
CSIT881
Programming and Data Structures

Sorting Algorithm

Dr. Joseph Tonien

Objectives

● Insertion sort

● Selection sort

● Bubble sort

2

Insertion sort

3

round 1 start [60, 10, 90, 50, 100, 80, 70, 30, 40, 20]
round 1 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 2 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
round 2 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 3 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
round 3 finish [10, 50, 60, 90, 100, 80, 70, 30, 40, 20]

round 4 start [10, 50, 60, 90, 100 , 80, 70, 30, 40, 20]
round 4 finish [10, 50, 60, 90, 100 , 80, 70, 30, 40, 20]

round 5 start [10, 50, 60, 90, 100, 80 , 70, 30, 40, 20]
round 5 finish [10, 50, 60, 80, 90, 100 , 70, 30, 40, 20]

round 6 start [10, 50, 60, 80, 90, 100, 70 , 30, 40, 20]
round 6 finish [10, 50, 60, 70, 80, 90, 100 , 30, 40, 20]

round 7 start [10, 50, 60, 70, 80, 90, 100, 30 , 40, 20]
round 7 finish [10, 30, 50, 60, 70, 80, 90, 100 , 40, 20]

round 8 start [10, 30, 50, 60, 70, 80, 90, 100, 40 , 20]
round 8 finish [10, 30, 40, 50, 60, 70, 80, 90, 100 , 20]

round 9 start [10, 30, 40, 50, 60, 70, 80, 90, 100, 20]
round 9 finish [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Have a look at this example, can you figure out the process of insertion sort?

Insertion sort

4

round 1 start [60, 10, 90, 50, 100, 80, 70, 30, 40, 20]
round 1 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 2 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
round 2 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 3 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
round 3 finish [10, 50, 60, 90, 100, 80, 70, 30, 40, 20]

round 4 start [10, 50, 60, 90, 100 , 80, 70, 30, 40, 20]
round 4 finish [10, 50, 60, 90, 100 , 80, 70, 30, 40, 20]

round 5 start [10, 50, 60, 90, 100, 80 , 70, 30, 40, 20]
round 5 finish [10, 50, 60, 80, 90, 100 , 70, 30, 40, 20]

round 6 start [10, 50, 60, 80, 90, 100, 70 , 30, 40, 20]
round 6 finish [10, 50, 60, 70, 80, 90, 100 , 30, 40, 20]

round 7 start [10, 50, 60, 70, 80, 90, 100, 30 , 40, 20]
round 7 finish [10, 30, 50, 60, 70, 80, 90, 100 , 40, 20]

round 8 start [10, 30, 50, 60, 70, 80, 90, 100, 40 , 20]
round 8 finish [10, 30, 40, 50, 60, 70, 80, 90, 100 , 20]

round 9 start [10, 30, 40, 50, 60, 70, 80, 90, 100, 20]
round 9 finish [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

At each round i: {item 0, item 1, …, item i} are sorted

Insertion sort

5

round 1 start [60, 10, 90, 50, 100, 80, 70, 30, 40, 20]
round 1 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 2 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
round 2 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 3 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
round 3 finish [10, 50, 60, 90, 100, 80, 70, 30, 40, 20]

round 4 start [10, 50, 60, 90, 100 , 80, 70, 30, 40, 20]
round 4 finish [10, 50, 60, 90, 100 , 80, 70, 30, 40, 20]

round 5 start [10, 50, 60, 90, 100, 80 , 70, 30, 40, 20]
round 5 finish [10, 50, 60, 80, 90, 100 , 70, 30, 40, 20]

n = length-of(intList)

FOR i from 1 to (n-1)

 // sort intList[0], intList[1], …, intList[i]

