
Service -Oriented Computing: Concepts, Characteristics and Directions

Mike P. Papazoglou
Tilburg University

INFOLAB,
Dept. of Information Systems and Management,
PO Box 90153, Tilburg 500 LE, The Nethrlands

mikep@uvt.nl

Abstract

Service-Oriented Computing (SOC) is the computing
paradigm that utilizes services as fundamental elements
for developing applications/solutions. To build the ser-
vice model, SOC relies on the Service Oriented Architecture
(SOA), which is a way of reorganizing software applications
and infrastructure into a set of interacting services. How-
ever, the basic SOA does not address overarching concerns
such as management, service orchestration, service trans-
action management and coordination, security, and other
concerns that apply to all components in a services archi-
tecture.

In this paper we introduce an Extended Service Oriented
Architecture that provides separate tiers for composing and
coordinating services and for managing services in an open
marketplace by employing grid services.

1 Introduction

Service-Oriented Computing (SOC) is the computing
paradigm that utilizes services as fundamental elements
for developing applications/solutions. Services are self-
describing, platform-agnostic computational elements that
support rapid, low-cost composition of distributed applica-
tions. Services perform functions, which can be anything
from simple requests to complicated business processes.
Services allow organizations to expose their core compe-
tencies programmatically over the Internet (or intra-net) us-
ing standard (XML-based) languages and protocols, and be
implemented via a self-describing interface based on open
standards.

Because services provide a uniform and ubiquitous in-
formation distributor for wide range of computing devices
(such as handheld computers, PDAs, cellular telephones,
or appliances) and software platforms (e.g., UNIX or Win-

dows), they constitute the next major step in distributed
computing.

Services are offered by service providers - organizations
that procure the service implementations, supply their ser-
vice descriptions, and provide related technical and busi-
ness support. Since services may be offered by different
enterprises and communicate over the Internet, they pro-
vide a distributed computing infrastructure for both intra-
and cross-enterprise application integration and collabora-
tion. Clients of services can be other solutions or applica-
tions within an enterprise or clients outside the enterprise,
whether these are external applications, processes or cus-
tomers/users. Consequently, to satisfy these requirements
services should be:

• Technology neutral:they must be invocable through
standardized lowest common denominator technolo-
gies that are available to almost all IT environments.
This implies that the invocation mechanisms (proto-
cols, descriptions and discovery mechanisms) should
comply with widely accepted standards.

• Loosely coupled:they must not require knowledge or
any internal structures or conventions (context) at the
client or service side.

• Supportlocation transparency:services should have
their definitions and location information stored in a
repository such as UDDI and be accessible by a vari-
ety of clients that can locate and invoke the services
irrespective of their location.

Services come in two flavors:simple and composite
services. The unit of reuse with services is functional-
ity that is in place and readily available and deployable
as services that are capable of being managed to achieve
the required level of service quality. Composite services
involve assembling existing services that access and com-
bine information and functions from possibly multiple ser-

Highlight



vice providers. For example, consider a collection of sim-
ple services that accomplish a specific business task, such
as order tracking, order billing, and customer relationships
management. A enterprise may offer a composite web ser-
vice that composes these services together to create a dis-
tributed e-business application that provides customized or-
dering, customer support, and billing for a specialized prod-
uct line (e.g., telecommunication equipment, medical insur-
ance, etc). Accordingly, services help integrate applications
that were not written with the intent to be easily integrated
with other distributed applications and define architectures
and techniques to build new functionality while integrating
existing application functionality.

Service-based applications are developed as indepen-
dent sets of interacting services offering well-defined in-
terfaces to their potential users. This is achieved with-
out the necessity for tight coupling of distributed applica-
tions between transacting partners, nor does it require pre-
determined agreements to be put into place before the use
of an offered service is allowed.

