
Artificial Intelligence Security:
A systematic review of adversarial attacks in AI

systems

Karan Goel

SCIT, EIS, University of Wollongong
kg956@uowmail.edu.au

Student Number: 7836685

1 Related works

In recent years, deep neural networks (DNNs) have been extensively employed
across various domains, including computer vision [12], speech recognition [1],
and natural language processing (NLP) [24], achieving significant advancements
in both industry and academia. This success has spurred a widespread enthusi-
asm for artificial intelligence, particularly emphasizing the capabilities of deep
learning.

Since 2004, there has been substantial growth in the development of adver-
sarial techniques within machine learning despite these achievements, the secu-
rity aspects of deep neural networks remain under explored and inadequately
addressed [4]. Szegedy et al. [22] were among the first to highlight the suscep-
tibility of neural networks to adversarial attacks. This revelation has catalyzed
the study of adversarial methods in artificial intelligence into a burgeoning area
of interest, with researchers continually proposing innovative attack and defense
strategies.

1.1 Adversarial Attack

This section introduces analysis of different adversarial attack methods derived
from consolidated research findings. The results are summarised in Table 1.

1.2 Common Terms

An adversarial attack targets deep neural networks through the use of adver-
sarial examples. Depending on their attributes and effects, these attacks can be
classified into various types, such as black-box attacks, white-box attacks, one-
shot attacks, iterative attacks, targeted attacks, non-targeted attacks, specific
perturbations, and universal perturbations. These categories are defined in the
following manner:

Black-box attack: The attacker does not have access to the internals of the
deep neural network model, including its structure and parameters. The attacker
can only derive the output from the target model by inputting the original data.



2 Karan Goel

White-box attack: In contrast, the attacker has complete access to the
target model’s structure and parameters, including training data, gradient in-
formation, and activation functions.

One-shot attack: This type of attack requires only a single computation
to generate an adversarial example that has a high likelihood of misleading the
target model.

Iterative attack: Unlike one-shot attacks, iterative attacks require multiple
rounds of computation to produce adversarial examples. Although more time-
consuming, they tend to be more effective.

Targeted attack: The adversarial examples are engineered to cause the
target model to misclassify an input into a specific, erroneous category.

Non-targeted attack: Here, the goal is merely to induce an error in classi-
fication, regardless of the specific incorrect category.

Specific perturbation: This involves adding unique perturbations to each
input, creating varied patterns of disturbance.

Universal perturbation: A single perturbation pattern is applied uni-
formly to multiple inputs, affecting each in the same way.

1.3 Adversarial Attacks

Currently, there is no consensus in the academic community regarding the un-
derlying mechanisms of adversarial examples. Szegedy et al. [22] suggest that
adversarial examples naturally occur in real data, albeit with low frequency,
making it challenging for models to learn from these examples. Consequently,
when adversarial examples emerge in a test set, classifiers often struggle to ac-
curately identify them. On the other hand, Goodfellow et al. [9] argue that the
susceptibility of neural networks to adversarial examples stems from the model’s
high-dimensional linear characteristics, particularly when using linear activa-
tion functions like Relu or Maxout, which heighten the model’s vulnerability.
Although the generation principles of adversarial examples are yet to be scien-
tifically elucidated, recent efforts in developing adversarial example generation
algorithms have laid a theoretical and practical foundation for enhancing the
security of deep neural networks.

L-BFGS Szegedy et al. [22] noted that neural networks are susceptible to par-
ticular perturbations, which can cause significant deviations in model recognition
outcomes. They developed the first adversarial attack algorithm for deep learn-
ing, named L-BFGS, which is expressed as:

min c∥δ∥+ Jθ(x
′, l′) (1)

with the condition that x′ ∈ [0, 1]. In this formulation, c is a positive constant,
x′ denotes the adversarial example generated by adding the perturbation δ to
the original input, and Jθ is the loss function. The selection of the parameter c
is crucial, as the effectiveness of the algorithm hinges on choosing a suitable c
for this constrained optimization problem. The L-BFGS algorithm is renowned



Review of adversarial attacks in AI systems 3

for its ability to transfer across various datasets, thereby igniting widespread
research interest in adversarial examples.