END FOR

At each round i: {item 0, item 1, …, item i} are sorted

helicopter view pseudocode of Insertion Sort Algorithm of a list of integers

Insertion sort

6

Look at each round in details:

round 1 start [60, 10, 90, 50, 100, 80, 70, 30, 40, 20]

are 10 and 60 in order? No
swap 10 and 60: [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 1 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 2 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

are 90 and 60 in order? Yes
round 2 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 3 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

are 50 and 90 in order? No
swap 50 and 90: [10, 60, 50, 90, 100, 80, 70, 30, 40, 20]

are 50 and 60 in order? No
swap 50 and 60: [10, 50, 60, 90, 100, 80, 70, 30, 40, 20]

are 50 and 10 in order? Yes
round 3 finish [10, 50, 60, 90, 100, 80, 70, 30, 40, 20]

Insertion sort

7

Look at each round in details:

round 4 start [10, 50, 60, 90, 100 , 80, 70, 30, 40, 20]

are 100 and 90 in order? Yes
round 4 finish [10, 50, 60, 90, 100 , 80, 70, 30, 40, 20]

round 5 start [10, 50, 60, 90, 100, 80 , 70, 30, 40, 20]

are 80 and 100 in order? No
swap 80 and 100: [10, 50, 60, 90, 80, 100, 70, 30, 40, 20]

are 80 and 90 in order? No
swap 80 and 90: [10, 50, 60, 80, 90, 100, 70, 30, 40, 20]

are 80 and 60 in order? Yes
round 5 finish [10, 50, 60, 80, 90, 100 , 70, 30, 40, 20]

Insertion sort

8

Look at each round in details:

round 6 start [10, 50, 60, 80, 90, 100, 70 , 30, 40, 20]

are 70 and 100 in order? No
swap 70 and 100: [10, 50, 60, 80, 90, 70, 100, 30, 40, 20]

are 70 and 90 in order? No
swap 70 and 90: [10, 50, 60, 80, 70, 90, 100, 30, 40, 20]

are 70 and 80 in order? No
swap 70 and 80: [10, 50, 60, 70, 80, 90, 100, 30, 40, 20]

are 70 and 60 in order? Yes
round 6 finish [10, 50, 60, 70, 80, 90, 100 , 30, 40, 20]

Insertion sort

9

Look at each round in details:

round 7 start [10, 50, 60, 70, 80, 90, 100, 30 , 40, 20]

are 30 and 100 in order? No
swap 30 and 100: [10, 50, 60, 70, 80, 90, 30, 100, 40, 20]

are 30 and 90 in order? No
swap 30 and 90: [10, 50, 60, 70, 80, 30, 90, 100, 40, 20]

are 30 and 80 in order? No
swap 30 and 80: [10, 50, 60, 70, 30, 80, 90, 100, 40, 20]

are 30 and 70 in order? No
swap 30 and 70: [10, 50, 60, 30, 70, 80, 90, 100, 40, 20]

are 30 and 60 in order? No
swap 30 and 60: [10, 50, 30, 60, 70, 80, 90, 100, 40, 20]

are 30 and 50 in order? No
swap 30 and 50: [10, 30, 50, 60, 70, 80, 90, 100, 40, 20]

are 30 and 10 in order? Yes
round 7 finish [10, 30, 50, 60, 70, 80, 90, 100 , 40, 20]

Insertion sort

10

Look at each round in details:

round 8 start [10, 30, 50, 60, 70, 80, 90, 100, 40 , 20]

are 40 and 100 in order? No
swap 40 and 100: [10, 30, 50, 60, 70, 80, 90, 40, 100, 20]

are 40 and 90 in order? No
swap 40 and 90: [10, 30, 50, 60, 70, 80, 40, 90, 100, 20]

are 40 and 80 in order? No
swap 40 and 80: [10, 30, 50, 60, 70, 40, 80, 90, 100, 20]

are 40 and 70 in order? No
swap 40 and 70: [10, 30, 50, 60, 40, 70, 80, 90, 100, 20]

are 40 and 60 in order? No
swap 40 and 60: [10, 30, 50, 40, 60, 70, 80, 90, 100, 20]

are 40 and 50 in order? No
swap 40 and 50: [10, 30, 40, 50, 60, 70, 80, 90, 100, 20]

are 40 and 30 in order? Yes
round 8 finish [10, 30, 40, 50, 60, 70, 80, 90, 100 , 20]

