
Machine Learning: Algorithms and Applications

Philip O. Ogunbona

Advanced Multimedia Research Lab
University of Wollongong

Artificial Neural Networks and Deep Learning: An Introduction (I)
Autumn Session

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 1 / 54

Outline

1 Introduction

2 Models of a Neuron

3 Common Activation Functions

4 Network Architecture

5 Learning Process

6 Perceptron

7 Multilayer Perceptron and Back-propagation Algorithm

8 References

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 2 / 54

Neural networks

A neural network is a machine designed to model the way in which the brain performs a
particular task or function of interest.

A neural network is a massively parallel distributed processor made up of simple processing
units that has a natural propensity for storing experiential knowledge and making it available
for use (Haykin 2009).

It resembles the brain in two respects (Haykin 2009):
1 Knowledge is acquired by the network from its environment through a learning process.
2 Inter-neuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 3 / 54

Models of a neuron

A neuron is an information-processing
unit fundamental to the operation of a
neural network

Consists of:
1 Synapse or connecting links:

each characterized by a weight
(ωkj) or strength of its own. Note
a signal xj at the input of
synapse j, connected to neuron
k is multiplied by the synaptic
weight ωkj.

2 Adder: sums the input
signals(xi), weighted by the
respective synaptic strengths of
the neuron

3 Activation (or squashing)
function: limits the amplitude of
the output of a neuron;
squashes permissible amplitude
range of the output signal to
some finite value.

Figure 1: Model of a neuron with bias bk
which increases or lowers the net input of
the activation function (Haykin 2009).

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 4 / 54

Models of a neuron

Operation of neuron in Figure (1) can be written mathematically as

uk =
m∑

j=1

ωkjxj (1)

yk = φ(uk + bk) (2)

where

x1, x2, . . . xm are the input signals;

ω1, ω2, . . . , ωm are the respective synaptic weights of neuron k;

uk is the linear combiner output due to the input signals

bk is the bias;

φ(·) is the activation function;

Bias bk applies an affine transformation to the output uk of the linear combiner

vk = uk + bk (3)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 5 / 54

Models of a neuron

Equations (1) - (3) can be
combined into

vk =
m∑

j=0

ωkjxj (4)

and
yk = φ(vk) (5)

In combining the equations a
new synapse has been added
with input

x0 = +1 (6)

and weight

ωk0 = bk (7)

See Figure (2).

Figure 2: Model of neuron with the bias
absorbed into the neuron (Haykin 2009).

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 6 / 54

Models of a neuron

Signal flow model of a neuron could be useful in some analysis or
visualization
Output is given by Equations (4) & (5)

Figure 3: Signal flow model of a neuron (Haykin 2009)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 7 / 54

Common Activation Functions

Threshold Function depicted in
Figure (4) can be written as:

φ(v) =

{
1 if v ≥ 0
0 if v < 0

(8)

Output of neuron, k, using
threshold function is

yk =

{
1 if vk ≥ 0
0 if vk < 0

(9)

and induced local field of
neuron, vk is

vk =
m∑

j=1

ωkjxj + bk (10)
Figure 4: Threshold function (Haykin 2009).

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 8 / 54

Common Activation Functions

Logistic Function (an example
of Sigmoid function) is depicted
in Figure (5) and can be written
as:

φ(v) =
1

1 + exp(−av)
(11)

where induced local field of
neuron, vk is

vk =
m∑

j=1

ωkjxj + bk (12)

and slope parameter a
determines the shape

Note that the logistic
function is differentiable
while the threshold
function is not

Figure 5: Sigmoid function for varying slope
parameter a (Haykin 2009).

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 9 / 54

Common Activation Functions

Rectified Linear Unit (ReLU) has
become very popular since its
introduction by Nair & Hinton
(2010).

Output is a non-linear function of
the input

vk =
m∑

j=1

ωkjxj + bk (13)

yk =

{
vk if vk > 0
0 if vk < 0

(14)
Figure 6: Rectified Linear Unit

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 10 / 54

Common Activation Functions

Softmax activation function
squashes each input to a value
between 0 and 1.

Output is equivalent to a
categorical probability distribution

Graph similar to logistic but
usually applied to provide
probabilistic interpretation to
outputs in classification task

vk =
m∑

j=1

ωkjxj + bk (15)

yk =
exp(vk)∑K

k=1 exp(vk)
(16)

Figure 7: Softmax operation for a
3-class classification task
(https://sefiks.com/).

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 11 / 54

https://sefiks.com/

Common Activation Functions

Figure 8: Activation Functions (https://towardsdatasience.com)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 12 / 54

https://towardsdatasience.com

Common Activation Functions

Figure 9: Derivative of Activation Functions (https://towardsdatasience.com)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 13 / 54

https://towardsdatasience.com

Common Activation Functions

What are some nice properties of activation functions?