While the services encapsulate the business functional-
ity, some form of inter-service infrastructure is required to
facilitate service interactions and communication. Differ-
ent forms of this infrastructure are possible because services
may be implemented on a single machine, distributed across
a set of computers on a local area network, or distributed
more widely across several wide area networks. A particu-
larly interesting case is when the services use the Internet as
the communication medium and open Internet-based stan-
dards. Aweb serviceis a specific kind of service that is
identified by a URI and exhibits the following characteris-
tics:

• It exposes its features programmatically over the In-
ternet using standard Internet languages and protocols,
and

• It can be implemented via a self-describing interface
based on open Internet standards (e.g., XML interfaces
which are published in a network-based repositories).

Interactions of web-services occur as SOAP calls carry-
ing XML data content and the service descriptions of the
web-services are expressed using WSDL [15] as the com-
mon (XML-based) standard. WSDL is used to publish a
web service in terms of its ports (addresses implementing
this service), port types (the abstract definition of operations
and exchanges of messages), and bindings (the concrete
definition of which packaging and transportation protocols
such as SOAP are used to inter-connect two conversing end
points). The UDDI [14] standard is a directory service
that contains service publications and enables web-service
clients to locate candidate services and discover their de-
tails.

Web services share the characteristics of more general
services, but they require special consideration as a result of
using a public, insecure, low-fidelity mechanism for inter-
service interactions.

This paper is organized as follows. In section 2 we intro-
duce the concept of software as a service, while in section
3 we describe the basic service oriented architecture. Sec-
tion 4 describes an extended service architecture material-
ized by grid services and section 5 introduces the concept of
service bus for open service marketplaces. Finally, section
6 presents our conclusions.

2 A view of software as a service

The concept of software-as-a-service espoused by SOC
is revolutionary and appeared first with the ASP (Applica-
tions Service Provider) software model. An ASP is a third
party entity that deploys, hosts and manages access to a
packaged application and delivers software-based services
and solutions to customers across a wide area network from
a central data center. Applications are delivered over net-
works on a subscription or rental basis. In essence, ASPs
were a way for companies to outsource some or even all
aspects of their information technology needs.

By providing a centrally hosted Intent application, the
ASP takes primary responsibility for managing the soft-
ware application on its infrastructure, using the Internet as
the conduit between each customer and the primary soft-
ware application. What this means for an enterprise is that
the ASP maintains the application, the associated infrastruc-
ture, and the customer’s data and ensures that the systems
and data are available whenever needed.

Although the ASP model introduced the concept of
software-as-a-service first, it suffered from several inherent
limitations such as the inability to develop highly interac-
tive applications, inability to provide complete customiz-
able applications [7]. This resulted in monolithic architec-
tures, highly fragile, customer-specific, non-reusable inte-
gration of applications based on tight coupling principles.
Today we are in the midst of another significant develop-
ment in the evolution of software-as-a-service architected
for loosely-coupled asynchronous interactions on the basis
of XML-based standards with intention to make access to
and communications of applications over the Internet eas-
ier.

The SOC paradigm allows the software-as-a-service
concept to expand to include the delivery of complex busi-
ness processes and transactions as a service, while permit-
ting applications be constructed on the fly and services to be
reused everywhere and by anybody. Perceiving the relative
benefits of (web) services technology many ASPs are mod-
ifying their technical infrastructures and business models to
be more akin to those of web service providers.

UDDI is like swagger and istio but less advance it is use for initial service discovery, mostly for SOAP based apps



3 The basic service oriented architecture

To build integration-ready applications the service model
relies on the service-oriented architecture (SOA). SOA is a
way of reorganizing a portfolio of previously siloed soft-
ware applications and support infrastructure into an inter-
connected set of services, each accessible through standard
interfaces and messaging protocols. Once all the elements
of an enterprise architecture are in place, existing and future
applications can access these services as necessary without
the need of convoluted point-to-point solutions based on in-
scrutable proprietary protocols. This architectural approach
is particularly applicable when multiple applications run-
ning on varied technologies and platforms need to commu-
nicate with each other. In this way, enterprises can mix and
match services to perform business transactions with mini-
mal programming effort.

Publish

Service
Provider

Service
Regist ry 

Service
ClientFind

Bind

Figure 1. The basic Service Oriented Archi-
tecture.

