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“The formulation of the problem is often more essential than its so-
lution, which may be merely a matter of mathematical or experimental
skill.” -Albert Einstein

SCIT-AMRL (University of Wollongong) Machine Learning



@ Introduction
9 Brief theory of learning
e Loss functions

0 References

SCIT-AMRL (University of Wollongong) Machine Learning ML 3/32



Machine Learning - General ideas

@ Machine learning is the automated process of extracting patterns from data

@ Machine learning is programming computers to optimize a performance criterion using
example data or past experience

@ In a general sense machine learning algorithms set out to learn some function that maps
“units” from one space to “units” in another space

@ A learning algorithm is one that can learn from data

@ Learning algorithm may involve: optimization, a cost function, a model and a data set, to
build the algorithm

@ There is a model defined up to some parameters and learning is the process of optimizing
the parameters using training data

@ Model may be predictive (make prediction about new or future data) or descriptive (gain
knowledge or insight about data) or both

SCIT-AMRL (University of Wollongong) Machine Learning ML 4/32



Machine Learning - General ideas

What is machine learning?

Machine learning algorithms work by searching through a set of possible models to select the
model that best captures the relationship between the descriptive features and the target feature
in the dataset (this is only part of the story; there is a rich theory that explains it in full)

Mitchell 1997 defined learning broadly:

What is learning?

A computer program is said to learn from experience E with respect to some class of tasks T, and
performance measure P, if its performance at tasks in T as measured by P improves with
experience

@ Tasks of interest are “too difficult to solve with fixed programs written and designed by
humans”

@ The process of learning is not the task; learning is a means of acquiring ability to perform
the task
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Common Machine Learning Scenarios

Some machine learning scenarios (Mohri, Rostamizadeh, & Talwalkar, 2012):

@ Supervised learning: The learner receives a set of lebelled examples as training data and
makes predictions for all unseen points. For example we encounter this in classification,
regression, and ranking problems.
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Common Machine Learning Scenarios

Some machine learning scenarios (Mohri et al., 2012):

@ Supervised learning: The learner receives a set of lebelled examples as training data and
makes predictions for all unseen points. For example we encounter this in classification,
regression, and ranking problems.

@ Unsupervised learning: The learner exclusively receives unlabelled data and makes
predictions for all unseen points. Clustering and dimensionality reduction are examples.

@ Semi-supervised learning: The learner receives a training sample consisting of both
lebelled and unlabelled data and makes predictions for all unseen points. This is usually
employed in cases where unlabelled data is readily available but labelled data is expensive
to obtain.

@ Transductive inference: Similar to semi-supervised learning, the learner receives a labelled

training sample along with a set of unlabelled test points. The objective of the transductive
inference is to predict labels only for these particular test points.
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Common Machine Learning Scenarios

Some machine learning scenarios (Mobhri et al., 2012):

@ On-line learning: This scenario involves multiple rounds and, training and testing phases
are intermixed. At each round, the learner receives an unlabelled training data point, makes
a prediction and incurs a loss. The objective is to minimize the cumulative loss over all
rounds.
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Some machine learning scenarios (Mobhri et al., 2012):

@ On-line learning: This scenario involves multiple rounds and, training and testing phases
are intermixed. At each round, the learner receives an unlabelled training data point, makes
a prediction and incurs a loss. The objective is to minimize the cumulative loss over all
rounds.

@ Reinforcement learning: Training and testing phases are intermixed. Learner collects
information by actively interacting with the environment and sometime also affecting the
environment, to receive immediate reward for each action. The goal is to maximize the
reward over time. This learning scenario is related to dynamic programming.

@ Active learning: The learner adaptively or interactively collects training examples by
querying an oracle to request labels from new points. The goal is to achieve performance
comparable to the standard supervised learning scenario.
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Common Machine Learning Scenarios

Some machine learning scenarios (Mobhri et al., 2012):

@ On-line learning: This scenario involves multiple rounds and, training and testing phases
are intermixed. At each round, the learner receives an unlabelled training data point, makes
a prediction and incurs a loss. The objective is to minimize the cumulative loss over all
rounds.

@ Reinforcement learning: Training and testing phases are intermixed. Learner collects
information by actively interacting with the environment and sometime also affecting the
environment, to receive immediate reward for each action. The goal is to maximize the
reward over time. This learning scenario is related to dynamic programming.

@ Few shot learning: The key idea is to emulate the human ability to learn from a handful of
examples. “Few-shot learning methods range widely, from adapting pre-trained models for
use in similar tasks to using generative models to create new samples to meta learning
methods that train models to generalize well to new classification problems and different
classes of data, rather than perform any one specific task”'. For a survey of this exciting
learning paradigm see Parnami and Lee (2022).

