
CSIT881
Programming and Data Structures

For-Loop Statements

Objectives

● For loop

● More on string data type

2

for i in range(0,10):
 print(i)

The first for-loop example

0
1
2
3
4
5
6
7
8
9

Program output:

i = 0, print(i)
i = 1, print(i)
i = 2, print(i)
i = 3, print(i)
i = 4, print(i)
i = 5, print(i)
i = 6, print(i)
i = 7, print(i)
i = 8, print(i)
i = 9, print(i)

range(0,10) number 10 is excluded!!!
3

for i in range(1,10):
 print("{0} x {1} = {2}".format(i, 5, 5*i))

Times table example

1 x 5 = 5
2 x 5 = 10
3 x 5 = 15
4 x 5 = 20
5 x 5 = 25
6 x 5 = 30
7 x 5 = 35
8 x 5 = 40
9 x 5 = 45

Program output:

i = 1, print("{0} x {1} = {2}".format(i, 5, 5*i))
i = 2, print("{0} x {1} = {2}".format(i, 5, 5*i))
i = 3, print("{0} x {1} = {2}".format(i, 5, 5*i))
i = 4, print("{0} x {1} = {2}".format(i, 5, 5*i))
i = 5, print("{0} x {1} = {2}".format(i, 5, 5*i))
i = 6, print("{0} x {1} = {2}".format(i, 5, 5*i))
i = 7, print("{0} x {1} = {2}".format(i, 5, 5*i))
i = 8, print("{0} x {1} = {2}".format(i, 5, 5*i))
i = 9, print("{0} x {1} = {2}".format(i, 5, 5*i))

4

for i in range(1,10):
 print("{0} x {1} = {2}".format(i, 5, 5*i))

Times table example 2

Enter a number: 6
1 x 6 = 6
2 x 6 = 12
3 x 6 = 18
4 x 6 = 24
5 x 6 = 30
6 x 6 = 36
7 x 6 = 42
8 x 6 = 48
9 x 6 = 54

We want to print times table based on user input

number_input = input("Enter a number: ")
number = int(number_input)

for i in range(1,10):
 print("{0} x {1} = {2}".format(i, number, number*i))

5

Friend of 10 table

0 + 10 = 10
1 + 9 = 10
2 + 8 = 10
3 + 7 = 10
4 + 6 = 10
5 + 5 = 10
6 + 4 = 10
7 + 3 = 10
8 + 2 = 10
9 + 1 = 10
10 + 0 = 10

6

Friend of 10 table

0 + 10 = 10
1 + 9 = 10
2 + 8 = 10
3 + 7 = 10
4 + 6 = 10
5 + 5 = 10
6 + 4 = 10
7 + 3 = 10
8 + 2 = 10
9 + 1 = 10
10 + 0 = 10

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10

for i in range(0,11):

7

Friend of 10 table

0 + 10 = 10
1 + 9 = 10
2 + 8 = 10
3 + 7 = 10
4 + 6 = 10
5 + 5 = 10
6 + 4 = 10
7 + 3 = 10
8 + 2 = 10
9 + 1 = 10
10 + 0 = 10

What is this second number?

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10

for i in range(0,11):
 print("{0} + {1} = {2}".format(i, second, 10))

print("{0} + {1} = {2}".format(i, second, 10))

8

Friend of 10 table

0 + 10 = 10
1 + 9 = 10
2 + 8 = 10
3 + 7 = 10
4 + 6 = 10
5 + 5 = 10
6 + 4 = 10
7 + 3 = 10
8 + 2 = 10
9 + 1 = 10
10 + 0 = 10

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10

print("{0} + {1} = {2}".format(i, second, 10))

second = 10 - i

for i in range(0,11):
 second = 10 - i
 print("{0} + {1} = {2}".format(i, second, 10))

9

Friend of 10 table

0 + 10 = 10
1 + 9 = 10
2 + 8 = 10
3 + 7 = 10
4 + 6 = 10
5 + 5 = 10
6 + 4 = 10
7 + 3 = 10
8 + 2 = 10
9 + 1 = 10
10 + 0 = 10