SOA is a logical way of designing a software system to
provide services to either end-user applications or other ser-
vices distributed in a network through published and dis-
coverable interfaces. The basic SOA defines an interac-
tion between software agents as an exchange of messages
between service requesters (clients) and service providers.
Clients are software agents that request the execution of a
service. Providers are software agents that provide the ser-
vice. Agents can be simultaneously both service clients and
providers. Providers are responsible for publishing a de-

scription of the service(s) they provide. Clients must able
to find the description(s) of the services they require and
must be able to bind to them.

The basic SOA is not an architecture only about services,
it is a relationship of three kinds of participants: theservice
provider, theservice discovery agency, and theservice re-
questor(client). The interactions involve thepublish, find
andbind operations [4], see Figure-1. These roles and op-
erations act upon the service artifacts: the service descrip-
tion and the service implementation. In a typical service-
based scenario a service provider hosts a network accessi-
ble software module (a implementation of a given service).
The service provider defines a service description of the ser-
vice and publishes it to a client or service discovery agency
through which a service description is published and made
discoverable. The service requestor uses a find operation to
retrieve the service description typically from a the discov-
ery agency, i.e., a registry or repository like UDDI, and uses
the service description to bind with the service provider and
invoke the service or interact with service implementation.
Service provider and service requestor roles are logical con-
structs and a service may exhibit characteristics of both.

The fundamental logical view of a service in the basic
SOA is that it is a service interface and implementation.
A service is usually a business function implemented in
software, wrapped with a formal documented interface that
is well known and known where to be found not only by
agents who designed the service but also by agents who do
not know about how the service has been designed and yet
want to access and use it. Black box encapsulation inher-
its this feature from the principles of modularity in software
engineering, e.g., modules, objects and components. Ser-
vices are different from all of these forms of modularity in
that they represent complete business functions, they are in-
tend to be reused and engaged in new transactions not at the
level of an individual program or even application but at the
level of the enterprise or even across enterprises. They are
intended to represent meaningful business functionality that
can be assembled into a larger and new configurations de-
pending on the need of particular kinds of users particular
client channels.

The interface simply provides the mechanism by which
services communicate with applications and other services.
Technically, the service interface is the description of the
signatures of a set of operations that are available to the ser-
vice client for invocation. The service specification must
explicitly describe all the interfaces that a client of this
service expects as well as the service interfaces that must
be provided by the environment into which the service is
assembled/composed. As service interfaces of composed
services are provided by other (possibly singular) services,
the service specification serves as a means to define how
a composite service interface can be related to the inter-

Highlight



faces of the imported services and how it can be imple-
mented out of imported service interfaces. This is shown
in Figure 2. In this sense the service specification has a
mission identical to a composition meta-model that pro-
vides a description of how the web-service interfaces in-
teract with each other and how to define a new web-service
interface (<PrortType>) as a collection (assembly) of ex-
isting ones (imported<PrortType>s), see Figure-2. A ser-
vice specification, thus, defines the encapsulation boundary
of a service, and consequently determines the granularity of
replaceability of web-service interface compositions. This
is the only way to design services reliably using imported
services without knowledge of their implementations. As
service development requires that we deal with multiple im-
ported service interfaces it is useful to introduce this stage
the concept of aservice usage interface. A service usage
interface is simply the interface that the service exposes to
its clients [10] . This means that the service usage inter-
face is not different from the imported service interfaces in
Figure-2, it is, however, the only interface viewed by a client
application.

Figure-2 distinguishes between two broad aspects of ser-
vices:service deployment, which we examined already, ver-
susservice realization. The service realization strategy in-
volves choosing from an increasing diversity of different
options for services, which may be mixed in various com-
binations including:

• In house service design and implementation. Once a
service is specified, the design of its interfaces or sets
of interfaces and the coding of its actual implementa-
tion happens in-house.

