# Welcome

#### Presentation Topic: Secure On-demand Health Services (SOHS)

**Group Members:** 

Ahmed Alif Swopno, SID: 8068380 Karan Goel , SID: 7836685, Nishat Sharmila, SID: 8221819 Banin Sensha Shrestha, SID: 8447196



### **Analysis and Requirements**

- Innovative Healthcare Paradigm: SOHS represents a paradigm shift in healthcare delivery, embracing a multidisciplinary approach.
- Patient-Centric Focus: Driven by rising standards, SOHS places patients' needs at the core, fostering collaborative healthcare solutions.
- Collaborative Healthcare Professionals: SOHS integrates diverse healthcare professionals, breaking traditional silos for holistic patie

# Analysis and Requirements: Empowering Communities and Ensuring Security

- Community Empowerment: SOHS empowers communities by tailoring healthcare services, ensuring accessibility regardless of location or socio-economic status.
- Security and Trust: Robust security measures guarantee patient data confidentiality, building trust and confidence among patients.
- Inclusive Healthcare: SOHS embraces inclusivity, ensuring specializy
  healthcare services reach every corner of the community.

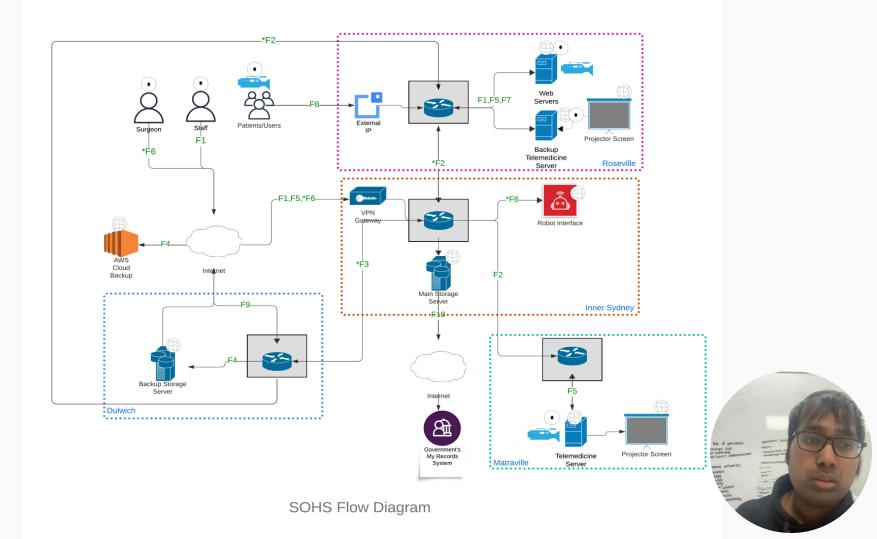
# Analysis and Requirements: Futuristic Scenarios in Healthcare Delivery

 Global Telemedicine: SOHS envisions a future where telemedicine and virtual consultations transcend geographical boundaries, providing global access to specialized healthcare.

25

- Al and Predictive Analytics: Integration of Al and predictive analytics revolutionizes patient outcomes, alleviating the burden on healthcare systems.
- Preventive Healthcare: Real-time monitoring through wearable de empowers individuals, fostering a proactive approach to healthcare.

# Analysis and Requirements: Network Development: Addressing Key Challenges


- User-Friendly Interfaces: SOHS designs intuitive interfaces, ensuring ease of use, especially for individuals with limited technical knowledge.
- Geographical Connectivity: VPN technology and cloud-based services overcome geographical barriers, ensuring seamless connectivity and collaboration.
- Centralized Management: Centralized management for specialized services like imaging and pathology ensures efficiency and data

# Analysis and Requirements: Comprehensive Network Design: Looking Ahead

- Holistic Approach: SOHS considers scalability, redundancy, quality of service, compliance, training, interoperability, data backup, secure remote access, monitoring, and budget constraints.
- Future-Proof Network: Embracing industry best practices, SOHS creates a future-proof network capable of evolving with the dynamic healthcare landscape.
- Accessible Healthcare: The network becomes a gateway to highsecure, and accessible healthcare for our community, aligning wi mission.

## Flow Analysis

- Flows: Sets of network traffic that have common attributes, such as source, destination, type, direction and end-to-end information
- Flow Models: Groups of flows that exhibit specific, consistent behaviour characteristics, such as directionality, hierarchy and interconnectivity.
- Flow Prioritization: Ranking of flows based on their importance, using crimer as business objectives, performance requirements, security requirement with the requirement of users.