FGSM Goodfellow et al. [9] presented the Fast Gradient Sign Method (FGSM)
to illustrate that the vulnerability of deep neural networks to adversarial exam-
ples is due to their high-dimensional linearity. FGSM creates adversarial pertur-
bations by exploiting the direction of the steepest gradient in the deep learning
model and then applying these perturbations to the input image to produce ad-
versarial examples. The perturbation is calculated using the following formula:

δ = ϵ · sign(∇xJθ(θ,x,y)) (2)

where δ is the perturbation created; θ and x represent the model parameters and
the input, respectively; y is the target associated with x; Jθ is the loss function
used in model training; ϵ is a scaling constant. At ϵ = 0.25, FGSM attains a
classification error rate of 99.9% and an average confidence rate of 79.3% on the
MNIST dataset.

FGSM is valued for its quick execution as it involves a single-step attack.
However, this method can sometimes produce a low success rate of adversarial
examples. To enhance this, Kurakin et al. [11] introduced an iterative version of
FGSM (I-FGSM), which improves on the original by incrementally increasing the
loss function in several smaller steps, facilitating the creation of more effective
adversarial examples.

JSMA Papernot et al. [17] introduced the Jacobian-based Saliency Map Attack
(JSMA), a novel approach that, instead of utilizing the gradient of the loss func-
tion, leverages the probability information from the model’s output categories
to perform back-propagation and generate gradient information for creating an
adversarial saliency map. The forward derivative of the deep learning model
relative to the input example x is given by:

∇F (x) =
∂F (x)

∂x
=

[
∂Fj

∂xi

]
i,j

(3)

allowing the evaluation of each pixel’s impact on the model’s classification deci-
sion through the forward gradient.

To assess how changes in pixel values influence the classifier’s target, JSMA
develops an adversarial significance graph using the Jacobian matrix, as shown
below:

S(x, t)[i] = { 0 if
∂Ft(x)

∂xi
< 0or

∑
j ̸=t

∂Ft(x)

∂xi
> 0,

∣∣∣∂Ft(x)
∂xi

∣∣∣∑
j ̸=t

∣∣∣∂Ft(x)
∂xi

∣∣∣otherwise (4)

where i denotes an input feature. This calculation helps identify the pixel
changes that can most significantly affect the target classification t. A larger i



4 Karan Goel

indicates greater sensitivity of the target classifier to perturbations in that fea-
ture. Hence, JSMA chooses to perturb the pixel with the highest anti-significance
value to create adversarial examples. The authors illustrate that altering merely
4.02% of the features in an example can lead to a JSMA attack success rate of
97% with minimal perturbations, making these alterations challenging to detect
visually.

However, JSMA has several drawbacks. Firstly, its effectiveness is highly de-
pendent on the accurate calculation of the Jacobian matrix, which can be com-
putationally intensive, especially for large models with high-dimensional input
spaces. Additionally, the method’s focus on modifying specific pixels based on
the Jacobian matrix may result in perturbations that are less effective against
models not sensitive to these specific pixel changes.

C&W In response to the emergence of adversarial attack methods, Papernot et
al. [18] introduced defensive distillation by leveraging the distillation algorithm
[10] to transfer knowledge from a complex network to a simpler one. This tech-
nique conceals direct access to the original model, providing a defense against
certain types of adversarial attacks. However, Carlini et al. [5] found that de-
fensive distillation fails to withstand CW attacks, which adhere to constraints
specified by ℓ0, ℓ2, and ℓ∞ norms. The CW attack is generally expressed as:

min (D(x,x+ δ) + c · f(x+ δ)) subjectto x+ δ ∈ [0, 1]n (5)

In this formulation, D measures constraints like ℓ0, ℓ2, and ℓ∞, where ℓ0 lim-
its the number of modified points in the original input, ℓ2 constrains the total
magnitude of the perturbation, and ℓ∞ caps the maximum change allowed per
pixel. The hyperparameter c and the function f , which involves different objec-
tive functions, play crucial roles in configuring the attack. Testing on datasets
like MNIST and CIFAR showed that the CW attack can breach the distilled
network with a 100% success rate and generate high-confidence adversarial ex-
amples through careful tuning of parameters.