Insertion sort

11

Look at each round in details:

round 9 start [10, 30, 40, 50, 60, 70, 80, 90, 100, 20]

are 20 and 100 in order? No
swap 20 and 100: [10, 30, 40, 50, 60, 70, 80, 90, 20, 100]

are 20 and 90 in order? No
swap 20 and 90: [10, 30, 40, 50, 60, 70, 80, 20, 90, 100]

are 20 and 80 in order? No
swap 20 and 80: [10, 30, 40, 50, 60, 70, 20, 80, 90, 100]

are 20 and 70 in order? No
swap 20 and 70: [10, 30, 40, 50, 60, 20, 70, 80, 90, 100]

are 20 and 60 in order? No
swap 20 and 60: [10, 30, 40, 50, 20, 60, 70, 80, 90, 100]

are 20 and 50 in order? No
swap 20 and 50: [10, 30, 40, 20, 50, 60, 70, 80, 90, 100]

are 20 and 40 in order? No
swap 20 and 40: [10, 30, 20, 40, 50, 60, 70, 80, 90, 100]

are 20 and 30 in order? No
swap 20 and 30: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

are 20 and 10 in order? Yes
round 9 finish [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Insertion sort

12

n = length-of(intList)

FOR i from 1 to (n-1)

 // sort intList[0], intList[1], …, intList[i]

END FOR

helicopter view pseudocode of Insertion Sort Algorithm of a list of integers

Insertion sort

13

 // sort intList[0], intList[1], …, intList[i]

 k = i

 WHILE k > 0 and intList[k-1] > intList[k]

 swap intList[k] and intList[k-1]

 k = k - 1

 END WHILE

At each round i: {item 0, item 1, …, item i} are sorted

pseudocode of round i

Insertion sort

14

n = length-of(intList)

FOR i from 1 to (n-1)

 // sort intList[0], intList[1], …, intList[i]

 k = i

 WHILE k > 0 and intList[k-1] > intList[k]

 swap intList[k] and intList[k-1]

 k = k - 1

 END WHILE

END FOR

Put it together, we have the algorithm for Insertion Sort:

pseudocode

Insertion sort

15

def insertionSort(intList):

 n = len(intList)

 for i in range(1, n):

 #{

 # sort intList[0], intList[1], ..., intList[i]

 k = i

 while (k > 0) and (intList[k-1] > intList[k]):

 #{

 # swap intList[k] and intList[k-1]

 temp = intList[k]

 intList[k] = intList[k-1]

 intList[k-1] = temp

 k = k - 1

 #}

 #}

Python implementation

Insertion sort

16

Suggested activities:

● Make up a list of integers and write down in details each
step in sorting this list of integers;

● Sort a list of integers in descending order;

● Sort a list of decimal numbers;

● Sort a list of strings.

Python List
A list/array is used to hold a list of items:

animal_list = ["dog", "cat", "frog"]

fibo_numbers = [0, 1, 1, 2, 3, 5, 8, 13]

prime_numbers = [2, 3, 5, 7, 11, 13, 17]

subject_list = ["MATH101", "CS222", "PHY102", "ACCY203"]

selected_products = [] # this is an empty list

This is how we define a list:

list_variable = [item1, item2, …, itemN]

17

Python List
List items can be accessed via index:

fibo_numbers = [0, 1, 1, 2, 3, 5, 8, 13]

print(fibo_numbers[0]) → 0
print(fibo_numbers[1]) → 1
print(fibo_numbers[2]) → 1
print(fibo_numbers[3]) → 2
print(fibo_numbers[4]) → 3
print(fibo_numbers[5]) → 5
print(fibo_numbers[6]) → 8
print(fibo_numbers[7]) → 13

18

items can be appended to the end of the list:

fibo_numbers.append(21)
fibo_numbers.append(34)
fibo_numbers.append(55)
fibo_numbers.append(89)