Nonlinear function; otherwise neural net can only solve simple problems;

Without activation neural net is equivalent to a linear regression

Nice derivatives makes learning easy

Activation functions should give a bounded output for a bounded input

Choosing the right activation function is both science and art. For further insight, see the
works of Ramachandran et al. (2017) and Mhaskar & Micchelli (1994)

Together with the right cost function, activation functions make training NN possible.

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 14 / 54

Models of a neuron

In Figure (10) consider only 3 inputs and
the bias into the neuron;

Let the weights be ω10 = b1 = 0.5,
ω11 = 0.4 ω12 = 0.6; ω13 = 0.2

Let the inputs be x0 = 1; x1 = 1.2;
x2 = 2.0; x3 = 1.8

Let the activation function be logistic
sigmod with a = 0.2

v1 =

3∑
j=0

ω1jxj

= 1 × 0.5 + 0.4 × 1.2 + 0.6 × 2.0 + 0.2 × 1.8

= 2.54

y1 = φ(v1) =
1

1 + exp(−av1)

=
1

1 + exp(−0.2 × 2.54)
= 0.624

Figure 10: Model of neuron:
Example computation (Haykin
2009).

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 15 / 54

Network Architecture
Single Layer Feedforward Networks

Input layer of source nodes project
directly onto an output layer of
neurons

Figure 11: Single Layer Feedforward
NN (Haykin (2009))

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 16 / 54

Network Architecture

Multilayer Feedforward Networks

Input layer of source nodes project
directly onto a set of neurons in a
hidden layer

There could be one or more
hidden layers; output of each layer
forming input to the next layer

Adding one or more hidden layers
allows network to extract
higher-order statistics from the
input data

Network is fully connected if every
node in each layer is connected to
every node in the adjacent forward
layer

Figure 12: Multilayer Fully Connected
Feedforward NN (Haykin (2009))

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 17 / 54

Network Architecture

Recurrent Networks

Unlike feedforward networks
recurrent networks introduce
feedback from output to input and
with multilayer feedback could
also be among layers

Feedback loops and nonlinear
activation functions allow neural
network to model nonlinear
dynamic systems

Figure 13: Single Layer Recurrent
Neural Network (Haykin (2009))

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 18 / 54

Network Architecture

Figure 14: Recurrent Neural Network with Hidden Layer (Haykin (2009))

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 19 / 54

Learning process

Types of Learning

Supervised learning - predict an output when given an input vector

Reinforcement learning - select an action to maximize some defined payoff

Unsupervised learning - discover a good internal representation of the data

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 20 / 54

Learning process

Supervised Learning

Each training case consists of an input vector x and a target output t.
1 Regression: The target output is a real number or a whole vector of real numbers.

2 Classification: The target output is a class label.

Recall that in general we want to learn a mapping from input vector x to some output y
through a vector of weights ω

y = f (ω, x) (17)

such that the error (or loss or cost function) incurred in the prediction of the actual
value is minimized.

For regression, the cost function

J(ω, b) = −E log pmodel(y|x) (18)

is the expectation of negative conditional log-likelihood computed over the training data; the
cross-entropy between the training data and the model distribution

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 21 / 54

Learning process

Cost function in Equation (18) is usually minimized in an optimization process,
gradient descent.

How to understand gradient-based optimization? (Goodfellow et al. 2016, p. 80)
Consider a function y = f (x) where both x and y are real numbers

Derivative of y = f (x), f ′(x), gives slope of f (x) at point x

Importantly, it tells us how to scale a small change in the input to obtain corresponding
change in output (this is due to Taylor’s expansion):

f (x + ϵ) ≈ f (x) + ϵ f ′(x) (19)

f (x − ϵ sign(f ′(x))) < f (x) for small enough ϵ

So we reduce f (x) by moving x in small steps with the opposite sign of the derivative

This technique is called gradient descent 1 and credited to Louis Augustin Cauchy,
1847 (it’s also called steepest descent)

1For brief (mathematical) historical account see Lemarechal (2012)
SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 22 / 54

Learning process

Figure 15: Illustration of the gradient descent algorithm (Goodfellow et al. 2016, p.80)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 23 / 54

Illustration of gradient descent in 1-dimension

Consider a point x = −1 on the curve
f (x) = 1

2 x2 (Figure 16) and step size
ϵ = 0.1;
f (−1) = 1

2 ; f ′(x) = x; f ′(−1) = −1 ;
Therefore,

xnew = x − ϵf ′(x)

= −1 − 0.1 × (−1)