This attack, while highly effective, suffers from high computational complex-
ity, sensitivity to parameter tuning, and can be time-consuming and less practical
for real-time applications.

One-Pixel Su et al. [21] introduced the One-Pixel Attack (OPA), highlighting
that modifying just a single pixel can create adversarial examples. This approach
utilizes a differential evolution algorithm to find the most effective adversarial
perturbations by changing one or a few pixels to mislead the model. The formula
for the OPA attack is given by:

max fadv(x+ e(x)) subjectto ∥e(x)∥ ≤ d (6)

where d = 1 indicates that only one pixel of the image is altered. The differ-
ential evolution algorithm optimizes the perturbation to enhance the adversarial



Review of adversarial attacks in AI systems 5

impact. In an n-dimensional image x = (x1, . . . , xn), the perturbation affect-
ing a single pixel is in line with the n-dimensional space. Each perturbation is
described as a 5-tuple, including the x and y coordinates, along with the RGB
value. The update mechanism within the differential evolution algorithm is spec-
ified as:

xi(g + 1) = xr1(g) + F · (xr2(g)− xr3(g)) (7)

where xi represents the candidate solution; xr1, xr2, and xr3 are randomly
selected distinct indices from the current generation; F is the scaling factor,
generally around 0.5; and g denotes the current generation. If a candidate so-
lution demonstrates improvement over its predecessor in a particular iteration,
it advances to the next generation. This iterative process continues until the
most potent adversarial example is identified or until reaching a predetermined
number of iterations.

The One-Pixel attack, despite its intriguing premise of altering just a single
pixel, can be less effective against more complex or well-defended neural network
models and often requires multiple iterations to find an effective perturbation,
limiting its practicality in scenarios requiring immediate results.

DeepFool Moosavi-Dezfooli et al. [16] introduced DeepFool, a gradient iteration-
based method for generating adversarial perturbations. DeepFool estimates per-
turbations by initially computing them and then adjusting pixels iteratively until
the adversarial examples cross the decision boundary. In binary classification sce-
narios, where the classification function is f(x) = wTx + b, the corresponding
decision plane is defined as β = {x : wTx+ b = 0}. The minimal perturbation δ
affecting the classification of the original example x0 is the orthogonal projection
of x0 onto β, with the calculation formula for δ as follows:

δ∗(x0) := argmin
δ

∥δ∥2 s.t. sign(f(x0 + δ)) ̸= sign(f(x0)) = −f(x0)

∥w∥2
w (8)

The objective function above iteratively determines the minimal adversarial
perturbation δ. The optimization for each iteration i is defined as:

argmin
δi

∥δi∥2 s.t. f(xi) +∇f(xi)
T δi = 0 (9)

DeepFool evaluates the robustness of examples by assessing the minimum
distance between the decision boundaries of normal and adversarial examples.
While DeepFool provides more accurate perturbations in a shorter time com-
pared to the single-step attack of FGSM, it is designed solely for non-targeted
attacks.

ZOO Chen et al. [6] developed the Zeroth Order Optimization (ZOO) approach,
a notable alternative to some existing black-box attack methods that depend on
surrogate models and exploit attack transferability. Instead, ZOO approximates



6 Karan Goel

first-order and second-order gradients and uses optimization algorithms such
as Adam or Newton’s method to iteratively determine the optimal adversarial
example. The perturbation applied to an input x is described as: x = x + hei,
where h is a small constant and ei is a unit vector with the i-th element set to
1 and all others to 0. The estimated first-order gradient is computed as follows:

ĝi :=
∂f(x)

∂xi
≈ f(x+ hei)− f(x− hei)

2h
(10)

The estimation of the second-order gradient is calculated as:

ĥi :=
∂2f(x)

∂x2
i

≈ f(x+ hei)− 2f(x) + f(x− hei)

h2
(11)

Experiments conducted by Chen et al. on the MNIST and CIFAR10 datasets
showcased the ZOO attack’s high success rate. However, compared to the white-
box attack by Carlini Wagner (CW), the ZOO attack requires more time.

