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Objectives

● Introduction to Algorithm

● Big O notation

● Introduction to Data structure
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Algorithm
Encyclopedia Britannica:

An algorithm is a specific procedure for solving a 
well-defined computational problem.

Cambridge Dictionary:

An algorithm is a set of mathematical instructions or 
rules that, especially if given to a computer, will help 
to calculate an answer to a problem.

Oxford Languages:

An algorithm is a process or set of rules to be 
followed in calculations or other problem-solving 
operations, especially by a computer.
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Algorithm

● Deterministic algorithm: always goes through the same 
internal states and produces the same output result. 

● Randomized algorithm: uses a source of randomness 
as part of its logic and obtains the result by chance; 
output may change between different runs. 
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Algorithm
Deterministic algorithm: 

Given the same input, the algorithm
● takes the same amount of time, memory, resources 

to run

● follows the same programming instructions at each 

execution 

● produces the same result output
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Algorithm
Randomized algorithm: 

Given the same input, the algorithm
● may take different amount of time, memory, resources 

to run at different time

● may follow different path of programming instructions 

at different execution 

● may produce different result output
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Algorithm

Randomized algorithm: 

○ Monte Carlo algorithm: a randomized algorithm 
whose output may be incorrect with a certain 
probability. 

○ Las Vegas algorithm: a randomized algorithm that 
always gives correct results.
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Algorithm
Example. (Primality Test Problem) Given an integer n>1, 
determine whether n is a prime number or a not?

Simple Division Test Algorithm (deterministic algorithm)
● For each integer k from 2 to (n-1), test to see if n divide k 

or not. If n divides any k then n is a composite number. 
Otherwise, n is a prime number.
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FOR k from 2 to (n-1)
    IF n divides k
        RETURN n is NOT prime
    END IF
END FOR

RETURN n is prime

pseudocode

An improvement: only need to test 
for k from 2 to sqrt(n)



Algorithm
Example. (Primality Test Problem) Given an integer n>1, 
determine whether n is a prime number or a not?

Fermat primality test (Monte Carlo randomized algorithm)
based on the following Fermat’s little theorem: 

if n is a prime then for any 0 < k < n,  

kn-1 - 1 is divisible by n.

● Select a random integer 0 < k < n and test if            
kn-1 - 1 is divisible by  n or not. If not then n is not 
a prime, otherwise, n is a prime.
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Algorithm
Fermat primality test 
based on the following Fermat’s little theorem: 

if n is a prime then for any 0 < k < n,  

kn-1 - 1 is divisible by n.
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k = random from 1 to (n-1)

r = kn-1 modulo n
IF r != 1
    RETURN n is NOT prime
END IF

RETURN n is prime

pseudocode

Why this algorithm may 
output incorrect result?



Algorithm
Fermat primality test 
based on the following Fermat’s little theorem: 

if n is a prime then for any 0 < k < n,  

kn-1 - 1 is divisible by n.
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Why this algorithm may output incorrect result?

● if kn-1 != 1 (mod n) then n is 
definitely not a prime

● is kn-1 = 1 (mod n) then n may be a 
prime and n may not be a prime - we don’t 
know for sure, for example, n = 13 x 17 = 
221 is not a prime, but for k = 38 we 

have 38220 = 1 (mod 221)



Algorithm
Fermat primality test 
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REPEAT t times
    k = random from 1 to (n-1)

    r = kn-1 modulo n
    IF r != 1
        RETURN n is NOT prime
    END IF

RETURN n is prime

pseudocode

An improvement: to reduce the chance that the program outputs incorrect result, 
we may run it many times



Algorithm
Algorithm analysis: determine efficiency of an 
algorithm by looking at computational resource used by 
the algorithm:

● running time: how long does the algorithm take to 
complete? 

● memory usage: how much working memory is 
needed by the algorithm?

13



Algorithm
The computational resource (running time, memory 
usage) used by the algorithm depends on the input of 
the algorithm.

● For some input, the algorithm may run very fast; but 
for other input, it may run very long.

● For some input, the algorithm may use a lot of 
memory; but for other input, it may use less memory.
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Algorithm
Algorithm analysis:

● worst-case complexity: measures computational 
resource in the worst case scenario, i.e. in the case it 
requires the longest running time (or largest memory 
usage)

● best-case complexity: measures computational 
resource in the best case scenario, i.e. in the case it 
requires the shortest running time (or least amount of 
memory)

● average-case complexity: measures computational 
resource used by the algorithm, averaged over all 
possible inputs

15



Algorithm
Big O notation:
As the input size of the algorithm grows, the 
computational resource (running time, memory usage) 
used by the algorithm also grows.