= −0.9

and search for minimum takes us to the
right of x = −1;i.e. x = −0.9
f (−0.9) = 0.405; which is less than
f (−1) = 0.5
Similarly if we are at x = 1.5;

xnew = 1.5 − 0.1 × 1.5 = 1.35;

which is to the left of x = 1.5 and
towards the minimum point; compare
f (1.5) = 1.125 and f (1.35) = 0.911

Figure 16: Illustration of the gradient
descent algorithm (Goodfellow et al.
2016, p.80)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 24 / 54

Learning process

In general the input to the function f is a vector x, so we consider
generalization of the derivative of f , ∇f

Let x = {x1, x2, . . . xm};

∇f (x) =
[
∂f
∂x1

,
∂f
∂x2

. . .
∂f
∂xm

]t

Partial derivative
∂f
∂xi

measures how f changes as only the variable xi

increases at point x.

Directional derivative in the direction of a unit vector u is the slope of f in
the direction of u

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 25 / 54

Learning process
Directional derivative is derivative of f (x + αu) with respect to α evaluated
at α = 0

Chain rule says that given a function f (u), and u(x);
∂f
∂x

=
∂u
∂x

∂f
∂u

therefore,

∂

∂α
f (x + αu) = ut∇f (x) = ||u||2||∇f (x)||2 cos θ

Minimize f by finding the direction in which f decreases fastest; Do this by
minimizing the directional derivative

min
u,utu=1

ut∇f (x) = min
u,utu=1

||u||2||∇f (x)||2 cos θ

Minimum is achieved when u points in the opposite direction to ∇f (x); i.e.
180◦ apart;

We can decrease f by moving in the direction of negative gradient,
choosing a new point as

x′ = x− ϵ∇f (x); where ϵ is step size (20)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 26 / 54

Perceptron

Consider the perceptron shown in Figure (17);
weights ωi; i = {1, . . .m}; inputs xi; i = {1, . . .m};
external bias, b

Correctly classify externally applied inputs into two
classes C1 or C2

If y = +1 classify to class C1; if y = −1 classify to C2

Figure 17: Signal flow model of the
perceptron Haykin (2009)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 27 / 54

Perceptron

Simple perceptron creates a hyperplane separating
the two regions (see Figure(18))

m∑
i=1

ωixi + b = 0

Weights of perceptron adapted at each iteration of
training sample presentation

Use error-correction rule - perceptron convergence
algorithm

Figure 18: Hyperplane as decision
boundary of 2-D, 2-class classification
Haykin (2009)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 28 / 54

Perceptron

Figure 19: (a) Linearly separable patterns; (b) Linearly non-separable patterns Haykin (2009)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 29 / 54

Multilayer Perceptron

Basic features of multilayer perceptrons (Haykin 2009) (See Figure 20):
Each neuron in the network includes a nonlinear activation function that
is differentiable

Network contains one or more layers that are hidden from both the input
and output nodes

Network exhibits a high degree of connectivity determined by synaptic
weights of the network

Training method
Multilayer perceptron is usually trained using the back-propagation algorithm:

Forward phase: Weights of the network are fixed and input signal is propagated layer-wise
through the network and transformed signal appears at the output

Backward phase: Error signal is computed by comparing generated output and desired
response; error signal is propagated backward and layer-wise through the network;
successive adjustments made to weights of the network

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 30 / 54

Multilayer Perceptron

Figure 20: Architectural graph of the Multilayer Perceptron (Haykin 2009)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 31 / 54

Multilayer Perceptron

Each hidden or output neuron performs two computations:

1 Output of each neuron expressed as continuous nonlinear function of input
signals and associated weights

2 Estimate of the gradient vector (gradient of error surface) required in the
backward phase of the training

Hidden neurons act as feature detectors, discovering the salient features
characterising the training data;

Hidden neurons perform nonlinear transformation on input data into a
new space; feature space

The training is a form of error-correction learning that assigns blame or
credit to each of the internal neurons; this is a case of the credit
assignment problem

Back-propagation solves the credit assignment problem for the multilayer
perceptron

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 32 / 54

Back-propagation Algorithm

Key points leading to overall strategy
Multilayer perceptron is a universal function approximator

It can be trained using error-correction learning to obtain optimum approximation

The optimum can be obtained if we can minimize the approximation error

This is equivalent to modifying the weights so that the network minimizes the error between
desired output and response of the network

Gradient descent algorithm can be used to find the minimum of an objective function by
iteratively computing the adjustment that leads to the minimization of the objective function

Back-propagation is an efficient implementation of the gradient descent

Strategy is to compute the adjustment, ∆ω to be applied to each weight, ω

From Equation (20) the adjustment is proportional to the gradient of the objective function;
in this case ∇E (E is error signal energy) with respect to the parameters ω