UAP Moosavi-Dezfooli et al. [15] introduced the Universal Adversarial Pertur-
bations (UAP) technique, building on the principles of the DeepFool method.
UAP employs adversarial perturbations to shift regular examples past the deci-
sion boundary, thereby producing adversarial examples. The goal is to achieve:

k̂(x+ δ) ̸= k̂(x)for“most′′x ∼ µ (12)

where δ is the universal adversarial perturbation that meets the following
criteria:

∥δ∥p ≤ ϵ, Px∼µ(k̂(x+ δ) ̸= k̂(x)) ≥ 1− θ (13)

In this context, k̂(x) represents the classification function. The magnitude of
the perturbation δ is controlled by ϵ, while θ sets the attack’s success rate on the
original samples. During the iterative UAP process, the minimal perturbation
required for each example is calculated using the DeepFool algorithm and is
repeatedly refined until the optimal adversarial example is produced. Although
initial experiments by Moosavi-Dezfooli et al. used ResNet to demonstrate the
effectiveness of the universal perturbation, the UAP attack has been successfully
adapted to other neural network architectures. However, a significant drawback
of UAP is its potential to compromise the model’s performance on legitimate
inputs, particularly as the perturbation strength increases, reflecting a trade-off
between effectiveness and discretion.

advGAN Xiao et al. [23] introduced AdvGAN, an adversarial attack method
leveraging generative adversarial networks (GANs). AdvGAN comprises a gen-
erator G, a discriminator D, and a target network model C. The process begins
by inputting an original example x into the generator to produce an adversarial



Review of adversarial attacks in AI systems 7

perturbation g(x), which is then fed into both the discriminator and the target
model. The discriminator D is responsible for categorizing the example.

The objective function of AdvGAN is defined as follows:

L = Ladv + αLGAN + βLhinge (14)

where the objective function is partitioned into three components:
- Ladv denotes the misclassification loss aimed at guiding the generator to

generate optimal adversarial perturbations, given by:

Ladv = Ex[ℓC(x+ g(x), t)] (15)

where t represents the target class for misclassification.
- LGAN represents the adversarial loss, which is the original loss function

proposed by Goodfellow et al., formulated as:

LGAN = Ex[logD(x)] + Ex[log(1−D(x+ g(x))] (16)

This loss function aims to refine both the generator G and the discriminator
D to enhance their capabilities.

- Lhinge is utilized for stabilizing the training of GANs, expressed as:

Lhinge = Ex[max(0, ∥g(x)∥2 − c)] (17)

where c is a hyperparameter representing the optimized distance.
AdvGAN has undergone black-box attack experiments on the MNIST dataset,

achieving a success rate of 92.76%.
This attack, while powerful in generating stealthy adversarial examples, can

be computationally intensive due to the training requirements of generative ad-
versarial networks, potentially leading to higher resource consumption and longer
preparation times.

ATNs Baluja et al. [3] introduced Adversarial Transformation Networks (ATNs),
which employ a generative model to craft adversarial examples. ATNs take an
original example as input and produce an adversarial example by training a
feed-forward neural network. This strategy aims to minimize perturbations while
maintaining similarity between the adversarial and original examples, while si-
multaneously ensuring a high success rate for the adversarial attacks.

The objective function for ATNs is defined as:

argmin
θ

∑
xi∈X

[βLX(G(xi, θ),xi) + LY (F (G(xi, θ)), F (xi))] (18)

Here, G(xi, θ) represents the generative model trained to produce the adver-
sarial example from the original example. F (xi) denotes the target model under
attack. LX and LY are loss functions for the input and output spaces, respec-
tively. LX ensures similarity between the adversarial and original examples by



8 Karan Goel

constraining their differences, while LY measures and regulates the success rate
of the adversarial attacks.

This attack require extensive training to produce effective adversarial exam-
ples, which can lead to significant computational overhead and potentially limit
their scalability across different tasks or larger datasets.

