Fundamentals of
Object-Oriented
Design

CSITS883 System Analysis and Project Management

~ Outline

Overview of Object-Oriented Design

Object-Oriented Design Steps

Design Class and Design Class Diagram

Designing with CRC Cards

Part 1

Part 11

Part II1

“/Object-Oriented Design:
Bridging from Analysis to Implementation

Focus: Software classes and methods
What is Object-Oriented Design?

» Process by which a set of detailed OO design models are built to be used for coding

Strength: Requirements models from systems analysis are extended to design models.

Design models are created in parallel to actual coding/implementation with iterative SDLC

" Object-Oriented
Program

e An object-oriented program
consists of sets of computing
objects.

= Each object has data and

program logic encapsulated
within itself.

 The structure of the program
logic and data fields defines a
class.

* [nstantiation

= Creation of an object in
memory based on the template
provided by the class

1. Enter student ID.

Student 3. Retrieve student

Object lnformatlon
Database
access
object

2. Request
student 6. Save updates to
object. database.
5. Update student
information.

Input
window
object

4. Enter personal
information updates.

" Object-Oriented
Programs

e Method

* Fragments of the program logic
(i.e. functions)

= (alled or invoked through
messages or when a class is
instantiated.

public class Student

{

//attributes

private int studentID;

private String firstName;

private String lastName;

private String street;

private String city;

private String state;

private String zipCode;

private Date dateAdmitted;

private float numberCredits;
private String lastActiveSemester;
private float lastActiveSemesterGPA;
private float gradePointAverage;
private String major;

//constructors

public Student (String inFirstName, String inLastName,
String inCity, String inState, String inZip,

firstName = inFirstName;
lastName = inLastName;

}

public Student (int inStudentID)

{

//read database to get values

//get and set methods
public String getFullName ()

{

return firstName + " " + lastName;

String inStreet,

Date inDate)

“Analysis Models to Design Models

Information about
Things

Information about
Process Flow and
Flow of Execution

Analysis Models

Problem domain
class diagram

Design Models

Design class diagram

Use case
descriptions

System sequence
diagrams

Activity diagrams

Communication
diagrams

Sequence
diagrams

CRC cards

N

Programming Models

Object-oriented
program classes
with methods

 Introduction to the Design Models

Domain diagram Student

Design class diagram Student

Student Student
studentlD -studentID: integer {key} Elaborated
name -name: string attributes
address -address: string
dateAdmitted -dateAdmitted: date
lastSemesterCredits -lastSemesterCredits: number
lastSemesterGPA -lastSemesterGPA: number
totalCreditHours -totalCreditHours: number
totalGPA -totalGPA: number
major -major: string
+createStudent (name, address, major): Student
+createStudent (studentID): Student

+changeName (name)

+changeAddress (address)
+changeMajor (major)

+getName (): string

+getAddress ():string

+getMajor (): string

+getCreditHours (): number
+updateCreditHours ()

+findAboveHours (int hours): studentArray

/ Method signatures

Introduction to the Design Models

Sequence Diagram for “Update student name™:

Documenting the flow of
execution of a particular use
case:

* Sequence Diagram
 Communication Diagram

* Class-Responsibility-
Collaboration (CRC) card

Communication Diagram for
“Update student name”:

Actor

changeName (studentID, name)

: n ntroller

1: changeName (studentID, name)
—

changeName (name)

:Student

T
1.3: nameUpdate

:StudentUpdController

1.2: changeName (name)

-

- o =V - - -

:Student

/ N\
))
\ \/.
N

* Sample CRC card for the Student class

‘Introduction to the Design Models

Student

change name
change addressy
change major
get naume

get addresy

get mayor

get credit houry

Sale
Payment

StudentId

naune

address
dateAdmitted
lastSemesterCredity
lastSemesterGPA
totalCreditHowry
totud GPA

major

Front of card

Back of card

| Steps of Object-Oriented Design

* Object-oriented design
= The process to identify the classes, their methods and the messages required for a use case
= Usually designs classes in three layers: user interface, problem domain, and database access layers

* Use case driven
= Design is carried out use case by use case
* Always build software design models that can assist the development of accurate and robust
software!

< 19)
- Steps of OO Design [cosrGasegan |

* |dentify classes
« Elaborate attributes
* |dentify navigation

Simple use cases Complex use cases

* Three paths

= Simple use case use
CRC Cards

1
Moderately
complex use cases

= Me dlum use case use [CRC Cards] [Communication Diagrams] [Sequence Diagrams]
. : « Determi ibiliti « |dentify messages « |dentify messages
Communlcatlon _ Dgég::g ;Zslslgzr;sr;t;:):;s » Define parameters * Define parameters

Diagram * Add multilayer objects * Add multilayer objects

= Complex use case use
Sequence Diagram
]

[Final Design Class Diagram

* Add and elaborate methods
* Finalize navigation

1

[Package Diagrams]

« Configure packages with classes
* Determine dependencies

Fundamentals of
Object-Oriented
Design

CSITS883 System Analysis and Project Management

\

‘dutline

Overview of Object-Oriented Design

Object-Oriented Design Steps

Design Class and Design Class Diagram

Designing with CRC Cards

Part [

Part 11

Part II1

Design Classes and the Design Class Diagram

* The primary source of information for Design Class Diagram is the problem domain model
(i.e., DMCD).