Thttps://www.ibm.com/topics/few-shot-learning
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Classes of Learning Problems/Tasks

Examples of learning problems/tasks.

@ Classification - Assign a category to each item.

© Regression - Predict a value for each item.

© Ranking - Order items according to some criterion. E.g. Web search.
© Clustering - Partition items into homogeneous regions.

@ Dimensionality reduction or manifold learning - Transform an initial
representation of items into a lower dimension of these items while
retaining some properties.

@ Natural language understanding - Given a piece of textual data (or
speech), produce an understanding of meaning of the text or speech

@ Question answering - Given a question posed by human provide answer
in a natural language

© Dialogue - Design a system that converses with human using speech,
text, and other modes of communication
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@ Tasks are described in terms of how the machine learning system should process the
example

@ Examples are collection of features quantitatively measured from some object or event that
machine learning system will process - x € R"

@ Classification

@ Required to specify, to which of k categories some input belongs
@ A function of the following form is to be learned from data:

f:R" — {1,...,k} (1)

@ y = f(x) assigns feature x to category identified by y
@ Function could also output a probability distribution over classes (categories)

@ Regression

@ Required to predict a numerical value given some input
@ A function of the following form is to be learned from data:

f:R" >R @)

@ Contrast with classification where output is categorical data type
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@ Transcription

@ Required to observe a relatively unstructured representation of some kind of data and
transcribe it into discrete textual form

@ A function of the following form is to be learned from data:
f:R" — AKM (3)

where A is the set of some language alphabets (English, Yoruba, etc) and k(m) is
some variable number that indicates variable lengths of alphabets and depends on the
application. Speech recognition is an example.

@ Machine translation

@ Required to convert sequence of symbols (or alphabets) in some language to
sequence of symbols (alphabets) in another language
@ A function of the following form is to be learned from data:

f: AR Ak (4)

where Ay is the set of some source language alphabets (English, Punjabi, Urdu,
Mandarin, Yoruba, etc.) and k(m) is some variable number that indicates variable

lengths of alphabets, Ay is the set of some target language alphabets (German,
French, Russian, etc.).
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@ Structured output

@ This category of tasks subsumes transcription and translation

@ Required to convert input into an output modelled as data structure containing multiple
values with important relationship between elements

@ Example includes providing a textual (sentence) description of given picture or textual
description of the activity being performed in a given video

@ Anomaly detection

@ Required to sift through a set of events or objects and flag some of them as being
unusual or atypical

@ Anomalous object belongs to a probability distribution very different from the rest of
events or object.

@ How to estimate distribution and how to measure distance between distribution?
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@ synthesis and sampling
@ Required to generate new examples that are similar to those in the training data

@ Possibly, required output has specified structure with bounds

@ Example: synthesize speech from written text in various accents

Challenge

@ Given a description of a suspected criminal, can we generate possible pictures of the
person?

@ What type of training samples will you consider?
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Figure 1: Generative adversarial network (GAN) was given examples of images of
bedroom and these outputs were automatically generated
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Text — Image

this small bird has a pink
breast and crown, and black
primaries and secondaries.

Figure 2: Generative adversarial network (GAN) was given text and examples of
images of birds that match the description were automatically generated

SCIT-AMRL (University of Wollongong) Machine Learning ML 14/32



@ Imputation of missing values

@ Required to provide a prediction of values of missing entries, x; in a given example,
x eR"

@ Denoising

e Required to predict the clean example x, from its corrupted version X
e This is the same as predicting the conditional probability distribution p(x|X)

C; TR "

Figure 3: Image on the right is a predicted clean version of the left image
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@ Density estimation or probability function estimation
@ Required to learn the function

Prmogel : R" = R (5)

where pmogel is the probability density function or probability mass function on the
space from which the examples were drawn.

@ Many of the tasks in machine learning requires the estimation of the probability
density.
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Performance

@ Quantitative measures of performance are required to evaluate the
abilities of machine learning algorithms

@ Performance is task-specific

@ Examples:

e Accuracy,
o Error rate,
@ Precision,
@ Recall, etc.