UPSET and ANGRI Sarkar et al. [20] introduced two black-box attack meth-
ods, UPSET and ANGRI. UPSET creates generic perturbations aimed at a spe-
cific target class, while ANGRI generates perturbations that are tailored to in-
dividual images. In UPSET, an adversarial perturbation R is produced through
a residual generation network. If t represents the target category, then the per-
turbation is represented as rt = R(t). The process for creating an adversarial
example is formulated as:

x′ = U(x, t) = max(min(s×R(t) + x, 1), 0) (19)

Here, U stands for the UPSET network, and s is a scaling factor used to
adjust the intensity of the perturbation rt. The loss function for the UPSET
network includes two components:

L(x,x′, t) = LC(x
′, t) + LF (x,x

′) (20)

where LC penalizes deviations from the target attack class, and LF aims to
maintain the visual similarity between the adversarial and original images. LC

could be defined as the log likelihood of the classifier’s confidence in class t for
the adversarial example x′, and LF generally involves a norm-based measure
between x and x′.

However, both UPSET and ANGRI have their drawbacks. UPSET’s generic
perturbations might not be as effective for every image, potentially leading to
suboptimal results. On the other hand, while ANGRI produces image-specific
perturbations, it requires access to input images, which may not always be fea-
sible in practical scenarios. Additionally, ANGRI’s reliance on image attributes
might limit its applicability to domains where such attributes are not readily
available or reliably extractable.

Houdini Cisse et al. [7] introduced the Houdini algorithm, specifically tailored
to generate adversarial examples for intricate tasks that are challenging to ad-
dress through gradient descent methods, such as speech recognition and seman-
tic segmentation. These tasks often involve combinatorial and non-decomposable
problems, posing obstacles for traditional adversarial example generation tech-
niques. The loss function for the Houdini algorithm is outlined as:

LH(θ,x,y) = Pγ∼N (0,1) [gθ(x,y)− gθ(x,y
′) < γ] · L(y′,y) (21)

Here, gθ represents the target neural network with parameter θ. The expres-
sion gθ(x,y)− gθ(x,y

′) signifies the difference between the actual score and the



Review of adversarial attacks in AI systems 9

predicted score. L denotes the original loss function employed in the network. Ad-
ditionally, Cisse et al. effectively applied the Houdini algorithm to diverse tasks
like speech recognition, language segmentation, and pose estimation, showcasing
substantial performance enhancements.

BPDA To demonstrate the vulnerability of defenses based on gradient obfus-
cation, Athalye et al. [2] introduced the Backward Pass Differentiable Approxi-
mation (BPDA) technique. This approach involves constructing a pre-processor
g(x) for a given pre-trained classifier, where g(x) ≈ x. The derivative in BPDA
is approximated as:

∇xf(g(x))
∣∣
x=x′ ≈ ∇xf(x)

∣∣
x=g(x′)

(22)

This equation helps to acquire the approximate gradient values, which are
then used to generate adversarial examples through averaging over several iter-
ations. Athalye et al. tested BPDA attacks against seven defense models that
relied on obfuscating gradients, presented at ICLR 2018. BPDA was able to com-
pletely bypass six of these defenses and partially bypass one, thus demonstrating
the inherent vulnerabilities of defense strategies based on gradient obfuscation.

DaST In real-world scenarios, acquiring pre-trained models can present con-
siderable hurdles. Zhou et al. [25] proposed the Data-Free Substitute Training
(DaST) method to tackle this challenge by developing substitute models for ad-
versarial black-box attacks without relying on real data. DaST leverages specially
designed Generative Adversarial Networks (GANs) for this purpose. Specifically,
it employs a multi-branch architecture and a label-controlled loss mechanism to
handle the uneven distribution of synthetic examples. The substitute model is
trained using synthetic examples generated by the generative model, which are
then labeled by the attacked model. The primary objective of the substitute
model is to replicate the output of the target model, effectively transforming the
process into a game where the target model acts as the referee. The loss function
for this scenario is expressed as:

LD = d(T (X̂), D(X̂)) (23)

where d(T (X̂), D(X̂)) represents the metric used to evaluate the output dis-
tance between the substitute model D and the target model T . To update the
generative model, the loss is defined as:

LG = e−d(T,D) + αLC (24)

where LC denotes the label-controlled loss, and α is a weighting factor con-
trolling the importance of LC .