Python List

using len to find out how many items in the list:

animal_list = ["dog", "cat", "frog"]

animal_count = len(animal_list) → 3

19

Note that len(animal_list) is 3, but the last index is 2
because the index start at 0.

print(animal_list[0]) → "dog"
print(animal_list[1]) → "cat"
print(animal_list[2]) → "frog"

Selection sort

20

round 0 start [60, 10, 90, 50, 100, 80, 70, 30, 40, 20]
round 0 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 1 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
round 1 finish [10, 20, 90, 50, 100, 80, 70, 30, 40, 60]

Have a look at this example, can you figure out the process of selection sort?

round 2 start [10, 20, 90, 50, 100, 80, 70, 30, 40, 60]
round 2 finish [10, 20, 30, 50, 100, 80, 70, 90, 40, 60]

round 3 start [10, 20, 30, 50, 100, 80, 70, 90, 40, 60]
round 3 finish [10, 20, 30, 40, 100, 80, 70, 90, 50, 60]

round 4 start [10, 20, 30, 40, 100, 80, 70, 90, 50, 60]
round 4 finish [10, 20, 30, 40, 50, 80, 70, 90, 100, 60]

round 5 start [10, 20, 30, 40, 50, 80, 70, 90, 100, 60]
round 5 finish [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]

round 6 start [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]
round 6 finish [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]

round 7 start [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]
round 7 finish [10, 20, 30, 40, 50, 60, 70, 80, 100, 90]

round 8 start [10, 20, 30, 40, 50, 60, 70, 80, 100, 90]
round 8 finish [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Selection sort

21

round 0 start [60, 10, 90, 50, 100, 80, 70, 30, 40, 20]
round 0 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

round 1 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
round 1 finish [10, 20, 90, 50, 100, 80, 70, 30, 40, 60]

round 2 start [10, 20, 90, 50, 100, 80, 70, 30, 40, 60]
round 2 finish [10, 20, 30, 50, 100, 80, 70, 90, 40, 60]

round 3 start [10, 20, 30, 50, 100, 80, 70, 90, 40, 60]
round 3 finish [10, 20, 30, 40, 100, 80, 70, 90, 50, 60]

round 4 start [10, 20, 30, 40, 100, 80, 70, 90, 50, 60]
round 4 finish [10, 20, 30, 40, 50, 80, 70, 90, 100, 60]

round 5 start [10, 20, 30, 40, 50, 80, 70, 90, 100, 60]
round 5 finish [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]

round 6 start [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]
round 6 finish [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]

round 7 start [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]
round 7 finish [10, 20, 30, 40, 50, 60, 70, 80, 100, 90]

round 8 start [10, 20, 30, 40, 50, 60, 70, 80, 100, 90]
round 8 finish [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

At each round i: find the minimum in {item i, item i+1, … }
and swap it to the position i

Selection sort

22

round 0 start [60, 10, 90, 50, 100, 80, 70, 30, 40, 20]

find the minimum item in intList[0..9]
found minimum item: intList[1] = 10
swap intList[0] and intList[1]

round 0 finish [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

Look at each round in details:

round 1 start [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]

find the minimum item in intList[1..9]
found minimum item: intList[9] = 20
swap intList[1] and intList[9]

round 1 finish [10, 20, 90, 50, 100, 80, 70, 30, 40, 60]

round 2 start [10, 20, 90, 50, 100, 80, 70, 30, 40, 60]

find the minimum item in intList[2..9]
found minimum item: intList[7] = 30
swap intList[2] and intList[7]

round 2 finish [10, 20, 30, 50, 100, 80, 70, 90, 40, 60]

Selection sort

23

Look at each round in details:

round 3 start [10, 20, 30, 50, 100, 80, 70, 90, 40, 60]

find the minimum item in intList[3..9]
found minimum item: intList[8] = 40
swap intList[3] and intList[8]

round 3 finish [10, 20, 30, 40, 100, 80, 70, 90, 50, 60]

round 4 start [10, 20, 30, 40, 100, 80, 70, 90, 50, 60]

find the minimum item in intList[4..9]
found minimum item: intList[8] = 50
swap intList[4] and intList[8]

round 4 finish [10, 20, 30, 40, 50, 80, 70, 90, 100, 60]

round 5 start [10, 20, 30, 40, 50, 80, 70, 90, 100, 60]

find the minimum item in intList[5..9]
found minimum item: intList[9] = 60
swap intList[5] and intList[9]

round 5 finish [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]