1. Staff Remote Access to SOHS Services (F1): This allows staff to access the internal network securely from remote locations via a VPN Gateway.

2. Inter-office Communication (\*F2): This <u>critical flow</u> enables sharing of patient records and administrative communication between different GP offices.

**3.** Accessing Patient Records (\*F3): Another <u>critical flow</u>, it allows any GP office to retrieve and update patient records from the Inner Sydney Database Server.

**4.** Backup Processes (F4): This involves regular backup of patient data from the Inner Sydney Database Server to a Backup Server in another office or a Cloud Backup Service for redundancy and disaster recovery.

**5. Telemedicine Consultation (F5)**: This flow enables HD quality video consultations from patient locations to the Telemedicine Server in the respective GP office.

6. Interactive Surgical Robots Operation (\*F6): <u>A critical flow</u> that allows remote surgeons to perform surgeries with real-time controls and feedback via a VPN Gateway and the Inner Sydney Site's Robot Interface.

7. Web-Based Services for Staff (F7): This flow allows staff to access personal emails, social media, etc., without compromising the integrity and security of the internal network.

8. Public Access to SOHS Web Services (F8): This allows patients to access services, book consultations, view r via the public internet.

**9. Communication with Backup Cloud (\*F9)**: This flow involves storing encrypted backups in a cloud service additional layer of data redundancy.

**10. Communication with Government's My Records Initiative (F10)**: This flow is for complying with government data availability.

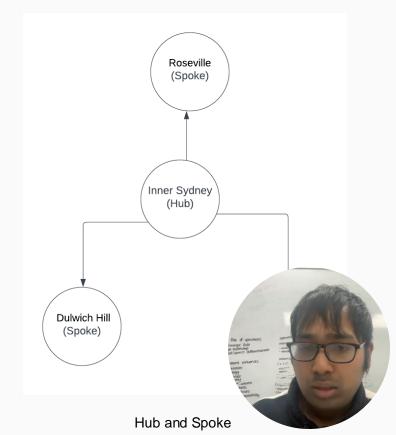
### **Reference Architecture**

- Architectural models
- Addressing and Routing
- Network Management Architecture
- Performance Architecture
- Security and Privacy Plan



#### 1. Hub and Spoke/ Star Model

Structure: Central location (hub) connects to other sites (spokes). Spokes do not connect with each other.

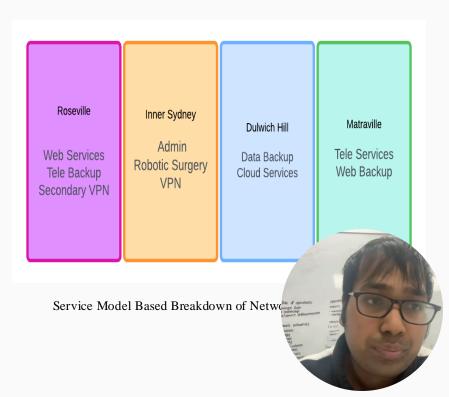

SOHS's main office in Inner Sydney is the hub.

Advantages:

- Efficiency: Streamlined paths make network monitoring and management easier.
- Centralization: Centralized services lead to cost savings and operational efficiency.

Disadvantages:

- Single Point of Failure: Vulnerable to hub failures causing all spokes to lose connectivity.
- Potential Congestion: Risk of congestion at the hub during peak times.

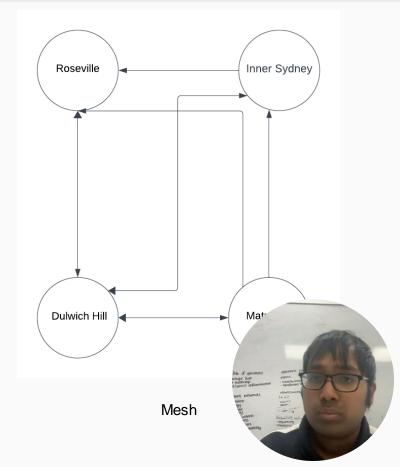



#### 2. Service-Oriented Model

Network design prioritizes services offered over physical locations. For SOHS, network divided into zones like Telemedicine, Surgical Robots, etc.