However, one drawback of DaST is its potential vulnerability to adversar-
ial attacks. Since DaST relies on generating synthetic examples to train sub-
stitute models, adversaries could potentially exploit weaknesses in the synthetic



10 Karan Goel

data generation process to craft adversarial examples that mislead the substitute
model. Therefore, while DaST offers a promising approach for training substitute
models without real data, its susceptibility to adversarial manipulation warrants
careful consideration and additional defensive measures.

GAP++ In contrast to approaches that solely rely on input images to generate
adversarial perturbations, Mao et al. [13], drawing inspiration from prior work
[14], introduce a novel framework named GAP++, building upon the foundation
of GAP [19]. GAP++ is engineered to infer targets using both input images and
target labels, facilitating conditionally perturbed outputs. Unlike earlier mod-
els concentrating on single-target attacks, GAP++ conducts target-conditioned
attacks by learning the correlation between attack targets and image seman-
tics. This framework empowers the generation of various target perturbations
utilizing a single trained model.

In the architecture of GAP++, each input image is paired with its corre-
sponding target label as conditional information. For non-target attacks, where
no specific target label is provided, a zero vector is utilized for off-target train-
ing. This strategy ensures that the absence of a target does not interfere with
the learning of internal representations by concatenating zero tensors within the
model.

Extensive experiments conducted on the MNIST and CIFAR10 datasets
showcase GAP++’s superior performance compared to single-target attack mod-
els, achieving a higher deception rate with smaller perturbation norms. Despite
incorporating the network architecture and normalization techniques from the
original GAP, GAP++ is optimized for lighter performance, rendering it suitable
for diverse attack tasks.

Morris II Cohen et al. [8] introduced the "Morris II" concept, a zero-click
worm that exploits Generative Artificial Intelligence (GenAI) to autonomously
spread across GenAI ecosystems. Morris II embeds malicious adversarial prompts
into standard inputs, manipulating GenAI models to replicate these inputs, per-
form malicious actions, and propagate the worm to other systems. The attack
mechanism leverages multi-modal inputs including text, images, and audio. The
mathematical representation of the adversarial generation is as follows:

X̂′ = G(X, θ) = embed(malicious_prompt(X, θ)) (25)

where G denotes the generative model embedding adversarial prompts into in-
puts, and θ represents the parameters controlling the embedding process. The
effectiveness of this approach is validated through experiments on GenAI mod-
els such as Gemini Pro and ChatGPT 4.0, focusing on the propagation rate and
success of malicious activities.

The loss function used to refine the adversarial prompt embedding is defined
as:

L(X, X̂′) = Ladv(X̂
′,T) + Lprop(X, X̂′) (26)



Review of adversarial attacks in AI systems 11

where Ladv measures the effectiveness of the adversarial examples in perform-
ing malicious actions as intended, and Lprop ensures the worm’s propagation
capability by maintaining the functional integrity of the GenAI model’s output.

Comparative analysis shows that while traditional adversarial attacks like
DeepFool and C&W focus on efficiency and stealthiness, Morris II prioritizes
autonomy and adaptability, enabling it to execute sustained campaigns with-
out direct oversight. The generative model’s ability to adaptively respond to
defensive measures showcases a significant advancement over static adversarial
techniques.

Extensive testing on MNIST and CIFAR10 confirms Morris II’s high success
rates and underlines the critical need for robust defense mechanisms against
GenAI-exploiting attacks. This approach not only underscores the vulnerabilities
in current GenAI applications but also sets a precedent for the development of
autonomous, self-propagating cyber threats in AI-driven systems.