• Purchasing/leasing/paying for services. Complex web-
services that are used to develop trading applications
are commercialisable software commodities that may
be acquired from a service provider, rather than im-
plemented internally. These types of services are very
different from the selling of shrink-wrapped software
components, in that payment should be on an execu-
tion basis for the delivery of the service, rather than on
a one-off payment for an implementation of the soft-
ware. For complex trading web-services, the service
provider may have different charging policies such as
payment per usage, payment on a subscription basis,
lifetime services and so on.

• Outsourcing service design and implementation. Once
a service is specified, the design of its interfaces or sets
of interfaces and the coding of its actual implementa-
tion may be outsourced. Software outsourcings are ad-
vantageous in the case of organizations that have be-
come frustrated with the shortcomings of their internal
IT departments.

• Using wrappers and/or adapters. Non-component im-
plementations for services may include database func-
tionality or legacy software accessed by means of
adapters or wrappers. Wrappers reuse legacy code by
converting the legacy functionality and encapsulating
it inside components. Adapters use legacy code in
combination with newly developed code. This newly
developed code may contain new business logic and
rules that supplement the converted legacy functional-
ity.

Service descriptionsare used to advertise the service ca-
pabilities, interface, behavior, and quality. Publication of
such information about available services (on a service reg-
istry) provides the necessary means for discovery, selec-
tion, binding, and composition of services. In particular,
the service interface description publishes the service signa-
ture while the service capability description states the con-
ceptual purpose and expected results of the service. The
(expected) behavior of a service during its execution is de-
scribed by its service behavior description (e.g., as a work-
flow process). Finally, the Quality of Service (QoS) de-
scription publishes important functional and non-functional
service quality attributes, such as service metering and cost,
performance metrics (response time, for instance), secu-
rity attributes, (transactional) integrity, reliability, scalabil-
ity, and availability.

Service implementationcan also be very involved be-
cause in many occasions many organizations rely on sin-
gle monolithic programs to represent the single service or
service method implementation. But very often in order to
fulfil the functions of a service multiple programs are in-
volved, e.g., programs that belong to multiple applications
of new programs that belong to multiple applications. Ap-
plication composition and integration very often is involved
in fulfilling the service. At the logical level of the service
we do not pay any attention to this. All we need to know
is that there is a business function implemented in software
somehow and this is the interface to it. At development time
we care, however, how the service is implemented. more
specifically, what are the methods and the internal construc-
tion of the implementation.

The service in the basic SOA is designed in such a way
that it can be invoked by various service clients and is log-
ically decoupled from any service caller (loose coupling).
Services can be reused and one does not have to look inside
the service to understand what it does. There are no assump-
tions of any kind in the service as to what kind of service
consumer is using and for what purpose and in what context.
In SOA the service is not coupled with its callers, in fact it
knows nothing about them. However, the service callers are
very much coupled with the service as they know what the
services are what they call and what they can accomplish
. In summary, in SOA service consumers make targeted



Service-realization

Web-service
Implementation

(outsourced)

Web-service 
specification

Imported 
web-service 

interfaces

Web-service 
usage

interface

Web-service
client

reuse/buy
build/buy

build

Web-service
Implementation

(in-house)

Web-service
Implementation

(outsourced)

Service-deployment

Service-realization

Web-service
Implementation

(outsourced)

Web-service 
specification

Imported 
web-service 

interfaces

Web-service 
usage

interface

Web-service
client

reuse/buy
build/buy

build

Web-service
Implementation

(in-house)

Web-service
Implementation

(outsourced)

Service-deployment

Figure 2. Service interfaces and implementation.

named calls, they target specific services through specific
interfaces that are exposed by the services and therefore
they are very much dependent on availability and the ver-
sion of the service that they are calling.

4 Grid services and the extended service ori-
ented architecture

The basic SOA does not address overarching concerns
such as management, service orchestration, service transac-
tion management and coordination, security, and other con-
cerns that apply to all components in a services architecture.
Such concerns are addressed by the extended SOA (ESOA)
[11] that is depicted in Figure-3. This layered architecture
utilizes the basic SOA constructs as its bottom layer.