#### Advantages:

- Specialized Service Delivery: Tailored for smooth delivery of specialized services.
- Enhanced Security: Service-specific policies boost security. Disadvantages:
- Resource Intensive: Might need more hardware and management resources.
- Inter-Service Communication: Risk of creating bottlenecks or inefficient paths.




#### Architectural models

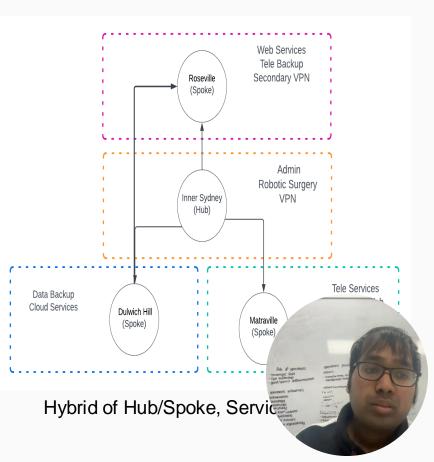
#### 3. Mesh Model

Every site interconnected to all other sites providing redundancy. Advantages:

- High Redundancy: Alternative paths for data transfer if one link fails.
- Fault Tolerance: High due to multiple connections.
- Better Load Balancing: Traffic can be routed efficiently. Disadvantages:
- Complex & Expensive: Due to numerous connections.
- Challenging Management: Especially as the network grows.
- Potential Congestion: Risk of congestion at the hub during peak times.



#### Best - Hybrid models


#### 3. Hybrid Model

Combination of Hub and Spoke and Mesh Model.

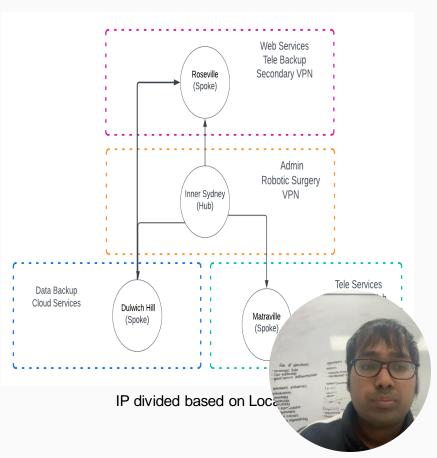
Primary traffic via Hub and Spoke. Mesh between key sites for redundancy.

Advantages:

- Low Redundancy: Use backups for uptime transfer if main hub fails.
- Efficient use of resources.
- Redundancy and fault tolerance ensured,
- Inner Sydney office acts as the hub with key sites interconnected in mesh for critical services.



### Addressing and Routing


- **Subnetting:** Creating multiple IP subnets for internal external use.
- **Routing:** Using Routing Protocols (OSPF & EIGRP).



#### Subnetting

The Internal IP range 172.16.0.0/12 (1048574 add) and External IP range 203.10.192.0/20 (4096 add) can be divided into subnets zone. The IP are divided based on requirement and location

| + |                           |                     |               |                                 |                      |
|---|---------------------------|---------------------|---------------|---------------------------------|----------------------|
|   | Office/Area               | Starting<br>Address | Subnet Mask   | Usable Addresses                | Broadcast<br>Address |
|   | Inner Sydney              | 172.16.0.0          | 255.255.240.0 | 172.16.0.1 to<br>172.16.15.254  | 172.16.15.255        |
|   | Roseville                 | 172.16.16.0         | 255.255.240.0 | 172.16.16.1 to<br>172.16.31.254 | 172.16.31.255        |
|   | Dulwich Hill              | 172.16.32.0         | 255.255.240.0 | 172.16.32.1 to<br>172.16.47.254 | 172.16.47.255        |
|   | Matraville                | 172.16.48.0         | 255.255.240.0 | 172.16.48.1 to 172.16.63.254    | 172.16.63.255        |
|   | VPN Access for<br>Staff   | 203.10.192.0        | 255.255.252.0 | 203.10.192.1 to 203.10.195.254  |                      |
|   | Web Servers               | 203.10.196.0        | 255.255.254.0 | 203.10.196.1 to 203.10.197.254  |                      |
|   | Telemedicine              | 203.10.198.0        | 255.255.254.0 | 203.10.198.1 to 203.10.199.254  |                      |
|   | Backup Cloud<br>Access    | 203.10.200.0        | 255.255.255.0 | 203.10.200.1 to 203.10.200.254  |                      |
|   | Miscellaneous(1/7)        | 203.10.201.0        | 255.255.255.0 | 203.10.201.1 to 203.10.201.254  |                      |
|   | Ip table for SOHS network |                     |               |                                 |                      |