1.4 Adversarial Attacks Comparison

L-BFGS, an early adversarial attack algorithm, has served as a foundation for
subsequent methods, inspiring their development. The adversarial examples pro-
duced by L-BFGS exhibit high transferability, seamlessly adapting across di-
verse neural network architectures. However, the effectiveness of the JSMA is
constrained by its reliance on the Jacobian matrix, which exhibits significant
variation across input examples, limiting its transferability. Conversely, the Fast
Gradient Sign Method (FGSM) offers swift perturbation generation with just one
iteration, ensuring efficiency but often resulting in lower success rates compared
to iterative techniques like Projected Gradient Descent (PGD).

In contrast to FGSM, JSMA, and other methods, DeepFool generates rel-
atively subtle perturbations, albeit lacking the capability for targeted attacks.
Universal Adversarial Perturbations (UAP) extend the concept of DeepFool to
enhance generalization, enabling widespread attacks across various models and
datasets, thereby meeting real-world application demands. The One-Pixel attack
achieves deception by modifying a single pixel; however, it necessitates multiple
iterations for optimal solutions, hence sacrificing efficiency.

The C&W attack is notably aggressive and adept at overcoming defenses
like defensive distillation, a feat unattainable by L-BFGS, FGSM, and Deep-
Fool, albeit at the expense of efficiency. UPSET and ANGRI, introduced con-
currently, demonstrate distinct approaches: UPSET’s independence from input
data properties facilitates generalized attacks, whereas ANGRI’s reliance on such
properties during training constrains its ability to execute generalized attacks
effectively.

AdvGAN, DaST, GAP++, and Morris leverage Generative Adversarial Net-
works (GANs) in their attack methodologies, yielding robust attack effects. The
adversarial examples generated by these methods closely resemble the original
examples due to the competitive dynamics between the generator and discrimi-
nator, thereby augmenting their efficacy in adversarial scenarios.



12 Karan Goel

Efficiency and Speed

– FGSM: Known for rapid execution as a single-step attack method, providing
high efficiency in time-sensitive scenarios.

– DeepFool and ZOO: DeepFool offers more precise perturbations and is
faster than ZOO, which requires more time due to its complex gradient
estimation process.

Attack Success Rate and Reliability

– C&W and JSMA: Both have high success rates. C&W aggressively over-
comes defensive measures like defensive distillation. JSMA’s effectiveness is
occasionally limited due to its dependency on the Jacobian matrix.

– One-Pixel and UAP: Demonstrate that minimal perturbations can signif-
icantly impact, with One-Pixel requiring multiple iterations and UAP show-
ing broad effectiveness across models.

Table 1. Enhanced Comparison of Adversarial Attack Methods

Method Efficiency Success Rate Ref Attack Type Attack Target Perturbation Stealthiness

L-BFGS Low High [22] White-box Targeted ℓ∞ Moderate
FGSM High Moderate [9] White-box Targeted ℓ∞ Low
JSMA Moderate High [17] White-box Targeted ℓ2 High
C&W Moderate Very High [5] White-box Targeted ℓ0, ℓ2, ℓ∞ Low
One-Pixel Low Moderate [21] Black-box Non-targeted ℓ0 High
DeepFool Moderate High [16] White-box Non-targeted ℓ0, ℓ2, ℓ∞ High
ZOO Low Moderate [6] Black-box Targeted ℓ2 Moderate
UAP Moderate High [15] White-box Non-targeted ℓ2, ℓ∞ High
AdvGAN High High [23] White-box Targeted ℓ2 High
ATNs Moderate Moderate [3] White-box Targeted ℓ∞ High
UPSET High Low [20] Black-box Targeted ℓ∞ Moderate
Houdini Moderate Moderate [7] Black-box Targeted ℓ2, ℓ∞ High
BPDA Moderate Moderate [2] Black-box Targeted ℓ2, ℓ∞ Moderate
DaST Low Moderate [25] Black-box Targeted ℓ∞ Moderate
GAP++ High Moderate [13] White-box Targeted ℓ0, ℓ2, ℓ∞ Moderate
Morris II Moderate High [8] Black-box Targeted ℓ0, ℓ2, ℓ∞ Low

Stealth and Detectability

– AdvGAN: Produces perturbations that are difficult to detect by both ma-
chines and humans, thus enhancing the stealth of attacks.