@ Performance measure must be chosen to match the desired behaviour of
the system
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Experience

@ The experience a machine learning algorithm is exposed to could be
supervised or unsupervised
@ Unsupervised learning algorithms experience dataset containing many
features and are required to learn useful properties from the dataset
@ In essence, given several examples of a random vector x, implicitly or
explicitly learn the probability distribution, p(x)

@ Supervised learning algorithms experience dataset containing many
features as well as label (or target) associated with each example

@ In essence, given several examples of a random vector x, and associated
labels (y), learn to estimate the conditional distribution p(y|x)
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Discussion point

@ What amount of data do we need to build a good machine
learning system?

© How will a machine learning system perform if there is a
mismatch between the distribution of the training data and
test data”?

© How can we quantify such mismatch?
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Data representation

@ Design matrix, X € RVNxP

x!]
X=: (6)
%,
represents N examples (or observations or samples) of a collection of P features, where the
i-th feature vector is represented as
T4

x=|: @)

LT P

and z; is a measured feature value.
@ A set can also be used in situations where number of features in examples are not equal:

{x( x@ . x(my ®)

represents a collection of m elements, not all of equal size.
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Linear Regression

@ Build a system that can take a vector x € R” and predict the value of a
scalar y € R that is postulated to depend on x

@ Linear regression model — output is a linear function of input
J=wix (9)

where w € RF is a vector of parameters. They determine how each
feature affects the prediction.

@ Thetask T, is:

Predict y from x by computing y = w'x

@ How do we measure performance, P?
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@ In a regression problem we will have a dataset represented by design matrix
X.

Let us partition the data set into two: test and training sets. So we have
X(test) and X(training)

We learn the model with X @M% and test performance with X9,

Assume we use mean squared error of model as performance measure

1 RN 2
MSErest = 17— > (55 — )’ (10)

(test) /

Training involves finding the weight vector w that will minimize the MSE y4ning:

| ‘y (training) y(training) | ‘%
st y=w'x (11)
e Differentiating and equating to zero gives:
w = (X(training)tx(training)) =1 X(training)[y(training) (1 2)
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e Equation (12) constitutes a simple learning algorithm.
e More generally the linear regression model will be written as,

y = w'x + b, (13)
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Capacity, Overfitting and Underfitting:

@ Generalization is key in machine learning
@ Trained algorithm must perform well on new and previously unseen inputs

@ We optimize to reduce the training error
@ But we want the generalization error (test error) to be low as well
@ This is the expected error on new inputs

@ IMPORTANT: Expectation is taken across different possible inputs drawn from the
distribution of inputs we expect the system to encounter in practice

X (training) y(tralnlng) ‘ |2

Train to minimize: W” (1)
‘ X (test) w—y (test) ‘ |2

Judge generalization on test error:

test I

@ This is possible because of assumption of (i.i.d) - independent and identically distributed
random variates generated by the data generating process
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Capacity, Overfitting and Underfitting:
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Factors that determine how well a machine learning algorithm will perform are its ability to:
@ make training error small
@ make gap between training and test error small
Underfitting: model is unable to obtain sufficently low error value on training set
Overfitting: the gap between training and test error is too large
Capacity: ability of model to fit a wide variety of functions

Control Underfitting and Overfitting by altering capacity and/or by increasing the number of
training samples
@ Alter the capacity by choosing the hypothesis space (the set of functions the learning
algorithm is allowed to select as possible solution) - equivalent to

increasing/decreasing the number of features
@ Overfitting can also be avoided by increasing the number of example data

The triple trade-off of learning algorithms trained from example data (Alpaydin, 2010, pp.
39):
@ complexity of the hypothesis fitted to data; in other words capacity of the hypothesis
class,
@ amount of training data available,
@ generalization error on new examples.



Capacity, Overfitting and Underfitting:

Underfitting

Appropriate capacity

Overfitting

Figure 4: Three models fitted to example of synthetic data generated by randomly sampling =z,
and computing corresponding value of y from a quadratic equation. (Left) fits linear function;
unable to capture the curvature and hence underfits, (Centre) fits a quadratic function;
generalises well to unseen data; no significant underfitting or overfitting, (Right) fits polynomial of
degree 9; suffers overfitting; note the strange structure of the curve as it tries to pass through all

training data (Goodfellow et al., 2016).

o
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PAC Learning Framework? |

PAC - Probably Approximately Correct

We start by stating some definitions:
@ Let X denote the set of all possible examples or instances. This is the
input space.

@ The set of all possible labels or target values is denoted ). Without loss
of generality, let Y = {0, 1}; implying a binary classification.

@ Aconcept c: X — Y is a mapping from X to ). Thus we identify ¢ with
the subset of X over which it takes value 1.

@ Assume examples are independent and identically distributed (i.i.d)
according to some fixed but unknown distribution D.