Selection sort

24

Look at each round in details:

round 6 start [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]

find the minimum item in intList[6..9]
found minimum item: intList[6] = 70
swap intList[6] and intList[6] (so basically: do nothing)

round 6 finish [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]

round 7 start [10, 20, 30, 40, 50, 60, 70, 90, 100, 80]

find the minimum item in intList[7..9]
found minimum item: intList[9] = 80
swap intList[7] and intList[9]

round 7 finish [10, 20, 30, 40, 50, 60, 70, 80, 100, 90]

round 8 start [10, 20, 30, 40, 50, 60, 70, 80, 100, 90]

find the minimum item in intList[8..9]
found minimum item: intList[9] = 90
swap intList[8] and intList[9]

round 8 finish [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Selection sort

25

n = length-of(intList)

FOR i from 0 to (n-2)

 among intList[i], intList[i+1], …, intList[n-1]

 find the minimum item intList[kMin]

 swap intList[i] and intList[kMin]

END FOR

Algorithm for Selection Sort:

pseudocode

Selection sort

26

def selectionSort(intList):

 n = len(intList)

 for i in range(0, n-1):

 #{

 # find the minimum item in intList[i .. n-1]

 kMin = i

 for k in range(i+1, n):

 if (intList[k] < intList[kMin]):

 kMin = k

 # swap intList[i] and intList[kMin]

 if (kMin != i):

 temp = intList[i]

 intList[i] = intList[kMin]

 intList[kMin] = temp

 #}

Python implementation

Bubble sort

27

Bubble (up) sort algorithm:

● Go through the list, compares adjacent items and swaps
them if they are in the wrong order;

● Repeat this process until the list is sorted.

The name of the algorithm is derived from the fact that: after
each round, the largest items are bubbled up towards the
end of the list.

Bubble sort

28

round 0 start [60, 10, 90, 50, 100, 80, 70, 30, 40, 20]
 [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
 [10, 60, 90, 50, 100, 80, 70, 30, 40, 20]
 [10, 60, 50, 90, 100, 80, 70, 30, 40, 20]
 [10, 60, 50, 90, 100, 80, 70, 30, 40, 20]
 [10, 60, 50, 90, 80, 100, 70, 30, 40, 20]
 [10, 60, 50, 90, 80, 70, 100, 30, 40, 20]
 [10, 60, 50, 90, 80, 70, 30, 100, 40, 20]
 [10, 60, 50, 90, 80, 70, 30, 40, 100, 20]
round 0 end [10, 60, 50, 90, 80, 70, 30, 40, 20, 100]

We can see that after the 1st round, the largest item 100 is
bubbled up to the end of the list.

Let’s look at each round in details:
(compares adjacent items and swaps them if they are in the
wrong order)

Observe the movement of the largest item 100

Bubble sort

29

round 1 start [10, 60, 50, 90, 80, 70, 30, 40, 20, 100]
 [10, 60, 50, 90, 80, 70, 30, 40, 20, 100]
 [10, 50, 60, 90, 80, 70, 30, 40, 20, 100]
 [10, 50, 60, 90, 80, 70, 30, 40, 20, 100]
 [10, 50, 60, 80, 90, 70, 30, 40, 20, 100]
 [10, 50, 60, 80, 70, 90, 30, 40, 20, 100]
 [10, 50, 60, 80, 70, 30, 90, 40, 20, 100]
 [10, 50, 60, 80, 70, 30, 40, 90, 20, 100]
round 1 end [10, 50, 60, 80, 70, 30, 40, 20, 90, 100]

We can see that after the 2st round, the 2nd largest item 90
is bubbled up to the right place towards the end of the list.