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 33 / 54

Back-propagation Algorithm

Error signal of the output neuron is given by

ej(n) = dj(n)− yj(n) (21)

where yj is the output of neuron j when stimulus x(n) is applied at the input; dj(n) is the
desired output

Instantaneous error energy can be written as

Ej(n) =
1
2

e2
j (n) (22)

Total instantaneous error (summed over all neurons in the output layer) is

E(n) =
∑
j∈C

Ej(n) =
1
2

∑
j∈C

e2
j (n) (23)

Computation of the error could be in batch mode or on-line mode leading to either batch
mode (presentation of all training samples) or on-line (presentation of training sample
one-at-a-time) training (stochastic)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 34 / 54

Back-propagation Algorithm

Error signal of the output neuron is given by

ej(n) = dj(n)− yj(n) (21)

where yj is the output of neuron j when stimulus x(n) is applied at the input; dj(n) is the
desired output

Instantaneous error energy can be written as

Ej(n) =
1
2

e2
j (n) (22)

Total instantaneous error (summed over all neurons in the output layer) is

E(n) =
∑
j∈C

Ej(n) =
1
2

∑
j∈C

e2
j (n) (23)

Computation of the error could be in batch mode or on-line mode leading to either batch
mode (presentation of all training samples) or on-line (presentation of training sample
one-at-a-time) training (stochastic)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 34 / 54

Back-propagation Algorithm

Error signal of the output neuron is given by

ej(n) = dj(n)− yj(n) (21)

where yj is the output of neuron j when stimulus x(n) is applied at the input; dj(n) is the
desired output

Instantaneous error energy can be written as

Ej(n) =
1
2

e2
j (n) (22)

Total instantaneous error (summed over all neurons in the output layer) is

E(n) =
∑
j∈C

Ej(n) =
1
2

∑
j∈C

e2
j (n) (23)

Computation of the error could be in batch mode or on-line mode leading to either batch
mode (presentation of all training samples) or on-line (presentation of training sample
one-at-a-time) training (stochastic)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 34 / 54

Back-propagation Algorithm

Error signal of the output neuron is given by

ej(n) = dj(n)− yj(n) (21)

where yj is the output of neuron j when stimulus x(n) is applied at the input; dj(n) is the
desired output

Instantaneous error energy can be written as

Ej(n) =
1
2

e2
j (n) (22)

Total instantaneous error (summed over all neurons in the output layer) is

E(n) =
∑
j∈C

Ej(n) =
1
2

∑
j∈C

e2
j (n) (23)

Computation of the error could be in batch mode or on-line mode leading to either batch
mode (presentation of all training samples) or on-line (presentation of training sample
one-at-a-time) training (stochastic)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 34 / 54

Back-propagation Algorithm

Consider Figure (21):
Induced local field of
neuron j at iteration n is:

vj(n) =
m∑

i=0

ωji(n)yi(n)

(24)
m is the total number of
inputs

Function signal yj(n)
appearing at the output of
neuron j at iteration n is

yj(n) = φj(vj(n)) (25)

Figure 21: Signal flow highlighting neuron j being fed by
the outputs from the neurons to its left; induced local field
of neuron is vj(n) and this is the input to activation function
φ(·) (Haykin 2009)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 35 / 54

Back-propagation Algorithm

Consider Figure (21):
Induced local field of
neuron j at iteration n is:

vj(n) =
m∑

i=0

ωji(n)yi(n)

(24)
m is the total number of
inputs

Function signal yj(n)
appearing at the output of
neuron j at iteration n is

yj(n) = φj(vj(n)) (25)

Figure 21: Signal flow highlighting neuron j being fed by
the outputs from the neurons to its left; induced local field
of neuron is vj(n) and this is the input to activation function
φ(·) (Haykin 2009)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 35 / 54

Back-propagation Algorithm

We need to compute the adjustment (or correction) ∆ωji(n) to be applied
to weight ωji(n)

This is proportional to the partial derivative
∂E(n)
∂ωji(n)

and determines the

direction of search in the weight space for ωji

Chain rule tells us how to compute
∂E(n)
∂ωji(n)

from a set of known quantities

∂E(n)
∂ωji(n)

=
∂E(n)
∂ej(n)

∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂ωji(n)

(26)

Recall Equation (22) : Ej(n) = 1
2 e2

j (n); therefore

∂E(n)
∂ej(n)

= ej(n) (27)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 36 / 54

Back-propagation Algorithm

We need to compute the adjustment (or correction) ∆ωji(n) to be applied
to weight ωji(n)

This is proportional to the partial derivative
∂E(n)
∂ωji(n)

and determines the

direction of search in the weight space for ωji

Chain rule tells us how to compute
∂E(n)
∂ωji(n)

from a set of known quantities

∂E(n)
∂ωji(n)