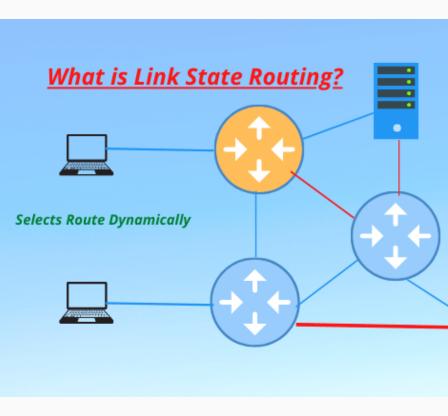
#### **Routing Protocols**

1. OSPF (Open Shortest Path First)

Link-state routing protocol using the state of links for routing decisions. Advantages:

- Fast convergence during topology changes.
- Supports equal-cost path load balancing.

Usage in SOHS: Ensures efficient routing between main office and GP practices. Leveraged for load balancing during peak times.


2. EIGRP (Enhanced Interior Gateway Routing Protocol)

Cisco proprietary protocol combining distance-vector and link-state characteristics.

Advantages:

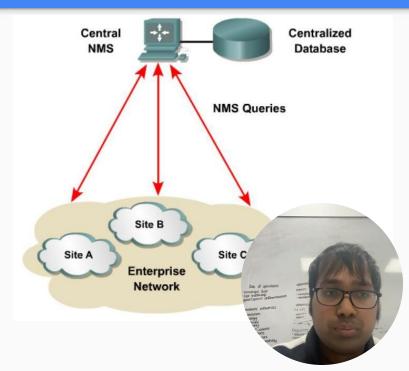
- Faster convergence due to Diffusing Update Algorithm (DUAL).
- Supports unequal path load balancing.

Usage in SOHS: Suitable if network is primarily Cisco. Helps route traffic considering different path metrics between GP practices and central office.



### Performance Architecture

- **Quality of Service (QoS):** Mechanisms that prioritize network traffic for better performance based on predefined criteria.
- Load Balancers: Tools that distribute network traffic evenly across servers.
- **Redundant Links:** Backup pathways for data to ensure service continuity.
- Content Delivery Network (CDN): Networks of distributed servers that store cached web content.




#### **Network Management Architecture**

- Located at Sydney
- Centralized Network Management:

Centralized network management consolidates all network management tools and applications in a single location

• Remote Monitoring (RMON): RMON is a standard monitoring specification that enables remote network monitoring of networked



### Security and Privacy Plan

- Security Threat Landscape: Malware, Common Attacks, DoS
- Security Measures: Firewalls, Site to Site VPN, SSH

### Malware

- Malware is malicious software, including:
- **Viruses:** software which inserts itself into other software and can spread from computer to computer. Requires human action to spread.
- Worms: a self-propagating virus that can replicate itself
- **Trojan horses:** malicious software which looks legitimate to trick humans into triggering it. Often installs back doors.
- Ransomware: Encrypts data with attacker's key and asks t ransom to obtain the key.



#### **Common Attacks**

Reconnaissance

- Reconnaissance obtains information about the intended victim.
- In a targeted attack, the attacker will typically start with completely unobtrusive/non-conspicuous methods, such as searching whois information, phone directory, job listing etc.
- They will then dig deeper using tools such as ping sweeps, port and vulnerability scanners.



# Social Engineering

- Social Engineering is the use of deception to manipulate individuals into providing confidential or personal information.
- It typically involves nothing more technical than the use of a telephone or email.
- The attacker will often pretend to be somebody else to trick the victim.
- Phishing is a Social Engineering attack where the attacker pretends to be from reputable company to get individuals sensitive inform

# DoS (Denial of Service)

- A DoS attack prevents legitimate users from accessing an IT resource.
- It is typically a brute force style of attack which floods the target system with more traffic than it can handle.
- DoS attacks from a single source can be easily stopped by blocking traffic from the host.
- A Distributed DoS is a DoS attack from multiple sources.
- The attacker builds and controls a botnet army of infected
- A botnet is build through malware such as worms and troj



