial networks (GAN)

@ During training we set objective functions for the generator (Jg(©g; ©p))
and discriminator (Jp(©p; 0g))

@ Note that Jg and Jp are co-dependent on the network parameters, Og¢
and ©p as the networks are iteratively trained

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 17/22



Generative adversarial networks (GAN)

Paata(X)

2
) 1
- 0
i -1\
2 =2

Samples of Real Data

Figure 8: During GAN training, the generator is encouraged to produce a distribution
of samples, p,(x) to match that of real data, pgaa(x) (Creswell et al. 2018)
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Generative adversarial networks (GAN)

Training GAN

@ We find parameters of a discriminator that maximize its classification accuracy and find the
parameters of a generator that maximally confuses the discriminator

@ Cost of training is evaluated using a value function; solve the following mini-max problem:
max min V(G, D)
D g
where
V(G.D) = Epya(ry 08 D) + By, log (1 = D(x))
@ Parameters of one model are updated while the parameters of the other are fixed
@ Optimal discriminator is unique (Goodfellow et al. 2014)

D* (x) = DPdata(x)
Pdata(x) T Pg(x)
@ Generator is optimal when (Goodfellow et al. 2014)
Pg(x) = Pdata(x)
@ See accompanying jupyter notebook for demonstration (Géron 2019, Chollet 2021)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 19/22



Generative adversarial networks (GAN)

Other GAN architectures

@ Initial GAN architecture used fully connected neural network
@ Difficult to train; successful only with a subset of datsets - stability issues
@ Deep convolutional GAN provided more stability;

@ Conditional GAN - both the generator and the discriminator networks are
class-conditional (Figure 9)

@ Conditional GANs can provide better representations for multimodal data
generation

@ InfoGAN decomposes the noise source into an incompressible source
and a “latent code,”; attempt to discover latent factors of variation by
maximizing the mutual information between the latent code and the
generator’s output (Figure 10)
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Generative adversarial networks (GAN)

Other GAN architectures
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Figure 9: Conditional GAN Figure 10: InfoGAN
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