=
∂E(n)
∂ej(n)

∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂ωji(n)

(26)

Recall Equation (22) : Ej(n) = 1
2 e2

j (n); therefore

∂E(n)
∂ej(n)

= ej(n) (27)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 36 / 54

Back-propagation Algorithm

We need to compute the adjustment (or correction) ∆ωji(n) to be applied
to weight ωji(n)

This is proportional to the partial derivative
∂E(n)
∂ωji(n)

and determines the

direction of search in the weight space for ωji

Chain rule tells us how to compute
∂E(n)
∂ωji(n)

from a set of known quantities

∂E(n)
∂ωji(n)

=
∂E(n)
∂ej(n)

∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂ωji(n)

(26)

Recall Equation (22) : Ej(n) = 1
2 e2

j (n); therefore

∂E(n)
∂ej(n)

= ej(n) (27)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 36 / 54

Back-propagation Algorithm

We need to compute the adjustment (or correction) ∆ωji(n) to be applied
to weight ωji(n)

This is proportional to the partial derivative
∂E(n)
∂ωji(n)

and determines the

direction of search in the weight space for ωji

Chain rule tells us how to compute
∂E(n)
∂ωji(n)

from a set of known quantities

∂E(n)
∂ωji(n)

=
∂E(n)
∂ej(n)

∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂ωji(n)

(26)

Recall Equation (22) : Ej(n) = 1
2 e2

j (n); therefore

∂E(n)
∂ej(n)

= ej(n) (27)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 36 / 54

Back-propagation Algorithm

Recall Equation (21): ej(n) = dj(n)− yj(n)

∂ej(n)
∂yj(n)

= −1 (28)

Recall Equation (25): yj(n) = φj(vj(n))

∂yj(n)
∂vj(n)

= φ′
j(vj(n)); where ()′ indicates differentiation (29)

Recall Equation(24): vj(n) =
∑m

i=0 ωji(n)yi(n)

∂vj(n)
∂ωji(n)

= yi(n) (30)

Equation (26) becomes (using Equations (27) - (30))

∂E(n)
∂ωji(n)

= −ej(n)φ′
j(vj(n))yi(n) (31)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 37 / 54

Back-propagation Algorithm

Recall Equation (21): ej(n) = dj(n)− yj(n)

∂ej(n)
∂yj(n)

= −1 (28)

Recall Equation (25): yj(n) = φj(vj(n))

∂yj(n)
∂vj(n)

= φ′
j(vj(n)); where ()′ indicates differentiation (29)

Recall Equation(24): vj(n) =
∑m

i=0 ωji(n)yi(n)

∂vj(n)
∂ωji(n)

= yi(n) (30)

Equation (26) becomes (using Equations (27) - (30))

∂E(n)
∂ωji(n)

= −ej(n)φ′
j(vj(n))yi(n) (31)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 37 / 54

Back-propagation Algorithm

Recall Equation (21): ej(n) = dj(n)− yj(n)

∂ej(n)
∂yj(n)

= −1 (28)

Recall Equation (25): yj(n) = φj(vj(n))

∂yj(n)
∂vj(n)

= φ′
j(vj(n)); where ()′ indicates differentiation (29)

Recall Equation(24): vj(n) =
∑m

i=0 ωji(n)yi(n)

∂vj(n)
∂ωji(n)

= yi(n) (30)

Equation (26) becomes (using Equations (27) - (30))

∂E(n)
∂ωji(n)

= −ej(n)φ′
j(vj(n))yi(n) (31)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 37 / 54

Back-propagation Algorithm

Recall Equation (21): ej(n) = dj(n)− yj(n)

∂ej(n)
∂yj(n)

= −1 (28)

Recall Equation (25): yj(n) = φj(vj(n))

∂yj(n)
∂vj(n)

= φ′
j(vj(n)); where ()′ indicates differentiation (29)

Recall Equation(24): vj(n) =
∑m

i=0 ωji(n)yi(n)

∂vj(n)
∂ωji(n)

= yi(n) (30)

Equation (26) becomes (using Equations (27) - (30))

∂E(n)
∂ωji(n)

= −ej(n)φ′
j(vj(n))yi(n) (31)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 37 / 54

Back-propagation Algorithm

Correction, ∆ωji(n), applied to ωji(n) is defined by the delta rule

∆ωji(n) = −η
∂E(n)
∂ωji(n)

; η is the learning rate parameter

= η ej(n)φ′
j(vj(n)) yi(n)

= η δj(n) yi(n) (32)

where δj(n) = ej(n)φ′
j(vj(n)) is defined as the local gradient for neuron j

Local gradient for neuron j is the product of corresponding error ej(n) and
the derivative of associated activation function, φ′

j(vj(n))

Error ej(n) is easily computed for the output neurons; we have access to
dj(n) and yj(n). How to compute error for hidden neurons? These have no
given dj(n).