Let’s look at each round in details:
(compares adjacent items and swaps them if they are in the
wrong order)

Bubble sort

30

round 2 start [10, 50, 60, 80, 70, 30, 40, 20, 90, 100]
 [10, 50, 60, 80, 70, 30, 40, 20, 90, 100]
 [10, 50, 60, 80, 70, 30, 40, 20, 90, 100]
 [10, 50, 60, 80, 70, 30, 40, 20, 90, 100]
 [10, 50, 60, 70, 80, 30, 40, 20, 90, 100]
 [10, 50, 60, 70, 30, 80, 40, 20, 90, 100]
 [10, 50, 60, 70, 30, 40, 80, 20, 90, 100]
round 2 end [10, 50, 60, 70, 30, 40, 20, 80, 90, 100]

We can see that after the 3rd round, the 3rd largest item 80
is bubbled up to the right place towards the end of the list.

Let’s look at each round in details:
(compares adjacent items and swaps them if they are in the
wrong order)

Bubble sort

31

round 3 start [10, 50, 60, 70, 30, 40, 20, 80, 90, 100]
 [10, 50, 60, 70, 30, 40, 20, 80, 90, 100]
 [10, 50, 60, 70, 30, 40, 20, 80, 90, 100]
 [10, 50, 60, 70, 30, 40, 20, 80, 90, 100]
 [10, 50, 60, 30, 70, 40, 20, 80, 90, 100]
 [10, 50, 60, 30, 40, 70, 20, 80, 90, 100]
round 3 end [10, 50, 60, 30, 40, 20, 70, 80, 90, 100]

We can see that after the 4th round, the 4th largest item 70 is
bubbled up to the right place towards the end of the list.

Let’s look at each round in details:
(compares adjacent items and swaps them if they are in the
wrong order)

Bubble sort

32

round 4 start [10, 50, 60, 30, 40, 20, 70, 80, 90, 100]
 [10, 50, 60, 30, 40, 20, 70, 80, 90, 100]
 [10, 50, 60, 30, 40, 20, 70, 80, 90, 100]
 [10, 50, 30, 60, 40, 20, 70, 80, 90, 100]
 [10, 50, 30, 40, 60, 20, 70, 80, 90, 100]
round 4 end [10, 50, 30, 40, 20, 60, 70, 80, 90, 100]

After the 5th round, the 5th largest item 60 is bubbled up to the right
place towards the end of the list.

Let’s look at each round in details:

round 5 start [10, 50, 30, 40, 20, 60, 70, 80, 90, 100]
 [10, 50, 30, 40, 20, 60, 70, 80, 90, 100]
 [10, 30, 50, 40, 20, 60, 70, 80, 90, 100]
 [10, 30, 40, 50, 20, 60, 70, 80, 90, 100]
round 5 end [10, 30, 40, 20, 50, 60, 70, 80, 90, 100]

After the 6th round, the 6th largest item 50 is bubbled up to the right
place towards the end of the list.

Bubble sort

33

round 6 start [10, 30, 40, 20, 50, 60, 70, 80, 90, 100]
 [10, 30, 40, 20, 50, 60, 70, 80, 90, 100]
 [10, 30, 40, 20, 50, 60, 70, 80, 90, 100]
round 6 end [10, 30, 20, 40, 50, 60, 70, 80, 90, 100]

After the 7th round, the 7th largest item 40 is bubbled up to the right
place towards the end of the list.

Let’s look at each round in details:

round 7 start [10, 30, 20, 40, 50, 60, 70, 80, 90, 100]
 [10, 30, 20, 40, 50, 60, 70, 80, 90, 100]
round 7 end [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

After the 8th round, the 8th largest item 30 is bubbled up to the right
place towards the end of the list.

round 8 start [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
round 8 end [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

After the 9th round, the 9th largest item 20 is bubbled up to the right
place towards the end of the list - and the sorting is DONE!!!