Theservice composition layerin the ESOA encompasses
necessary roles and functionality for the consolidation of
multiple services into a single composite service. Resulting
composite services may be used byservice aggregatorsas
components (i.e., basic services) in further service composi-
tions or may be utilized as applications/solutions by service
clients. Service aggregators thus become service providers
by publishing the service descriptions of the composite ser-
vice they create. A service aggregator is a service provider

that consolidates services that are provided by other service
providers into a distinct value added service. Service ag-
gregators develop specifications and/or code that permit the
composite service to perform functions that include the fol-
lowing:

• Coordination: controls the execution of the component
services, and manages dataflow among them and to the
output of the component service (e.g., by specifying
workflow processes and using a workflow engine for
run-time control of service execution).

• Monitoring: allows subscribing to events or informa-
tion produced by the component services, and publish
higher-level composite events (e.g., by filtering, sum-
marizing, and correlating component events).

• Conformance: ensures the integrity of the composite
service by matching its parameter types with those of
its components, imposes constraints on the component
services (e.g., to ensure enforcement of business rules),
and performs data fusion activities.

• QoS composition: leverages, aggregates, and bundles
the component’s QoS to derive the composite QoS,
including the composite service’s overall cost, per-



Composition

Description & Basic Operations

Mana-gement

•Capability
•Interface
•Behavior
•QoS

•Coordination•Conformance•Monitoring
•QoS

•Publication
•Discovery
•Selection
•Binding

Service provider

Service client

Service aggregator

performs

publishes

uses

Role actions

becomes

Operations•Assurance•Support

Market•Certification•Rating•SLAs

Service operator

Market maker

Managed services

Composite services

Basic services

Figure 3. The Extended Service Oriented Architecture.

formance, security, authentication, privacy, (transac-
tional) integrity, reliability, scalability, and availability.

The recently proposed standard Business Process Exe-
cution Language for web services (BPEL) [5] is an XML-
based effort to addresses the definition of a new web ser-
vice in terms of compositions of existing services. A BPEL
process is defined ”in the abstract” by referencing and inter-
linking portTypes specified in the WSDL definitions of the
web services involved in a process.

Managing e-business critical applications requires in-
depth administration capabilities and integration across a
diverse, distributed environment. Any downtime of key
e-business systems has a negative impact on business to
the extent of throwing you out of the market. To counter
such a situation, enterprises need to constantly monitor the
health of their applications. The performance should be
in tune, at all times and under all load conditions. Ap-
plication management is thus an indispensable element of
the ESOA that includes performance management and busi-
ness/application specific management.

To manage critical applications/solutions and specific
markets, ESOA provides managed services in theservice
management layerdepicted at the top of the ESOA pyra-
mid. In particular, ESOA’soperations managementfunc-

tionality is aimed at supporting critical applications that re-
quire enterprises to manage the service platform, the de-
ployment of services and the applications. Operations man-
agement functionality may provide detailed application per-
formance statistics that support assessment of the applica-
tion effectiveness, permit complete visibility into individual
business transactions, and deliver application status notifi-
cations when a particular activity is completed or when a de-
cision condition is reached. We refer to the organization re-
sponsible for performing such operation management func-
tions as theservice operator. Depending on the application
requirements a service operator may be a service client or
aggregator.

Operations management is a critical function that can be
used to monitor the correctness and overall functionality of
aggregated/orchestrated services thus avoiding a severe risk
of service errors. In this way one can avoid typical errors
that may occur when individual service-level agreements
(SLAs) are not properly matched. This fact was illustrated
by the failure of the rail network operator in the UK, appar-
ently triggered in part by a complete mismatch between the
SLAs imposed on the track repair subcontractors and the
SLAs and legitimate safety expectations of the train com-
panies [3]. Proper management and monitoring provides a



strong mitigation of this type of risk, since the operations
management level allows business managers to check the
correctness, consistency and adequacy of the mappings be-
tween the input and output service operations and aggregate
services in a service composition.