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 38 / 54

Back-propagation Algorithm

Correction, ∆ωji(n), applied to ωji(n) is defined by the delta rule

∆ωji(n) = −η
∂E(n)
∂ωji(n)

; η is the learning rate parameter

= η ej(n)φ′
j(vj(n)) yi(n)

= η δj(n) yi(n) (32)

where δj(n) = ej(n)φ′
j(vj(n)) is defined as the local gradient for neuron j

Local gradient for neuron j is the product of corresponding error ej(n) and
the derivative of associated activation function, φ′

j(vj(n))

Error ej(n) is easily computed for the output neurons; we have access to
dj(n) and yj(n). How to compute error for hidden neurons? These have no
given dj(n).

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 38 / 54

Back-propagation Algorithm

Correction, ∆ωji(n), applied to ωji(n) is defined by the delta rule

∆ωji(n) = −η
∂E(n)
∂ωji(n)

; η is the learning rate parameter

= η ej(n)φ′
j(vj(n)) yi(n)

= η δj(n) yi(n) (32)

where δj(n) = ej(n)φ′
j(vj(n)) is defined as the local gradient for neuron j

Local gradient for neuron j is the product of corresponding error ej(n) and
the derivative of associated activation function, φ′

j(vj(n))

Error ej(n) is easily computed for the output neurons; we have access to
dj(n) and yj(n). How to compute error for hidden neurons? These have no
given dj(n).

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 38 / 54

Back-propagation Algorithm

What do we know so far?
1 Training a multilayer perceptron involves using the training data set in an error-correction

learning paradigm to adjust the weights
2 The error-correction learning is essentially equivalent to solving a function minimization

problem
3 The function to be minimized is the error surface corresponding to the mismatch between

the response of the network and the desired response
4 This can be solved by the gradient descent algorithm
5 The back-propagation algorithm is an efficient implementation of the gradient descent

algorithm for the multilayer perceptron
6 The correction (or update) to the weight at each iteration is (cf. Equation (32)):

∆ωji(n) = η ej(n)φ′
j (vj(n)) yi(n)

= η δj(n) yi(n) (33)

This is the product of the learning rate η, local gradient of the associated neuron, δj(n) and the
input to the neuron, yi(n). See Figure (21)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 39 / 54

Back-propagation Algorithm

Weights connected to the output neurons are updated as

ωnew
ji (n) = ωold

ji (n) + ∆ωji(n)

= ωold
ji (n) + η δj(n) yi(n)

= ωold
ji (n) + η ej(n)φ′

j (vj(n)) yi(n) (34)

Using chain rule similarly to how we derive the update for the weight of output neurons we
will show that the weight update for hidden neurons is given as

ωnew
ji (n) = ωold

ji (n) + ∆ωji(n)

= ωold
ji (n) + η δj(n) yi(n)

= ωold
ji (n) + η φ′

j (vj(n))
∑

k

δk(n)ωkj(n) yi(n) (35)

where neuron j is hidden; φ′
j (vj(n)) is derivative of associated activation function; δk(n) are

associated with neurons k which are to the immediate right of neuron j and connected to it;
ωkj(n) are the associated weights of these connections (see Figure (22))

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 40 / 54

Back-propagation Algorithm

Figure 22: Signal flow showing hidden neuron j connected to an output neuron k to its
immediate right; Diagram used to show the derivation of weight update for hidden neuron (Haykin
2009)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 41 / 54

Back-propagation Algorithm

For the sake of completeness we now derive

δj(n) = φ′
j (vj(n))

∑
k

δk(n)ωkj(n)

of Equation (35)

Recall from Equation(26)

∂E(n)
∂ωji(n)

=
∂E(n)
∂ej(n)

∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂ωji(n)

and Equation(32)

∆ωji(n) = η ej(n)φ′
j (vj(n)) yi(n)

= η δj(n) yi(n)

we infer that the local gradient, δj(n), can be written as

δj(n) =
∂E(n)
∂ej(n)

∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

(36)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 42 / 54

Back-propagation Algorithm
Use Figure (22) and Equation (36) to write local gradient as:

δj(n) = −
∂E(n)
∂yj(n)

∂yj(n)
∂vj(n)

= −
∂E(n)
∂yj(n)

φ′
j (vj(n)) (37)

From Figure (22)

E(n) =
1
2

∑
k∈C

e2
k(n); neuron k is an output node (38)

Differentiating both sides of Equation (38) with respect to yj:

∂E(n)
∂yj(n)

