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Configuration management

 Software systems are constantly changing during 

development and use.

 Configuration management (CM) is concerned with the 

policies, processes and tools for managing changing 

software systems. 

 Why do we need CM? 

 It is easy to lose track of what changes and component 

versions have been incorporated into each system 

version. 

 CM is essential for team projects to control changes made 

by different developers
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CM activities

 Change management 

▪ Keeping track of requests for changes to the software from customers and 

developers, working out the costs and impact of changes, and deciding the 

changes that should be implemented.

 Version management

▪ Keeping track of the multiple versions of system components and ensuring that 

changes made to components by different developers do not interfere with each 

other. 

 System building 

▪ The process of assembling program components, data and libraries, then 

compiling these to create an executable system.

 Release management 

▪ Preparing software for external release and keeping track of the system versions 

that have been released for customer use.
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Change management

 Organizational needs and requirements change during the 
lifetime of a system, bugs have to be repaired and systems 
have to adapt to changes in their environment.

 Change management is intended to ensure that system 
evolution is a managed process and that priority is given to 
the most urgent and cost-effective changes.

 The change management process is concerned with:

◼ analyzing the costs and benefits of proposed changes, 

◼ approving those changes that are worthwhile and 

◼ tracking which components in the system have been 
changed.
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Version management

 Version management (VM) is the process of keeping track of 

different versions of software components or configuration items and 

the systems in which these components are used. 

 It also involves ensuring that changes made by different developers 

to these versions do not interfere with each other. 

 Therefore version management can be thought of as the process of 

managing codelines and baselines. 
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Codelines and baselines

 A codeline is a sequence of versions of  source code with later 

versions in the sequence derived from earlier versions. 

 Codelines normally apply to components of systems (e.g. a class or a 

file) so that there are different versions of each component.

 A baseline is a definition of a specific system. 

 The baseline therefore specifies the component versions that are 

included in the system plus a specification of the libraries used, 

configuration files, etc. 
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Codelines and baselines
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Version control management systems

 Version control (VC) systems identify, store
and control access to the different versions 
of components. 

 There are two types of modern version 
control system:

◼ Centralized systems, where there is a single 
master repository that maintains all versions of 
the software components that are being 
developed (e.g. Subversion and CVS)  

◼ Distributed systems, where multiple versions of 
the component repository exist at the same time. 
(e.g. Git)
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Project repository and private workspaces

 To support independent development without interference, version 

control systems use the concept of a project repository and a private 

workspace.

 The project repository maintains the ‘master’ version of all  

components. It is used to create baselines for system building.

 When modifying components, developers copy (checkout) these from 

the repository into their private workspace and work on these copies.

 When they have finished their changes, the changed components are 

returned (checked-in) to the repository.
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Centralized version control

 Developers check out components or directories of 
components from the project repository into their 
private workspace and work on these copies in their 
private workspace.

 When their changes are complete, they check-in
the components back to the repository.

 If several people are working on a component at the 
same time, each check it out from the repository. 

 If a component has been checked out, the VC 
system warns other users wanting to check out that 
component that it has been checked out by 
someone else.
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Repository Check-in/Check-out

13



14

Distributed version control

 A ‘master’ repository is created on a server that maintains the code 

produced by the development team.

 Instead of checking out the files that they need, a developer creates 

a clone of the project repository that is downloaded and installed on 

their computer. 

 Developers work on the files required and maintain the new versions 

on their private repository on their own computer.

 When changes are done, they ‘commit’ these changes and update 

their private server repository. They may then ‘push’ these changes 

to the project repository.
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Repository cloning
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Benefits of distributed version control

 It provides a backup mechanism for the repository.

 If the repository is corrupted, work can continue and 

the project repository can be restored from local 

copies.

 It allows for off-line working so that developers can 

commit changes if they do not have a network 

connection.

 Project support is the default way of working.

 Developers can compile and test the entire system on 

their local machines and test the changes that they 

have made.
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Branching and merging

 Rather than a linear sequence of versions that reflect 

changes to the component over time, there may be 

several independent sequences.

 This is normal in system development, where different 

developers work independently on different versions of the 

source code and so change it in different ways (branches).

 At some stage, it may be necessary to merge codeline 

branches to create a new version of a component that 

includes all changes that have been made.

 If the changes made involve different parts of the code, the 

component versions may be merged automatically by combining 

the differences that apply to the code.
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Branching and merging
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