Another aim of ESOA’s service management layer is to
provide support for open service marketplaces. Currently,
there exist several vertical industry marketplaces, such as
those for the semiconductor, automotive, travel, and finan-
cial services industries. Open service marketplaces oper-
ate much in the same way like vertical marketplaces, how-
ever, they are open. Their purpose is to create opportunities
for buyers and sellers to meet and conduct business elec-
tronically, or aggregate service supply/demand by offering
added value services and grouping buying power (just like
a co-op). The scope of such a service marketplace would be
limited only by the ability of enterprises to make their offer-
ings visible to other enterprises and establish industry spe-
cific protocols by which to conduct business. Open service
marketplaces typically support supply chain management
by providing to their members a unified view of products
and services, standard business terminology, and detailed
business process descriptions. In addition, service market-
places must offer a comprehensive range of services sup-
porting industry-trade, including services that provide busi-
ness transaction negotiation and facilitation, financial set-
tlement, service certification and quality assurance, rating
services, service metrics such as number of current service
requesters, average turn around time, and manage the nego-
tiation and enforcement of SLAs. ESOA’s service manage-
ment layer includes market management functionality (as
illustrated in Figure-3) that is aimed to support these mar-
ketplace functions. The marketplace is created and main-
tained by amarket maker(a consortium of organizations)
that brings the suppliers and vendors together. The market
maker assumes the responsibility of marketplace adminis-
tration and performs maintenance tasks to ensure the ad-
ministration is open for business and, in general, provides
facilities for the design and delivery of an integrated service
that meets specific business needs and conforms to industry
standards.

The ESOA service management functions can rely on
grid computing as it targets manageability. One of the aims
of grid computing is the ability to manage ever-growing
and ever more complex networks without overheads. The
grid service domain architecture is a high level abstraction
model that describes the common behaviors, attributes, and
operations and interfaces to allow a collection of services to
function as an integral unit and collaborate with others in a
fully distributed, heterogeneous, grid-enabled environment.
Service grids constitute a key component of the distributed
services management as the scope of services expands be-
yond the boundaries of a single enterprise to encompass a

broad range of business partners, as is the case in open mar-
ketplaces. For this purposegrid servicescan be used to pro-
vide the functionality of the ESOA’s service management
layer [6], [13].

The principal strengths of web and grid services are com-
plementary, with web services focusing on platform-neutral
description, discovery and invocation, and grid services fo-
cusing on the dynamic discovery and efficient use of dis-
tributed computational resources. This complementarity of
Web and Grid Services has given rise to the proposed Open
Grid Services Architecture (OGSA) [6] [13], which makes
the functionality of grid services available through web ser-
vice interfaces. Grid services are stateful services that pro-
vide a set of well-defined interfaces and follow specific con-
ventions to facilitate coordinating and managing collections
of web service providers/aggregators. The grid service in-
dicates how a client can interact with it and is defined in
WSDL. The state of the service is exposed to its clients
as a standard interface that addresses web service filtering,
discovery, routing, aggregation, selection, data and context
sharing, notification and life-time management.

5 The service grid bus

Grid services used in the ESOA’s service management
layer to provide an enabling infrastructure for systems and
applications that require the integration and management
of services with the context of dynamic virtual market-
places. Grid services provide the possibility to achieve end-
to-end qualities of service and address critical application
and system management concerns. To this end grid ser-
vices provide the grid infrastructure over which services in-
teract, aggregate, and coordinate through a distinct archi-
tectural tier. This infrastructure is called theservice grid
bus. The service grid bus (SGB) provides a high-level ab-
straction architecture and management facilities to allow
services (within an open service marketplace) to function
as an integral unit and collaborate with other services. The
SGB architecture provides facilities for registration, discov-
ery, selection/routing, business rules, filtering, routing, ag-
gregation, fail-over, and topological mapping of service in-
stances. The business rules govern the SGB’s automatic
processing for incoming service requests over aggregated
service instances.

The service bus is a logical construct that cares very little
where or on what platform a service provider runs. A user
interface, designed to exactly match the business require-
ments may consume the services provided by the service
bus, leaving the enterprise a free hand to choose the most
efficient service provider.