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10

print("{0} + {1} = {2}".format(i, second, 10))

second = 10 - i

for i in range(0,11):
 print("{0} + {1} = {2}".format(i, 10 - i, 10))

or
simply

10

Friend of 10 table

 0 + 10 = 10
 1 + 9 = 10
 2 + 8 = 10
 3 + 7 = 10
 4 + 6 = 10
 5 + 5 = 10
 6 + 4 = 10
 7 + 3 = 10
 8 + 2 = 10
 9 + 1 = 10
10 + 0 = 10

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10

print("{0:>2} + {1:>2} = {2:>2}".format(i, 10 - i, 10))

for i in range(0,11):
 print("{0:>2} + {1:>2} = {2:>2}".format(i, 10 - i, 10))

better
display

11

Consecutive numbers

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

We want to write a program to print the following output

12

Consecutive numbers

for i in range(0,11):
 # print the number
 print(i, end="")

 # print the trailing
 trailing = "frog"
 print(trailing, end="")

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

i = 0

i = 1

i = 2
i = 10

13

Output:
0frog1frog2frog3frog4frog5frog6frog7frog8frog9frog10frog

Consecutive numbers

for i in range(0,11):
 // print the number
 // print the trailing

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

i = 0

i = 1

i = 2
i = 10

14

The trailing depends on the index i:
● i = 0, 1,..., 9: the trailing is the comma
● i = 10: the trailing is the full-stop

Consecutive numbers

for i in range(0,11):

 if (i < 10):
 trailing = ", "
 else:
 trailing = "."

 print(i, end="") <- print the number
 print(trailing, end="") <- print the trailing

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

i = 0

i = 1

i = 2
i = 10

15

Sum of numbers
1 + 2 + 3 + 4 + … + 10 = ?

Adding one number of a time:

result = 0

i = 1 → result = result + 1 0 + 1 = 1

i = 2 → result = result + 2 1 + 2 = 3

i = 3 → result = result + 3 3 + 3 = 6

i = 4 → result = result + 4 6 + 4 = 10

i = 5 → result = result + 5 10 + 5 = 15

…

i = 10 → result = result + 10 = ? 45 + 10 = 55
16

Sum of numbers
1 + 2 + 3 + 4 + … + 10 = ?

17

initialise the result to zero
result = 0

keep adding the result with number from 1 to 10
for i in range(1,11):
#{
 result = result + i
#}

display the result
print("The sum of 1 to 10 is {0}".format(result))

Sum of numbers
1 + 2 + 3 + 4 + … + 10 = ?

Adding one number of a time:

result = 0

i = 1 → result = 0 + 1 = 1

i = 2 → result = 1 + 2 = 3

i = 3 → result = 3 + 3 = 6

i = 4 → result = 6 + 4 = 10

i = 5 → result = 10 + 5 = 15

…

i = 10 → result = result + 10 = ?
18

result = 0

for i in range(1,11):
 result = result + i

print(result)

Number pattern

2 1
4 3 2 1
6 5 4 3 2 1
8 7 6 5 4 3 2 1
10 9 8 7 6 5 4 3 2 1

19

i = 1 → 2 1
i = 2 → 4 3 2 1
i = 3 → 6 5 4 3 2 1
i = 4 → 8 7 6 5 4 3 2 1
i = 5 → 10 9 8 7 6 5 4 3 2 1

start_number = 2 * i

What is the pattern?

print from the start_number down to 1
that is:
 start_number - 0
 start_number - 1
 start_number - 2
 start_number - 3
 ...

for each i from 1 to 5

20

display 5 lines of pattern
for i in range(1, 6):
 # display the ith line

 # the first number on line i is 2i
 start_number = 2 * i

 # print from start number down to 1
 for j in range(0, start_number):

 number = start_number - j
 print(number, end=" ")