We use big O notation to express the growing value of 
the computational resource as a function of the input 
size.

● O(1):  constant
● O(log n): logarithmic
● O(n): linear
● O(n2): quadratic
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measure the bit length of n

Karan Goel
Sticky Note
The logarithm of 100 with base 10 is 2, because 10 raised to the power of 2 is 100: log 100 = 2 because 10^2 = 100

bits of n = power of n in base 10



Algorithm
Big O notation:
Mathematical definition: 

f(n) = O(g(n)) if there exists a constant c such that 
f(n) < c g(n) when n tends to infinity.

Remarks:

● only consider large values of n when working with big 
O notation, ignore small values of n;

● ignore multiplicative constant;

● only consider the largest term in a sum.
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Algorithm
Big O notation:
Example: suppose that the running time of an algorithm 
on input size n is (3 n2 + 100 n + 2000), write this 
running time in big O notation.

● only consider large values of n when working with big 
O notation, ignore small values of n:
○ 100 n < n2     (when n tends to infinity)
○ 2000 <  n2     (when n tends to infinity)

● only consider the largest term in a sum:
○ 3 n2 + 100 n + 2000 = O(3 n2 + n2 + n2) = O(5 n2)

● ignore multiplicative constant:
○ 3 n2 + 100 n + 2000 = O(5 n2) = O(n2)
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Algorithm
Big O notation:
1 < log(log(n)) < log(n) < n < n log(n) < n2 < n2 log(n) < 
n3 < n3 log(n) < n4 < n5 < n6 < ... 

● 10000 = O(1)

● 4 n + 7 = O(n)

● n + 3 log(n) + 100 = O(n)

● 5 log(n) + 100 = O(log(n))

● 3 n2  + 7 n + 8 = O(n2)

● 4 n log(n) + 3 n2  + n = O(n2)
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Algorithm
Example: write a program to search for an index at which 
the two lists of integers having the same number.

Input: two lists of integers of the same length n

Output: the first index at which the two lists have the same 
number, return -1 if not found

Example: if list1 is [4, 6, -3, 7, 1, 5]
and list2 is [8, -6, 8, 7, 4, 5] then the matching index is 3
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Algorithm
Example: write a program to search for an index at which 
the two lists of integers having the same number.
Consider the following two algorithms:
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Function algorithm1(list1, list2)
{
    n = length of list1

    index = -1
    FOR i from 0 to (n-1)
        IF list1[i] = list2[i] and index = -1
            index = i
        END IF
    END FOR

    RETURN index
}

pseudocode



Algorithm
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Function algorithm2(list1, list2)
{
    n = length of list1

    FOR i from 0 to (n-1)
        IF list1[i] = list2[i]
            RETURN i
        END IF
    END FOR

    RETURN -1
}

pseudocode

These two algorithms have different best-case complexity, 
but the same worst-case complexity and average-case 
complexity. Why?



Algorithm
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Function algorithm1(list1, list2)
{
    n = length of list1

    index = -1
    FOR i from 0 to (n-1)
        IF list1[i] = list2[i] and index = -1
            index = i
        END IF
    END FOR

    RETURN index
}

For any input, the program will run the whole loop
            FOR i from 0 to (n-1)

worst-case complexity: running time O(n)
best-case complexity: running time O(n)
average-case complexity: running time O(n)



Algorithm
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worst-case complexity: running time O(n) 
● when no matching found, or 
● a matching found at the end of the lists

best-case complexity: running time O(1) 
● when matching found at the beginning of the lists

Function algorithm2(list1, list2)
{
    n = length of list1

    FOR i from 0 to (n-1)
        IF list1[i] = list2[i]
            RETURN i
        END IF
    END FOR

    RETURN -1
}



Algorithm
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average-case complexity: running time O(n)
Matching found at index 0 → running time 1
Matching found at index 1 → running time 2
Matching found at index 2 → running time 3...
Matching found at index n-1 → running time n
No matching found → running time n+1

 (1 + 2 + 3 + … + n + (n+1))/(n+1) = (n+2)/2   =>  O(n)

Function algorithm2(list1, list2)
{
    n = length of list1

    FOR i from 0 to (n-1)
        IF list1[i] = list2[i]
            RETURN i
        END IF
    END FOR

    RETURN -1
}



Data structure
A data structure is a formal structure for the organization 
of information:
● a collection of data values;
● the relationships among them;
● the operations that can be applied to the data.

Examples of data structure: Array, Linked List, Doubly 
Linked List, Stack, Queue, Binary Tree, Hash Table, ...
 