 Additional information (e.g., elaborated attributes method signatures) are added for OO
design

» Additional objects (e.g., window objects and database access objects) are added.

| Design Classes and the Design Class Diagram

* Stereotype: a way of categorizing a
model element by its characteristics
» Name of the type placed within
printer’s guillemets (e.g.,
<<strereotype>>)

 Entity class: a design identifier for a
problem domain class (usually
persistent)

* Persistent class: an class whose
objects exist after a system 1s shut
down (data remembered)

* Not indicated as stereotype.

«entity»
Customer

«controllers»
UseCaseHandler

«boundary»
SalelnputWindow

«dataAccess»
SaleDBReader

| Design Classes and the Design Class Diagram

* Boundary class or view class: a class
that exists on a system’s automation
boundary, such as an input window
form or Web page

* Controller class: a class that mediates
between boundary classes and entity
classes, acting as a switchboard
between the view layer and domain
layer

* Data access class: a class that is used
to retrieve data from and send data to
a database

«entity»
Customer

«controllers»
UseCaseHandler

«boundary»
SalelnputWindow

«dataAccess»
SaleDBReader

C ",.;)
‘Notations for Design Classes

Class names. Note
—_ the camel case
notation.

«StereotypeName»
ClassName::SuperClass —

_~ Attributes.
visiblity attribute-name: data-type-expression = initial-value {property} <1

~__1— Method signatures.
visiblity method-name (parameter-list): return-type-expression ——

* Visibility—denotes whether other objects can directly access the attribute.

= The values for visibility are a plus sign (+), which indicates that an attribute is visible, or public, and
a minus sign (—), which indicates that it isn’t visible, or is private

"Notations for Design Classes

«StereotypeName»
ClassName::SuperClass —

Class names. Note

" the camel case

notation.

_~ Attributes.
visiblity attribute-name: data-type-expression = initial-value {property} <1

 Elaborated attribute

Attribute name

1 Method signatures.
visiblity method-name (parameter-list): return-type-expression ——

Data-type-expression (such as character, string, integer, number, currency or date)

Initial value, if applicable
Property (within curly braces), such as {key}, if applicable

“Notations for Design Classes

Class names. Note
—_ the camel case
notation.

«StereotypeName»
ClassName::SuperClass —

_~ Attributes.
visiblity attribute-name: data-type-expression = initial-value {property} <

~__1— Method signatures.
visiblity method-name (parameter-list): return-type-expression ——

* Method signature
= the information needed to invoke (or call) the method, including:

= Method visibility, Method-name, Method-parameter-list (incoming arguments), Return-type-
expression (the type of the return parameter from the method)

-

‘Notations for Design Classes

* Class level method—applies to class rather
than objects of class (aka static method).
Underline it.

* C(Class level attribute—applies to the class
rather than an object (aka static attribute).
Underline it.

» Abstract class—class that can’t be
instantiated. Only for inheritance. Name in
Ttalics.

Sale

-salelD: int {key}

-saleDate: date
-priorityCode; string
-shipping&Handling: currency
-tax: float

-grandTotal: currency

Customer

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-emailAddress: string
1..1] _status: string

+addltem (itemUPCCode)
+cancelSale (salelD)
+makePayment(amount)

JAN

+updateName (name)
+updateAddress (address)
+createSale (accountNo)

e Concrete class—class that can be

instantiated. TelephoneSale::Sale

OnlineSale::Sale

InStoreSale::Sale

-clerklID: string
-lengthOfCall: string
-noOfPhoneSales: int

-URLaddress: string
-timeOfDay: string
-timeToOrder: int
-noOfWebSales: int

-storelD: string
-registerlD: string
-clerklID: string
-noOfStoreSales: int

+confirmEmail (emailAddress)

Fundamentals of
Object-Oriented
Design

CSITS883 System Analysis and Project Management

3 Outline

Overview of Object-Oriented Design

Object-Oriented Design Steps

Design Class and Design Class Diagram

Designing with CRC Cards

Part [

Part 11

Part I11

Developing the First-Cut Design Class Diagram

DMCD for RMO Sales Subsystem

Choose a use case (e.g., Create
telephone sale)

Source of information: Domain
Model Class Diagram (DMCD)

Development of a first-cut DCD in
three steps:

1. Add a controller class that
handles the use case

2. Elaborate the attributes

3. Add navigation visibility
arrows

Promotion
season
year
description
startDate -
endDate PromoOffering
.| price
______ specialPrice
1.* .
’’’’’’’ Customer
0. accountNo {key}
name
Productitem SaleTrans mobilePhone
productiD {key} date homePhone
vendor transactionType emailAddress
gender amount status
description paymentMethod
1.* 1
1
0..* o"i
Inventoryltem Sale
inventorylD {key} Seeliom 7Y salelD {key}
size 0.* qqantity saleDate
color 11— price priorityCode
options backorderStatus | 1,5 ————| shipping&Handling
quantityOnHand 1| tax
averageCost

reorderQuantity

grandTotal

' Developing the First-Cut Design Class Diagram

* Navigation visibility
= The ability of one object to view and interact with another object
= Accomplished by adding an object reference variable to a class.