 # print a new line to complete the line i
 print()

2 1
4 3 2 1
6 5 4 3 2 1
8 7 6 5 4 3 2 1
10 9 8 7 6 5 4 3 2 1 21

The break keyword

a flag to indicate user has answered YES
user_say_yes = False

patiently ask the user 10 times until they say YES
for i in range(0, 10):
 answer = input("Would you like green eggs and ham? (Y/N): ")

 if (answer == "Y"):
 user_say_yes = True
 print("That's a smart choice!")
 break

if the user has not said yes
if (user_say_yes == False):
 print("Oh well, you don't know what you're missing!")

use break to stop the loop

22

The break statement terminates the closest enclosing loop.

The break keyword

23

Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Oh well, you don't know what you're missing!

Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): N
Would you like green eggs and ham? (Y/N): Y
That's a smart choice!

String data type
Upper case:

name = "John Smith"
name_uppercase = name.upper()
print(name_uppercase)

Lower case:

name = "John Smith"
name_lowercase = name.lower()
print(name_lowercase)

JOHN SMITH

john smith

24

String data type
Searching for a substring:

name = "Alexandra"

index = name.find("exa")
print(index)

index = name.find("frog")
print(index)

index = name.find("Alex")
print(index)

find returns the first index if found,
otherwise, it return -1 if not found

2

-1

25

Index 0 means the first character.

0

String data type
Find the length of a string:

greeting = "Hi there!"

greeting_length = len(greeting) → 9

Get one character at a time:
print(greeting[0]) → H
print(greeting[1]) → i
print(greeting[2]) → space
print(greeting[3]) → t
print(greeting[4]) → h
print(greeting[5]) → e
print(greeting[6]) → r
print(greeting[7]) → e
print(greeting[8]) → !

26
Question. What is the last index?
Answer. len(greeting)-1

String data type
Slicing a string:

sentence = "Python is cool!"

sub_sentence1 = sentence[1:4]
"yth"

sub_sentence2 = sentence[1:]
"ython is cool!"

sub_sentence3 = sentence[:4]
"Pyth"

[i:j] gives substring from
index i up to index (j-1),
so altogether, there are
(j-i) characters

[i:] gives substring from
index i up to the end

[:j] is the same as [0:j]
gives substring from
index 0 up to index
(j-1), so altogether,
there are j characters

27

Display characters of string

Output:

greeting = "Hi there!"

for i in range(0, len(greeting)):

 # get the ith character
 letter = greeting[i]

 # display the ith character
 print(letter)

28

H
i

t
h
e
r
e
!

Question. What is the last index?
Answer. len(greeting)-1

Example: generate password

29

Enter username: Superman123
Password is 5upe7man123

In an online game, the initial password is generated from the username by
replacing each letter i to 1, r to 7, s to 5, and z to 2.

Write a program to generate this initial password.

Enter username: zebra8
Password is 2eb7a8

Initially set password = ""
Username letter Password letter
 z 2 password = "2"
 e e password = "2e"
 b b password = "2eb"
 r 7 password = "2eb7"
 a a password = "2eb7a"
 8 8 password = "2eb7a8"

Example: generate password
ask user to enter username
username = input("Enter username: ")

construct the password

display password result
print("Password is " + password)

30

Initially set password = ""
Username letter Password letter
 z 2 password = "2"
 e e password = "2e"
 b b password = "2eb"
 r 7 password = "2eb7"
 a a password = "2eb7a"
 8 8 password = "2eb7a8"

Example: generate password
initialize password as empty string
password = ""

for i in range(0, len(username)):
 # get the ith character from username
 letter = username[i]

 # construct corresponding character for password
 if (letter == "i") or (letter == "I"):
 password_letter = "1"
 elif (letter == "r") or (letter == "R"):
 password_letter = "7"
 elif (letter == "s") or (letter == "S"):
 password_letter = "5"
 elif (letter == "z") or (letter == "Z"):
 password_letter = "2"
 else:
 password_letter = letter

 # adding a character to password
 password = password + password_letter

31