26



Data structure
For the same data structure (say Binary Tree), different 
programming languages may provide different 
implementations:
● class name may be different between programming languages;
● class name may not be the same as the original data structure name;
● functions name may be different between programming languages;
● some functions are implemented in one programming language but 

not in the others; etc...

With the diversity of programming language implementations, 
how can we provide a unified solution to a particular problem 
using data structure?
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Data structure
With the diversity of programming language implementations, 
how can we provide a unified solution to a particular problem 
using data structure?

Strategy: using abstract data type

An abstract data type (ADT) is a data structure model 
characterised by its functionalities and behaviors from the 
point of view of a user.

With abstract data type, we can describe an algorithm to 
solve a particular problem using pseudocode.
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Data structure
An abstract data type (ADT) is a data structure model 
characterised by its functionalities and behaviors from 
the point of view of a user.
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Example: A stack is an abstract data type 
with the following operations:
● push(item): add an item onto the top of 

the stack;

● pop(): remove the item from the top of 
the stack and return it;

● top(): look at the item at the top of the 
stack, but do not remove it.



Data structure
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Different programming languages (Java, 
C++, Python, etc.) may provide different 
implementations of this (ADT) stack.

The implementation classes may have 
different names, but that is NOT important.

The important thing is that they all have 
these basic operations: push(item), pop(), 
and top() with the expected behavior 
Last-In-First-Out 

Example:
Stack



Data structure
Working with abstract data types: 
● we are only concerned with the behaviors of a data 

structure and what operations we can do with the data 
structure to solve the problem at hand; 

● not really concerned about how it is actually 
implemented under the hood;

● in software development, we need to look at the API to 
learn about the operations and behaviors of an abstract 
data type; we do not really need to look at the 
implementation details;

● study algorithm with abstract data types and 
pseudocode helps us to implement solution in any 
programming language. 31



Data structure
To decide to use the data structure or not? 

Ask yourself this question:

● with the behaviors of the data structure and the 
operations we are allowed to use with this data 
structure, can we efficiently solve the problem that 
we need to solve?
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Data structure
Examples of using data structure to solve problem:

● Parenthesis checking using Stack

  4 * {z - [(a+b) * c]}

● Searching using Binary search tree

33

11

7 15

5 9 13 20



Example: Parenthesis checking using Stack
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In mathematics, we use different types of parenthesis, such 
as (, ), {, }, [, ], to write an expression

4 * {z - [(a+b) * c]}

We can use Stack to check the validity of these expressions 
to make sure every open parentheses matches with a 
closed parentheses.



Example: Parenthesis checking using Stack
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4 * {z - [(a+b) * c]}
    ^
    

encounter open symbol
push it in Stack

    4 * {z - [(a+b) * c]}
         ^
    

encounter open symbol
push it in Stack

    
4 * {z - [(a+b) * c]}
          ^
    

encounter open symbol
push it in Stack

    



Example: Parenthesis checking using Stack

36

4 * {z - [(a+b) * c]}
              ^
    

encounter closed symbol
pop the Stack and compare

    

Yes it matches!

    



Example: Parenthesis checking using Stack
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4 * {z - [(a+b) * c]}
                   ^
    

encounter closed symbol
pop the Stack and compare

    

Yes it matches!

    



Example: Parenthesis checking using Stack
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4 * {z - [(a+b) * c]}
                    ^
    

encounter closed symbol
pop the Stack and compare

    

Yes it matches!

Checking parenthesis DONE!

    



Example: Searching using Binary search tree
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In a binary search tree, each node stores a key greater 
than all the keys in the node’s left subtree and less than 
those in its right subtree.

11
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Example: Searching using Binary search tree
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Notice that:
● All nodes on the left of 7 are less than 7;
● All nodes on the right of 15 are greater than 15; etc...

11

7 15

5 9 13 20

2 6 8 10 12 14 17



Example: Searching using Binary search tree
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Searching for 14:

11

7 15

5 9 13 20

2 6 8 10 12 14 17
FOUND!!!



Example: Searching using Binary search tree
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Searching for 8:

11

7 15

5 9 13 20

2 6 8 10 12 14 17
FOUND!!!



Example: Searching using Binary search tree
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Searching for 16:

11

7 15

5 9 13 20

2 6 8 10 12 14 17
NOT FOUND



Example: Searching using Binary search tree
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Searching for 3:

11

7 15

5 9 13 20

2 6 8 10 12 14 17
NOT FOUND



References

45

● Python 3 documentation 
https://docs.python.org/3/

● NumPy Reference 
https://numpy.org/doc/stable/reference/