2This concept can be visited later when students gain deeper intuitive:understanding
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PAC Learning Framework

We state the learning problem:

Problem (Learning)

The learner considers a fixed set of possible concepts H, called a hypothesis set, which may not
conincide with C. Learner receives a sample S = {x1, ..., Xm} drawn i.i.d according to D as well
as labels (c(x1), ..., c(xm)), which are based on specific target concept ¢ € C to learn. The task
is to use the labelled sample S to select a hypothesis hs € H that has a small generalization error
with respect to concept c.
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PAC Learning Framework

We state the learning problem:

Problem (Learning)

The learner considers a fixed set of possible concepts H, called a hypothesis set, which may not
conincide with C. Learner receives a sample S = {x1, ..., Xm} drawn i.i.d according to D as well
as labels (c(x1), - . ., c(xm)), which are based on specific target concept ¢ € C to learn. The task
is to use the labelled sample S to select a hypothesis hs € H that has a small generalization error
with respect to concept c.

v

Definition (Generalization error (Mohri et al., 2012))

Given a hypothesis h € H, a target concept ¢ € C, and an underlying distribution D, the
generalization error or risk of h is defined by

A = Pr[h(x) # c(X)] = E_[ngoeco] (15)

where 1, is the indicator function of event w and ED is the expectation over x drawn from
X~
distribution D.
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PAC Learning Framework

Distribution D and concept ¢ are unknown to the learner, so we measure the empirical error:

Definition (Empirical error (Mohri et al., 2012))

Given a hypothesis h € H, a target concept ¢ € C and a sample S = (x4, ..., Xm), the empirical
error or empirical risk of h is defined by,

. 1
R(h) = ™ > 12000 (16)
pa

The empirical error is the average error over the sample S.

Expectation of empirical error

For a fixed hypothesis h € H, the expectation of the empirical error based on an i.i.d sample S is
equal to the generalization error :

E[R(M)] = R(h)
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PAC Learning Framework

@ PAC-learning framework provides theoretical limits on the size of the training sample, m, the
gap between training and true errors, complexity of the hypothesis space # and the
confidence we have in this relation (at least, 1 — 9).
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PAC Learning Framework

The Probably Approximately Correct (PAC) learning framework:

Definition (PAC-learning (Mohri et al., 2012))

A concept class C is said to be PAC-learnable if there exists an algorithm .A and a polynomial
function poly(-, -, -, -) such that for any e > 0 and § > 0, for all distributions D on X and for any
target concept ¢ € C, the following holds for any sample size m > poly(1/¢,1/4, n, size(c)):

Sf{)m[R(hS) <e>1-96 .

If the algorithm A further runs in poly(1/e,1/4, n, size(c)), then C is said to be efficiently
PAC-learnable. The algorithm, A (when it exists) is called a PAC-learning algorithm for C.

@ In the definition above, nis associated with the upper bound (O(n)) on the cost of
computational representation of any element x € X'. Similarly, size(c) is the maximal cost
of the computational representation of ¢ € C.
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Loss functions

“Within the machine learning literature, objective functions are usually defined in the form of loss
functions, which are optimal when they are minimised. The exact form of the loss function
depends on the nature of the problem to be solved, the data available and the type of machine
learning algorithm being optimised. Finding appropriate loss functions is therefore one of the
most important research endeavours in machine learning” (Ciampiconi, Elwood, Leonardi,
Mohamed, & Rozza, 2023).

In a general machine learning problem, the aim is to learn a function f that transforms an
input, defined by the input space ¢ into a desirable output, defined by the output space ):

f:d—Y

where f is a function that can be approximated by a model fg, parameterised by
parameters, ©.
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Loss functions

Reacall:
@ Given a set of inputs {xo, - , Xy} €
@ Train the model with reference to target variables in output space,
Yo, yntEY

corresponding y; to a real number / € R, which captures the similarity

A loss function, L, is defined as a mapping of f(x); along with the with the
between f(x); and y;. J

Aggregating over all the points of the dataset we find the overall loss, L:
ﬁ(fl{X()’ ,XN}a{yOa"' a.yN} 1 ZL(f X, y,

The optimisation problem to be solved is written as:

min L(f|[{Xo, -+, xn}, {¥o, -~ yn})
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Loss functions

The complexity of the model is often constrained by a regularisation term
R(f) and the optimisation becomes:

N

. 1
min NEd ; L(f(x:), yi) + R(f)

More generally, the model is parameterised by parameters © and

N
. 1
mem m Z{; L(f@(xl')ayi) + R(e)

We are searching the parameter space for values that minimise the loss
function
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