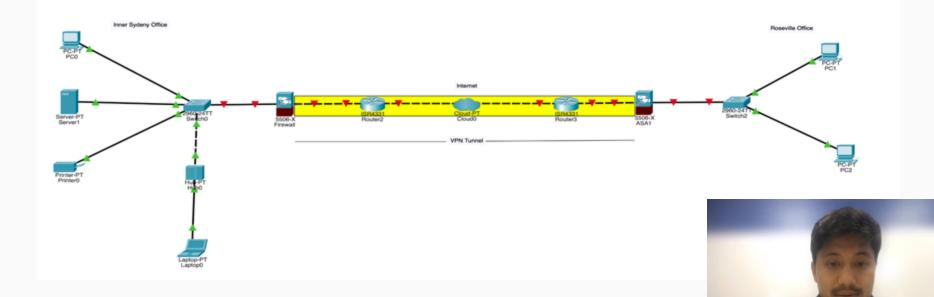
### IDS and IPS

- IDS: Intrusion Detection System
- IPS: Intrusion Prevention System
- IDS and IPS use signatures to inspect packet up to layer 7 of the OSI stack, looking for traffic patterns which match known attacks.
- They can look for unusual behavior such as host sending more traffic than usual.
- IDS sits alongside the traffic flow and informs security ada potential concerns
- IPS sites inline with traffic flow and also block attacks



### **IPS vs Firewalls**

- Organizations always deploy firewalls on the Internet edge. They may also deploy them at suitable security points inside their internal network.
- The line have blurred in recent years between IPS and Firewalls.
- Modern firewalls often also have IPS capability.
- They are also often capable of acting as the endpoint of VPN tunnels.




# Cryptography

- Cryptography transforms readable messages into an encrypted form and then later reverses the process.
- It can be used to send sensitive data securely over an untrusted network.
- It uses authentication and encryption methods.
- **Symmetric Encryption:** the same shared key both encrypts and decrypts the data. Shared key must be kept secret.
- Asymmetric Encryption: uses private and public key pairs



#### Site-to-Site VPNs



#### Site-to-Site VPNs

- Site-to-Site VPNs are used when traffic needs to be sent to different location over untrusted network i.e. between two offices located in different location.
- Traffic inside an office is often unencrypted as it is seen as a trusted network
- VPN tunnels however can also be deployed internally
- Site-to-Site VPN tunnels typically terminate on a firewall o sides.



### **Network Device Security**

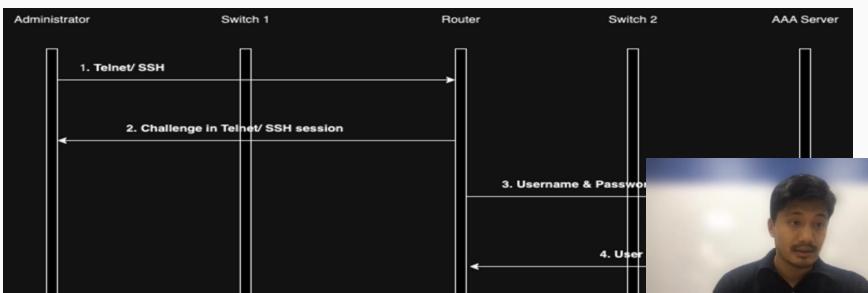
- Minimal password security can be configured at three different levels.
  - **Console line:** accessing User Exec mode when connecting via console cable
  - Virtual terminal VTY line : accessing User Exec mode when connecting remotely via Telnet or SSH Secure Shell
  - Privileged Exec Mode: entering the "enable" command
- Only one administrator can connect over a console cable at a time so the line number is always 0.



### Telnet vs SSH

- All Telnet communications cross the network in plain text.
- If somebody sniffs the traffic using a tool such as Wireshark they can see all the commands you enter including your username and password
- All SSH Secure Shell traffic is encrypted.
- If somebody sniffs the traffic they cannot read it




#### AAA

- Authentication: verifies if somebody is who they claim they are.
- Authorization: level of access given to each administrator.
- Accounting: maintains logs or all the commands executed by the administrator.
- Limitation of Line Level Security:
  - Configuring line level security or local usernames on each devices has scalability limitations.
  - If password has to be added, changed or removed, it needs to be dor



#### How AAA works

#### • Sequence diagram.



## Network Design

- Network Topology
- 1. Physical Topology
- 2. Logical Topology
- Design Traceability & Requirements
- 1. Requirements vs. Design Elements and Key Metrics
- 2. Design Metrics