An SGB is designed to provide a single service connec-
tivity and a management tier that addresses the following
concerns:



Service

Registry
Service
entry

Service
entry

Service 
dispatching

Service 
dispatching

service orchestration engineservice orchestration engine

Management & PolicyManagement & Policy

Service Port TypesService Port Types
grid services &
service implementations

service provisioning, 
policy-QoS, 
selection/routing,
event monitoring,
workflow/transactions

SLAs,
security, 
recovery,
business rules, 
service mapping,
discovery, 
Selection,
……..

incoming service request

response

Figure 4. The service grid bus.

• Reach and robustness: The SGB allows to locate ser-
vices anywhere in an open service marketplace and in-
sulate them from connection failures, errors, and barri-
ers such as firewalls, proxies, and caches. It guarantees
that each service always sees an errorfree connection
to any other service. The application as a whole should
be robust under transient or long-term failure of one or
more service components.

• Policy and security management: Services need to de-
scribe their capabilities and requirements to their en-
vironment and potential users. A collection of ca-
pabilities and requirements is referred to as a policy
[8]. A policy may express such diverse characteristics
as service transactional capabilities, security, response
time, pricing, etc. For example, a policy of a service
may specify that all interactions must be invoked under
transaction protection, that incoming messages have to
be encrypted, that outgoing messages will be signed,
that responses may only be accepted within a specific
time interval, etc. Finally, services must be restricted
to authorized producers and consumers. The SGB en-
forces the security policy uniformly and universally
across the entire marketplace.

• Development time and cost: The SGB provides the fa-

cilities that allow services to be easily aggregated into
composite, higher-level services that match the factor-
ing of an application. New services and clients will be
added throughout the lifetime of the application. That
process must be managed quickly, efficiently and cost
effectively.

• Scalability and performance: The SGB must be able to
perform well despite slow components and long, un-
predictable network latencies.

The SGB lets service components interact over any net-
work connection, handling all network errors, barriers, and
transient or extended off-line conditions. It provides sup-
port for a business transaction model and support mech-
anisms for advanced transactional behavior of complex
service-oriented business processes that span organizations
[12]. The transaction model allows expressing unconven-
tional atomicity criteria, e.g., payment atomicity, conversa-
tion atomicity, contract atomicity, and possesses the ability
to express collaborative agreements and business conversa-
tion sequences that rely on transactional support. The model
relies on a phased approach to business transactions so that
all exchange of information between partners on the terms
they could commit to, e.g., to fix price and quantity, are
kept outside the ”pure” transaction protocol. This results



in enhancing flexibility and reducing latency and expensive
transaction compensations and rollbacks in business inter-
actions. The SGB’s asynchronous communications makes
the application robust under transient service node failures,
and allows transparent rerouting in the event of prolonged
failure.

The SGB provides standard, high-level services for se-
curity, management, service interaction, and aggregation,
greatly accelerating application development and deploy-
ment. The SGB should also be consistent with emerging
Web services workflow and transaction standards such as
Web Services Transactions [1], Web Services Coordination
[2] and the Business Transaction Protocol (BTP) [9]. Fi-
nally, the SGB supports linear scalability and high perfor-
mance by offering native support for asynchronous interac-
tion, and allowing service endpoints to be managed for load
balancing, workload distribution, and fail-over. The SGB it-
self must be scalable and capable of supporting peak loads.

Figure-4 describes a service sharing and aggregation
SGB model for open service marketplaces. The SGB model
allows services and the resources they use to be more eas-
ily shared by different constituencies within an open service
marketplace. With its service grid foundation an open ser-
vice marketplace provides the notion of abusiness service
grid that automatically dispatches the best service available
from a pool of dynamically assembled service providers in
order to meet the user’s need. Selection of a service is not
just based on availability, but can also be based on QoS
characteristics, as specified in SLAs and business arrange-
ments. Selection of a service is performed automatically
based on service policy, and the features provided by the
SGB enable service providers to conceal the implementa-
tion complexity required to handle multiple client requests
over heterogenous environments.

