
1

CSIT214/CSIT883

IT Project Management

Change and version

control management

Acknowledgement: some materials are adapted from Chapter 25 - Ian Sommerville (2010), Software
Engineering, 10th Edition, Addison-Wesley.

2

Configuration management

 Software systems are constantly changing during

development and use.

 Configuration management (CM) is concerned with the

policies, processes and tools for managing changing

software systems.

 Why do we need CM?

 It is easy to lose track of what changes and component

versions have been incorporated into each system

version.

 CM is essential for team projects to control changes made

by different developers

3

CM activities

 Change management

▪ Keeping track of requests for changes to the software from customers and

developers, working out the costs and impact of changes, and deciding the

changes that should be implemented.

 Version management

▪ Keeping track of the multiple versions of system components and ensuring that

changes made to components by different developers do not interfere with each

other.

 System building

▪ The process of assembling program components, data and libraries, then

compiling these to create an executable system.

 Release management

▪ Preparing software for external release and keeping track of the system versions

that have been released for customer use.

4

Change management

 Organizational needs and requirements change during the
lifetime of a system, bugs have to be repaired and systems
have to adapt to changes in their environment.

 Change management is intended to ensure that system
evolution is a managed process and that priority is given to
the most urgent and cost-effective changes.

 The change management process is concerned with:

◼ analyzing the costs and benefits of proposed changes,

◼ approving those changes that are worthwhile and

◼ tracking which components in the system have been
changed.

6

Version management

 Version management (VM) is the process of keeping track of

different versions of software components or configuration items and

the systems in which these components are used.

 It also involves ensuring that changes made by different developers

to these versions do not interfere with each other.

 Therefore version management can be thought of as the process of

managing codelines and baselines.

7

Codelines and baselines

 A codeline is a sequence of versions of source code with later

versions in the sequence derived from earlier versions.

 Codelines normally apply to components of systems (e.g. a class or a

file) so that there are different versions of each component.

 A baseline is a definition of a specific system.

 The baseline therefore specifies the component versions that are

included in the system plus a specification of the libraries used,

configuration files, etc.

8

Codelines and baselines

9

Version control management systems

 Version control (VC) systems identify, store
and control access to the different versions
of components.

 There are two types of modern version
control system:

◼ Centralized systems, where there is a single
master repository that maintains all versions of
the software components that are being
developed (e.g. Subversion and CVS)

◼ Distributed systems, where multiple versions of
the component repository exist at the same time.
(e.g. Git)

9

11

Project repository and private workspaces

 To support independent development without interference, version

control systems use the concept of a project repository and a private

workspace.

 The project repository maintains the ‘master’ version of all

components. It is used to create baselines for system building.

 When modifying components, developers copy (checkout) these from

the repository into their private workspace and work on these copies.

 When they have finished their changes, the changed components are

returned (checked-in) to the repository.

11

12

Centralized version control

 Developers check out components or directories of
components from the project repository into their
private workspace and work on these copies in their
private workspace.

 When their changes are complete, they check-in
the components back to the repository.

 If several people are working on a component at the
same time, each check it out from the repository.

 If a component has been checked out, the VC
system warns other users wanting to check out that
component that it has been checked out by
someone else.

12

13

Repository Check-in/Check-out

13

14

Distributed version control

 A ‘master’ repository is created on a server that maintains the code

produced by the development team.

 Instead of checking out the files that they need, a developer creates

a clone of the project repository that is downloaded and installed on

their computer.

 Developers work on the files required and maintain the new versions

on their private repository on their own computer.

 When changes are done, they ‘commit’ these changes and update

their private server repository. They may then ‘push’ these changes

to the project repository.

14

15

Repository cloning

15

16

Benefits of distributed version control

 It provides a backup mechanism for the repository.

 If the repository is corrupted, work can continue and

the project repository can be restored from local

copies.

 It allows for off-line working so that developers can

commit changes if they do not have a network

connection.

 Project support is the default way of working.

 Developers can compile and test the entire system on

their local machines and test the changes that they

have made.

16

17

Branching and merging

 Rather than a linear sequence of versions that reflect

changes to the component over time, there may be

several independent sequences.

 This is normal in system development, where different

developers work independently on different versions of the

source code and so change it in different ways (branches).

 At some stage, it may be necessary to merge codeline

branches to create a new version of a component that

includes all changes that have been made.

 If the changes made involve different parts of the code, the

component versions may be merged automatically by combining

the differences that apply to the code.

17

18

Branching and merging

18