=
∑

k

ek(n)
∂ek(n)
∂yj(n)

(39)

Use chain rule to write
∂ek(n)
∂yj(n)

=
∂ek(n)
∂vk(n)

∂vk(n)
∂yj(n)

and

∂E(n)
∂yj(n)

=
∑

k

ek(n)
∂ek(n)
∂vk(n)

∂vk(n)
∂yj(n)

(40)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 43 / 54

Back-propagation Algorithm
Observe from Figure (22) that

ek(n) = dk(n)− yk(n)

= dk(n)− φk(vk(n)); neuron k is an output node (41)

and we can write
∂ek(n)
∂vk(n)

= −φ′
k(vk(n)) (42)

Also note that the induced local field for neuron k

vk(n) =
m∑

j=0

ωkj(n)yj(n); m is number of inputs applied to neuron k (43)

Upon differentiation we have
∂vk(n)
∂yj(n)

= ωkj(n) (44)

Combining these component partial derivatives we obtain

∂E(n)
∂yj(n)

= −
∑

k

ek(n)φ′
k(vk(n)) ωkj(n)

= −
∑

k

δk(n)ωkj(n) (45)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 44 / 54

Back-propagation Algorithm

Substituting Equation (45) into Equation (37) to obtain

δj(n) = φ′
j (vj(n))

∑
k

δk(n)ωkj(n) (46)

and when combined with Equation (32) we can write the correction as

∆ωji(n) = ηδj(n)yi(n)

= ηφ′
j (vj(n))

∑
k

δk(n)ωkj(n)yi(n) (47)

and the update rule as

ωnew
ji (n) = ωold

ji (n) + ∆ωji(n)

= ωold
ji (n) + ηφ′

j (vj(n))
∑

k

δk(n)ωkj(n)yi(n) (48)

which is the same expression we provided in Equation (35)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 45 / 54

Back-propagation

Summary of Back-propagation Algorithm for Multilayer Perceptron
1 Training could be Online (weight update after presentation of each sample) or Batch (weight

update after presentation of all samples)
2 Back-propagation comprises two phases namely Forward pass and Backward pass
3 Forward pass: Weights of the network are fixed and input signal is propagated layer-wise

through the network and transformed signal appears at the output; each neuron computes
(see Figure (21))

vj(n) =
m∑

j=0

ωji(n)yi(n); yj(n) = φj(vj(n)) (49)

4 In the Backward pass error is propagated backward through the network to compute weight
updates (see Figure (22) and Equation (45)):

ωnew
ji (n) = ωold

ji (n) +


η ej(n)φ′

j (vj(n)) yi(n) for output neurons

η φ′
j (vj(n))

∑
k

δk(n)ωkj(n) yi(n) for hidden neurons
(50)

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 46 / 54

Extensions of basic gradient descent

To improve the performance of a learning system:
1 improve structure of model e.g. add more layers
2 improve initialization of the model; build large amounts of sparsity
3 use a more powerful learning algorithm; e.g. improve gradient descent

Several extension of the basic gradient descent algorithm (an optimizer)
provide faster convergence
Popular optimizers include:

Adam
RMSProp
AdaGrad

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 47 / 54

Extension of the basic gradient descent

Recall from Eqn. 20 that the gradient descent update rule is simply (we
have used notation consistent with our development of backpropagation):

ωt = ωt−1 − η∇f (ωt−1)

where ∇f (ωt − 1) is the gradient at previous iteration

Stochastic gradient descent

1: gt ← ∇f (ωt−1)
2: ωt ← ωt−1 − ηgt

Gradient descent can suffer slow convergence problems

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 48 / 54

Extension of the basic gradient descent

The addition of a momentum term can provide considerable
improvements

Classical momentum
1: gt ← ∇f (ωt−1)
2: mt ← µmt−1 + gt; {momentum term accumulated}
3: ωt ← ωt−1 − ηmt

Advantages:
Accelerates GD learning along dimensions where gradient remains relatively
consistent across training steps
Slows GD learning along turbulent dimensions where gradient is oscilating
wildly

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 49 / 54

Extension of the basic gradient descent

Nesterov’s accelerated gradient method add the momentum term to the
vetcor of parameters (i.e. weights) before computing the gradient.
Empirically, it is superior to basic GD, classical momentum for difficult
optimization objectives (No mathematical proof is provided)

Nesterov’s accelerated gradient (NAG)

1: gt ← ∇f (ωt−1 − ηµmt−1)
2: mt ← µmt−1 + gt

3: ωt ← ωt−1 − ηmt

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 50 / 54

Extension of the basic gradient descent

L2 norm-based methods divide the learning rate, η by the L2 norm of all
previous gradients and can provide improvements (AdaGrad):