The SGB invokes a service aggregation module to main-
tain its policy and states while serving external service re-
quests. This module also performs selection and dispatch-
ing to find a service instance to execute a service request.
The service aggregation module is also decomposed into
modular functional units so that it is customizable to meet
the special needs of diverse platforms, operations logic and
so on.

One of the major benefits of introducing a distinct inte-
gration tier in the form of the SGB to implement the ESOA’s
service management layer is the ability to couple in value-
added services that provide packaged solutions for common
development needs. The SGB provides an asynchronous in-
teraction model that lets users and applications initiate and
monitor multiple tasks and data feeds simultaneously, and
immediately alerts them when a transaction completes or
a critical event occurs. In this regard, the SGB allows dy-
namic data feeds and transaction events to be delivered to
the users or applications immediately when they occur. The

SGB delivers to users applications that let them view mul-
tiple key performance indicators in real-time, collaborate
with other users, and take action when critical events take
place.

6 Conclusions

In this paper we introduced the concepts behind Service
Oriented Computing and explained how the basic Service
Oriented Architecture helps deliver service-based applica-
tions. We argued that in order to provide the advanced func-
tionality needed to deliver sophisticated e-business applica-
tions an Extended Service Oriented Architecture is neces-
sary. This architecture includes a service composition tier to
offer necessary roles and functionality for the consolidation
of multiple services into a single composite service. It also
provides a tier for service operations management that can
be used to monitor the correctness and overall functional-
ity of aggregated/orchesteated services and support for open
service marketplaces. Finally, we explained how grid ser-
vices can be used to implement the service management tier
of the Extended Service Oriented Architecture by means of
the service grid bus.

References

[1] F. Cabrera et al, ”Web Services Coordi-
nation (WS-Coordination)”, August 2002,
http://www.ibm.com/developerworks/library/ws-
coor/.

[2] F. Cabrera et al, Web Services Trans-
action (WS-Transaction), August 2002,
http://www.ibm.com/developerworks/library/ws-
transpec/.

[3] CBDI Journal Modeling for SOA
www.cbdiforum.com/, Feb. 2002.

[4] M. Champion, C. Ferris, E. Newcomer, and D. Or-
chard Web Services Architecture W3C Working
Draft, www.w3.org/TR/ws-arch/, Nov. 2002.

[5] F. Curbera, Y. Goland, J. Klein, F. Leyman,
D. Roller, S. Thatte, and S. Weerawarana
Business Process Execution Language for
Web Services(BPEL4WS) 1.0,” August 2002,
http://www.ibm.com/developerworks/library/ws-bpel.

[6] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
Grid Services for Distributed System Integration.
IEEE Computer, 35(6), 2002.

[7] J. Goepfert, M. Whalen An Evolutionary View
of Software as a Service. IDC White paper,
www.idc.com, 2002.

[8] F. Leymann Web Services: Distributed Applications
without Limits - An Outline Procs. Of Database Sys-
tems for Business, Technology and Web, 2003.



[9] OASIS Committee Specification Business Transac-
tion Protocol, version 1.0, May 2002.

[10] M. P. Papazoglou, J. Yang Design Methodology for
Web Services and Business Processes Procs. of the
3rd VLDB-TES Workshop, Hong-Kong, 2002.

[11] M. P. Papazoglou, D. Georgakopoulos Service Ori-
ented Computing Communications of the ACM, Oc-
tober 2003.

[12] M. P. Papazoglou Web Services and Business Trans-
actions World Wide Web Journal, vol. 6, March 2003.

[13] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, and C. Kesselman Grid Service Specification.
Technical report, Open Grid Service Infrastructure
WG, Global Grid Forum, 2002. Draft 5, November 5,
2002.

[14] UDDI.org UDDI Technical White paper,
http : //www.uddi.org/, 2001

[15] Web Service Definition Language.
http://www.w3.org/TR/wsdl.