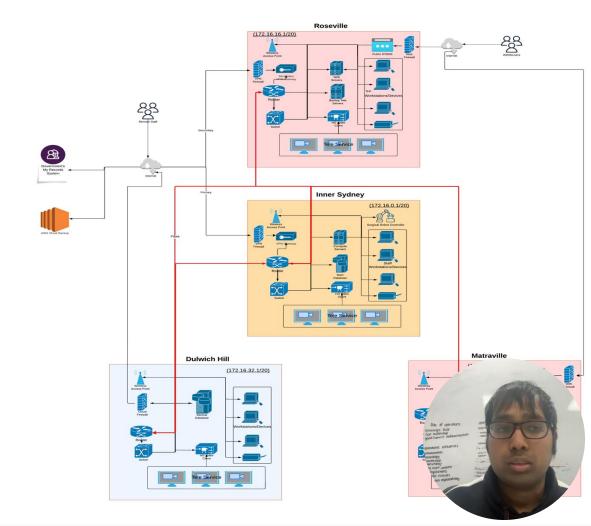
#### Network Topology

#### Connections:

- Central hub represented by main office in Inner Sydney.
- Spokes from hub lead to various GP practices.
- Each GP practice has switches, Wi-Fi access points, and potential local servers.
- Routers from each site linked via fiber optic connections.
- VPN connections from remote workers to VPN Server in Inner Sydney.
- Secure link from Dulwich Hill Backup Server to Cloud Backup.

#### Locations & Components:

#### Inner Sydney:


- Firewall, Core router & switch, Primary database server with patient records.
- Surgical robots.

#### Roseville, Dulwich Hill, Matraville:

- Firewalls, routers, and switches at each site.
- DB Backup Server at Dulwich Hill.
- Secondary Web at Matraville

#### <u>Cloud:</u>

- Encrypted patient data in AWS Australian data center.



#### Network Topology

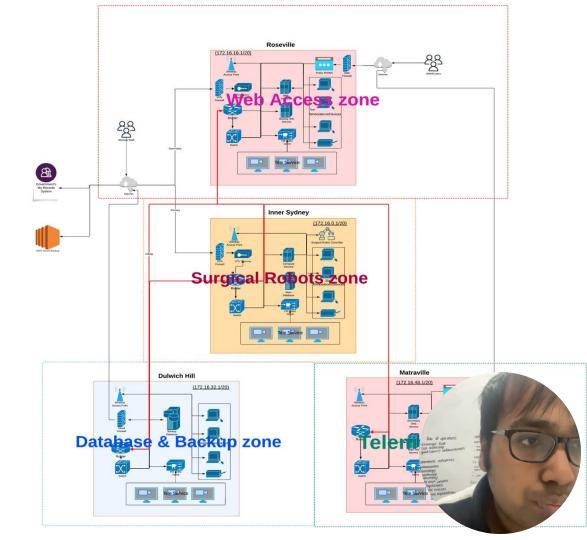
Service-Oriented Model is also incorporated, different zones are created for different purpose:

1. Telemedicine zone:

Focused on video and audio communication systems.

2. Surgical Robots zone:

Prioritizing low latency and high bandwidth.


3. Database & Backup zone:

Emphasizing data security and redundancy.

4. Web Access zone:

To facilitate staff access to the system, possibly VPN connections.

Web Services zone: Managing patient portals, appointment booking systems, etc.



**Requirements vs. Design Elements and Key Metrics** 

- 1. Seamless Communication:
  - Requirement: Efficient data sharing between main office and GP practices.
  - Design: Hub and Spoke model centralizes communication for effective data management.
- 2. Telemedicine Efficiency:
  - Requirement: High-quality telemedicine services.
  - Design: Service-Oriented Model's telemedicine zone optimized for seamless video and audio streaming.
- 3. Surgical Robot Data Security:
  - Requirement: Secure and fast data transmission for surgical robots.
  - Design: Surgical robots zone offers enhanced encryption with low-latency channels.



#### **Design Metrics**

- Network Uptime: Aim for 99.99% uptime to ensure uninterrupted healthcare services.
- Bandwidth Utilization: Monitor to ensure usage does not exceed 80% even during peak times.
- Latency: Keep minimal, possibly under 50ms, for real-time applications like telemedicine and robot surgeries.
- Security Incidents: Employ advanced detection systems to track breaches, aiming for zero security incidents.
- Service Availability: Ensure critical services like telemedicine have a 99.95% availability rate, with regular audits to ensure consistency.