= Shown as an arrow head on the association line—customer can find and interact with sale because it
has mySale reference variable

Customer Sale
-accountNo: string {key} -salelD:int {key}
-name: string -saleDate: date
-mobilePhone: string -priorityCode: string
-homePhone: string >{ -shipping&Handling: currency
-status: string -tax: currency
-mySale: Sale -totalAmt: currency

-mountainBucks: int

Developing the First-Cut Design Class Diagram

A basic question: Which classes need to have references to or be able to access which other
classes?

Navigation visibility guidelines:

* One-to-many associations that indicate a superior/subordinate relationship are usually
navigated from the superior to the subordinate

* Mandatory associations, in which objects in one class can’t exist without objects of another
class, are usually navigated from the more independent class to the dependent

* When an object needs information from another object, a navigation arrow might be
required

« Navigation arrows may be bidirectional.

=

Developing the
First-Cut Design
Class Diagram

» Use case Create telephone sale
with controller added

SaleTransaction

«controller»
SaleHandler -transaction|D: int {key}
-saleDate: date
-transactionType: string
-amount: currency
-payMethod: string
Customer Sale Saleltem

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-status: string

-salelD:int {key}
-saleDate: date
-priorityCode: string

-shipping&Handling: currency

-tax: currency
-totalAmt: currency
-mountainBucks: int

-saleltemID: int {key}
-quantity: int

-soldPrice: currency
-shipStatus: string
-backOrderStatus: string

v

PromoOffering

Productitem

Inventoryltem

-PromoNo: string
-ProductlD: string
-promoPrice: currency

-productID: string {key}
-gender: string
-description: string
-supplier: string
-manufacturer: string
-regularPrice: currency
-picture: blob

-inventorylD: string {key}
-size: string

-color: string

-options: string
-quantityOnHand: int
-averageCost: currency
-reorderQuantity: int

L

Designing With CRC Cards

* CRC Cards—<Classes, Responsibilities, Collaboration Cards

* OO design 1s about assigning Responsibilities to Classes for how they Collaborate to

accomplish a use case

e Usually a manual process done in a brainstorming session
= One card per class
= Front has responsibilities and collaborations

. Class name
= Back has attributes needed \7—1
Responsibilities /
Customer
update name Sale ~

update addvess

request purchase history
process sale

make payment

Payment

‘ Collaborating classes ‘A}ibute_sl
accountNo- /

customerNawme
Ul()bll@i‘]LONP/
status

Front of card

Back of card

Building Design Class Diagram

* Example: Create Customer Account

* First-cut Design Class Diagram Customer
-accountNo: string {key}
«controller» -name: string
CustomerHandler -mobilePhone: string

-homePhone: string
-status: string

Account

-accountNo: string {key}
-typeOfAccount: string
-creditCardNo: int
-creditCardDate: date

Address

-accountNo: string {key}
-typeOfAddress: string
-number: string

-street: string

-city: string

-state: string
-postalCode: string

),

* Example: Create Customer Account

uilding Design Class Diagram

* Add controller and determine primary problem domain class for this use case:

create Customer | Customer

),

» Example: Create Customer Account

uilding Design Class Diagram

* Problem domain classes and user interface classes

accept customer info- CustomerHandler

accept address info- CustormerHondler create Customer | Customer createAddresy | Address
creale Accountd

accept CC info- CustomerHandler

),

» Example: Create Customer Account

* Adding data access classes

accept customer info

Customertandler

accept addresy info

CustomerHandler

uilding Design Class Diagram

create Address Address
create Account Account
CustomersDB

accept CC infor

CustomerHandler

write Customer

1

write Addvesy

§

AddvessDB

AccountDB

write Account

 Building Design Class Diagram

«controller»
CustomerHandler

Customer

+createCustomer (name, mobilePhone, homePhone)
+createAddress (type, street, city, state, pcode)
+createAccount (type, ccNo, ccDate)

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-status: string

+createAddress (no, type, street, city, state, pcode)
+createAccount (no, type, ccNo, ccDate)

* Example: Create
Customer Account

* Final DCD with
method signatures

Address

Account

-accountNo: string {key}
-typeOfAddress: string
-number: string

-street: string

-City: string

-state: string
-postalCode: string

-accountNo: string {key}
-typeOfAccount: string
-creditCardNo: int
-creditCardDate: date

‘Summary

» Systems design is the bridge that puts business requirements in terms that the
programmers can use to write the software.

» The design class diagram (DCD) is usually developed in two steps:
» A first-cut DCD is created based on the domain model class diagram, but then it is refined and
expanded as the sequence diagrams are developed.

» One method of determining which objects collaborate is using CRC cards to define the
interactions between design classes.

	Slides 11 - Fundamentals of OO Design Part A
	Slides 11 - Fundamentals of OO Design Part B
	Slides 11 - Fundamentals of OO Design Part C