Slows down learning along dimensions that have alsready changed
significantly
Speeds up learning along dimensions that have only changed slightly
Stabilizes model’s representation of common features
Quckly learn representation of rare features

Gradient can become too large and cause learning to halt

AdaGrad
1: gt ← ∇f (ωt−1)
2: nt ← nt−1 + g2

t
3: ωt ← ωt−1 − η gt√

nt+ϵ

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 51 / 54

Extension of the basic gradient descent

The problem of growing gradient is solved by weighting the gradient term
this gives the RMSProp

RMSProp

1: gt ← ∇f (ωt−1)
2: nt ← νnt−1 + (1− ν)g2

t
3: ωt ← ωt−1 − η gt√

nt+ϵ

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 52 / 54

Extension of the basic gradient descent
Combinantion of momentum-based and norm-based extensions
motivated the adaptive moment estimation (Adam algorithm)
Decaying mean replaces decaying sum in classical momentum

Adam
1: gt ← ∇f (ωt−1)
2: mt ← µmt−1 + (1− µ)gt

3: m̂t ← mt
1−µt

4: nt ← νnt−1 + (1− ν)g2
t

5: n̂t ← nt
1−ν t

6: ωt ← ωt−1 − η m̂t√
n̂t+ϵ

Rather than use l2 norm, the L∞ could be used as well; replace nt in step
4 and ωt in step 6 and remove n̂t in step 5; new updates (this is AdaMax
algorithm):

nt ← max(νnt−1, |gt|)

ωt ← ωt−1 − η
m̂t

nt + ϵ

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 53 / 54

Bibliography
Alpaydin, E. (2010), Introduction to Machine Learning, second edn, The MIT Press, Cambridge

Massachusetts.
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B. & Bharath, A. A. (2018),

‘Generative adversarial networks: An overview’, IEEE Signal Processing Magazine 35(1), 53 –
65.

Dozat, T. (2015), Incorporating nestterov momentum in Adam, Technical report, Linguistics
Department, Stanford University.

Duda, R. O., Hart, P. E. & Stork, D. G. (2001), Pattern Classification, Second edn, John Wiley and
Sons.

Géron, A. (2017), Hands-on Machine Learning with Scikit-Learn and TensorFlow, O’Reilly Media,
Inc., CA, USA.

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT Press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. &

Bengio, Y. (2014), Generative adversarial nets, in ‘Proc. Advances Neural Information
Processing Systems Conf’, Montreal, Quebec, Canada, p. 2672–2680.

Hastie, T., Tibshirani, R. & Friedman, J. (2001), The Elements of Statistical Learning - Data
Mining, Inference and Prediction, Springer Science+Business Media LLC.

Haykin, S. (2009), Neural Networks and Learning Machines, Third edn, Pearson Education.
Kaiming He, Xiangyu Zhang, S. R. J. S. (2015), Deep residual learning for image recognition,

Technical Report arXiv:1512.03385 [cs.CV], ArXiV.
URL: https://arxiv.org/pdf/1512.03385.pdf

Kingma, D. P. & Ba, J. L. (2015), Adam: A method fo stochastic optmization, in ‘International
Conferenece on Language Representtaions’, San Diego, CA. USA, pp. 1– 15.

Lemarechal, C. (2012), ‘Cauchy and the gradient method’, Documenta Mathematica Extra
Volume ISMP, 251–254.

Mhaskar, H. N. & Micchelli, C. A. (1994), How to choose an activation function, in J. D. Cowan,
G. Tesauro & J. Alspector, eds, ‘Advances in Neural Information Processing Systems 6’,
Morgan-Kaufmann, pp. 319–326.
URL: http://papers.nips.cc/paper/874-how-to-choose-an-activation-function.pdf

Nair, V. & Hinton, G. (2010), Rectified linear units improve restricted boltzmann machines, in
‘Proceedings of 27th International Conference on Machine Learning’, Haifa, Israel.

Ramachandran, P., Zoph, B. & Le, Q. V. (2017), Searching for activation functions, Technical
Report arXiv:1710.05941v2 [cs.NE], ArXiV.
URL: https://arxiv.org/pdf/1710.05941.pdf

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. &
Rabinovich, A. (2014), Going deeper with convolutions, Technical Report arXiv:1409.4842
[cs.CV], ArXiV.
URL: https://arxiv.org/pdf/1409.4842.pdf

Webb, A. (2002), Statistical Pattern Recognition, Second edn, John Wiley and Sons.

SCIT-AMRL (University of Wollongong) Machine Learning ANNDL 54 / 54

	Introduction
	Models of a Neuron
	Common Activation Functions
	Network Architecture
	Learning Process
	Perceptron
	Multilayer Perceptron and Back-propagation Algorithm
	References
	References