Bubble sort

34

n = length-of(intList)

FOR i from 0 to (n-2)

 FOR j from 1 to (n-i-1)

 // compare adj items, swap if in wrong order

 IF intList[j-1] > intList[j]:

 swap intList[j-1] and intList[j]

 END IF

 END FOR

END FOR

pseudocode

Bubble sort

35

def bubbleSort(intList):

 n = len(intList)

 for i in range(0, n-1):

 #{

 for j in range(1, n-i):

 #{

 # compare adj items, swap if in wrong order

 if intList[j-1] > intList[j]:

 # swap intList[j-1] and intList[j]

 temp = intList[j-1]

 intList[j-1] = intList[j]

 intList[j] = temp

 #}

 #}

Python implementation

Bubble sort

36

round 0 start [90, 100, 10, 20, 30, 40, 50, 60, 70, 80]
 [90, 100, 10, 20, 30, 40, 50, 60, 70, 80]
 [90, 10, 100, 20, 30, 40, 50, 60, 70, 80]
 [90, 10, 20, 100, 30, 40, 50, 60, 70, 80]
 [90, 10, 20, 30, 100, 40, 50, 60, 70, 80]
 [90, 10, 20, 30, 40, 100, 50, 60, 70, 80]
 [90, 10, 20, 30, 40, 50, 100, 60, 70, 80]
 [90, 10, 20, 30, 40, 50, 60, 100, 70, 80]
 [90, 10, 20, 30, 40, 50, 60, 70, 100, 80]
round 0 end [90, 10, 20, 30, 40, 50, 60, 70, 80, 100]

Let’s look at another example:

round 1 start [90, 10, 20, 30, 40, 50, 60, 70, 80, 100]
 [10, 90, 20, 30, 40, 50, 60, 70, 80, 100]
 [10, 20, 90, 30, 40, 50, 60, 70, 80, 100]
 [10, 20, 30, 90, 40, 50, 60, 70, 80, 100]
 [10, 20, 30, 40, 90, 50, 60, 70, 80, 100]
 [10, 20, 30, 40, 50, 90, 60, 70, 80, 100]
 [10, 20, 30, 40, 50, 60, 90, 70, 80, 100]
 [10, 20, 30, 40, 50, 60, 70, 90, 80, 100]
round 1 end [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Bubble sort

37

round 2 start [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
round 2 end [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Notice that in round 2, NOT a single swap is needed. It means that the
list has already been sorted. NO NEED TO GO ANY FURTHER TO
round 3, round 4, round 5, ...

Bubble sort

38

n = length-of(intList)

FOR i from 0 to (n-2)

 swapped = false

 FOR j from 1 to (n-i-1)

 // compare adj items, swap if in wrong order

 IF intList[j-1] > intList[j]:

 swap intList[j-1] and intList[j]

 # remember that swap is needed

 swapped = true

 END IF

 END FOR

 BREAK IF swapped = false

END FOR

pseudocode

Better algorithm:

Bubble sort

39

def bubbleSort(intList):

 n = len(intList)

 for i in range(0, n-1):

 swapped = False

 for j in range(1, n-i):

 # compare adj items, swap if in wrong order

 if intList[j-1] > intList[j]:

 # swap intList[j-1] and intList[j]

 temp = intList[j-1]

 intList[j-1] = intList[j]

 intList[j] = temp

 # remember that swap is needed

 swapped = True

 if not swapped:

 # swap is NOT needed, so list is SORTED

 break

Python implementation better algorithm

40

Suggested activities:

● Make up a list of integers and write down in details each
step in sorting this list of integers;

● Sort a list of integers in descending order;

● Write a Bubble (down) sort algorithm, so that after each
round, the smallest items are bubbled down towards
the start of the list;

Bubble sort

41

Suggested activities:

● Write a program to generate a random list of integers of
length N;

● Write a program to count how many comparison
operations, and how many swap operations are needed
to sort this random list using each sorting algorithms;

● Repeat this program many times with a large sample of
random lists of integers and display the statistics.

References

42

● Python 3 documentation
https://docs.python.org/3/

● NumPy Reference
https://numpy.org/doc/stable/reference/