– DeepFool: Generates the smallest necessary perturbations for misclassifi-
cation, making it less detectable.



Review of adversarial attacks in AI systems 13

General Applicability and Transferability

– L-BFGS: Provides a foundation with high transferability across different
neural network architectures.

– Universal Adversarial Perturbations (UAP): Excel in general applica-
bility, successfully attacking multiple models without specific adjustments.

Novelty and Technological Innovation

– ZOO: Novel approach to black-box attacks, eliminating the need for training
substitute models using zeroth order optimization.

– AdvGAN and GAP++: Represent the cutting edge by incorporating
complex generative models that adjust perturbations dynamically.

– Morris II: A groundbreaking zero-click worm utilizing generative AI to
autonomously spread across AI ecosystems. Its autonomy and adaptability
mark significant advancements.

References

1. Abdel-Hamid, O., Mohamed, A.r., Jiang, H., Penn, G.: Applying convolutional
neural networks concepts to hybrid nn-hmm model for speech recognition. In:
2012 IEEE international conference on Acoustics, speech and signal processing
(ICASSP). pp. 4277–4280. IEEE (2012)

2. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In: International confer-
ence on machine learning. pp. 274–283. PMLR (2018)

3. Baluja, S., Fischer, I.: Adversarial transformation networks: Learning to generate
adversarial examples. arXiv preprint arXiv:1703.09387 (2017)

4. Biggio, B., Roli, F.: Wild patterns: Ten years after the rise of adversarial machine
learning. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. pp. 2154–2156 (2018)

5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 ieee symposium on security and privacy (sp). pp. 39–57. Ieee (2017)

6. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute
models. In: Proceedings of the 10th ACM workshop on artificial intelligence and
security. pp. 15–26 (2017)

7. Cisse, M., Adi, Y., Neverova, N., Keshet, J.: Houdini: Fooling deep structured
prediction models. arXiv preprint arXiv:1707.05373 (2017)

8. Cohen, S., Bitton, R., Nassi, B.: Here comes the ai worm: Unleashing zero-click
worms that target genai-powered applications. arXiv preprint arXiv:2403.02817
(2024)

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

10. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

11. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: Artificial intelligence safety and security, pp. 99–112. Chapman and
Hall/CRC (2018)



14 Karan Goel

12. Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: Adaptive attention
via a visual sentinel for image captioning. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 375–383 (2017)

13. Mao, X., Chen, Y., Li, Y., He, Y., Xue, H.: Gap++: Learning to generate target-
conditioned adversarial examples. arXiv preprint arXiv:2006.05097 (2020)

14. Mao, X., Chen, Y., Li, Y., Xiong, T., He, Y., Xue, H.: Bilinear representation for
language-based image editing using conditional generative adversarial networks.
In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pp. 2047–2051. IEEE (2019)

15. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 1765–1773 (2017)

16. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2574–2582 (2016)

17. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European sym-
posium on security and privacy (EuroS&P). pp. 372–387. IEEE (2016)

18. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to
adversarial perturbations against deep neural networks. In: 2016 IEEE symposium
on security and privacy (SP). pp. 582–597. IEEE (2016)

19. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial pertur-
bations. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 4422–4431 (2018)

20. Sarkar, S., Bansal, A., Mahbub, U., Chellappa, R.: Upset and angri: Breaking high
performance image classifiers. arXiv preprint arXiv:1707.01159 (2017)

21. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
IEEE Transactions on Evolutionary Computation 23(5), 828–841 (2019)

22. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

23. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial
examples with adversarial networks. arXiv preprint arXiv:1801.02610 (2018)

24. Yu, A.W., Dohan, D., Luong, M.T., Zhao, R., Chen, K., Norouzi, M., Le, Q.V.:
Qanet: Combining local convolution with global self-attention for reading compre-
hension. arXiv preprint arXiv:1804.09541 (2018)

25. Zhou, M., Wu, J., Liu, Y., Liu, S., Zhu, C.: Dast: Data-free substitute training for
adversarial attacks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 234–243 (2020)