Lifecycle: Ensuring a Robust Service Delivery Model for Secure On-demand Health Services (SOHS)

- Comprehensive Needs Analysis: Understanding specific requirements of healthcare professionals and patients.
- Thoughtful Technology Selection: Careful evaluation of video quality, encryption, compatibility, and scalability.
- Robust Network Infrastructure: Investment in high-speed internet, QoS mechanisms, and redundancy.
- User-Friendly Interfaces: Intuitive designs for seamless interaction, focusing on user experience.

# Advanced Features in High-Quality Video Conferencing and Real-time Services

- Adaptive Streaming: Adjust video quality based on internet speeds for uninterrupted service.
- Background Noise Reduction: Enhance audio clarity by eliminating background noise during consultations.
- Virtual Waiting Rooms: Secure waiting areas with status notifications for patient comfort.
- Language Support and Session Recording: Language options and session recordings for reference.

# Stringent Service Level Agreements (SLAs) for Seamless Healthcare Operations

- Downtime Targets: Ensuring minimal downtime for critical services through proactive investigations.
- System Response Times: Rapid logins, quick data retrieval, and efficient appointment scheduling enhance user experience.
- Issue Resolution: Swift resolution of critical and non-critical issues fosters continuous improvement.
- Data Security Measures: Encryption, data integrity, backup, and resecurity audits ensure compliance and trust.

# Building a Foundation for the Future: Challenges and Adaptability

- Challenges Faced: Budget constraints, staff training, interoperability, security threats, scalability, and compliance.
- Continuous Monitoring: Constant evaluation, updates, and enhancements to address evolving challenges.
- Adaptability: Flexible architecture ready to scale and innovate with evolving healthcare demands and technologies.



# Bibliography

Õ

Elrod, JK & Fortenberry, JL 2017, 'The hub-and-spoke organization design: an avenue for serving patients well', *BMC Health Services Research*, vol. 17, no. S1. Guan, W, Wen, X, Wang, L, Lu, Z & Shen, Y 2018, 'A Service-Oriented Deployment Policy of End-to-End Network Slicing Based on Complex Network Theory', *IEEE Access*, vol. 6, pp. 19691-701. Mc Cabe, JD 2010, *Network Analysis, Architecture, and Design*.

Chapter 1 - Kizza, J. M. (2020). Computer Network Fundamentals. In J. M. Kizza (Ed.), Guide to Computer Network Security (pp. 3-40). Cham: Springer International Publishing.

Poprom, Ubonsin, et al. "The Novel ICT Strategic Model for Developing of ICT in Public Universities Based on BSC." 2005, <u>https://core.ac.uk/download/301391118.pdf</u>. Reimagining guest's experience in the Hospitality industry with Facial Recognition – Facenote. <u>https://facenote.me/reimagining-guests-experience-in-the-hospitality-industry-with-facial-recognition/</u> Point-of-Care Ultrasonography | NEJM Resident 360. <u>https://resident360.nejm.org/content-items/point-of-care-ultrasonography-4</u> Home | Walcott Consulting. <u>https://www.walcott.com/</u>

Outpatient Surgery At Lee Memorial Hospital – excel-medical.com. https://www.excel-medical.com/outpatient-surgery-at-lee-memorial-hospital/ El-Gendy, M. A., Bose, A., & Shin, K. G. (2003). Evolution of the Internet QoS and support for soft real-time applications. Proceedings of the IEEE, 91(7), 1086-1104. Lu, Y., Zhao, Y., Kuipers, F., & Van Mieghem, P. (2010). Measurement study of multi-party video conferencing. In NETWORKING 2010: 9th International IFIP TC 6 Networking Conference, Chennai, India, May 11-15, 2010. Proceedings 9 (pp. 96-108). Springer Berlin Heidelberg Casas, P., & Schatz, R. (2014). Quality of experience in cloud services: Survey and measurements. Computer Networks, 68, 149-165. Bethell Ltd | iManage Performance. https://imanageperformance.com/case-studies/bethell-ltd/ Safeguarding Your Business: Effective Strategies to Protect Against Fraud | Timothy D. McGonigle, PC. https://mcgoniglelaw.com/safeguarding-your-business-effective-strategies-to-protect-against-fraud/ Transitioning to Hosted Desktop Services: Tips for a Smooth Migration - Green Poison. https://gree.npois0n.com/hosted-desktop-services/



# Thank You!